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SEMIRING RANKS AND THEIR PRESERVERS”®

SEOK-ZUN SONG AND SUNG-DAE YANG

ABSTRACT. We compare Boolean rank and maximal column rank on the ma-
trices over binary Boolean algebra, nonnegative integers, nonnegative reals, and
general Boolean algebra, respectively. We also characterize the linear operators
that preserve maximal column rank over general Boolean matrices.

1. Introduction

There is much literature on the study of matrices over a finite Boolean
algebra. But many results in Boolean matrix theory are stated only for binary
Boolean matrices. This is due in part to a semiring isomorphism between the
matrices over the Boolean algebra of subsets of a k element set and the k
tuples of binary Boolean matrices. This isomorphism allows many questions
concerning matrices over an arbitrary finite Boolean algebra to be answered
using the binary Boolean case. However there are interesting results about
the general Boolean matrices that have not been mentioned and they differ
somewhat from the binary case.

In this paper, first we will show the extent of the difference between semiring
rank and maximal column rank of matrices over a general Boolean algebra.
Second, there are some unproved ones on semiring rank, column rank, and
maximal column rank through the previous researches, and so we will give the
solutions of them. Finally, we also obtain the characterizations of the linear
operators that preserve maximal column ranks of general Boolean matrices.

2. Definitions and Preliminaries

* This work was written while the second author was an intern-researcher under the first
author’s guidance by the support of KOSEF in 1999. .
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Let B be the Boolean algebra of the subsets of a k element set S; and
01,09, -+ ,0) denote the singleton subsets of S;. We write + for union and
denote intersection by juxtaposition;0 denotes the null set and 1 the set Sj.
Under these two operations, B is a commutative, antinegative semiring(that is,
only 0 has an additive inverse); all of its elements, except 0 and 1, are zero-
divisors. Let M,, ,(B) denote the set of all m X n matrices with entries in B.
The usual definitions for adding and multiplying matrices apply to Boolean
matrices as well.

Definition ([5]). Let A be an m x n matrix over B. The p-th constituent of
A Ayis
1 if op C ag,

(@)= {

0 otherwise.

3. Comparisons of various ranks over Boolean matrices

3.1 Boolean rank versus Boolean maximal column rank

Definition 3.1 ([2]). Let A(# 0) € M,, .(B). The Boolean rank, b(A) is the
least index r such that A = Byxr - Crxn-

Let V be nonempty subset of M, ; (B) such that it is closed under + and -
by scalars. Then V is called a vector space over B.

We define "subspace” and ”generating sets” as the things to coincide with
familiar definitions when B is a field. We think of < F > as the subspace
generated by the subset F' of V.

As with fields, a basis for a vector space V is a generating subset of the
least cardinality. That cardinality is the dimension, dim(V) of V.

Definition 3.2 ([2]). The Boolean column rank, c(A) of A € My, x»(B) is the
dimension of the space < A > generated by the columns of A.

Definition 3.3 ([7]). A set G of vectors over B is linearly dependent if for
some g € G,g €< G\{g} >. Otherwise, G is linearly independent.

Definition 3.4 ([7]). The mazimal column rank , mc(A) of an m X n ma-
trix A over B is the maximal number of the columns of A which are linearly

independent over B.

(3.1) For all m x n matrices A over B,

0 < b(A) < me(4) < n.((3))
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(3.2) For any p x ¢ matrix A over B, the Boolean rank of [:]1 g] is b(A)

and its Boolean maximal column rank is mc(A).
(3.3) The Boolean rank of a matrix is the maximum of the binary Boolean
ranks of its constituents. ([5])

Lemma 3.1. For any binary Boolean matrix A, we have mc(A) = mc;(A).

Proof. Assume mc(A) = k. Then 3 k columns X;, Xy, - - - , X which are linearly
independent over B;. Consider (Xi)p, (X2)p, -+, (Xk)p. If (Xi)p = 22 ;2:(X5)

then
X, =(Xi), = Z(xj)p = ij'
J#i J#i
This contradicts to the assumption.
Thus me; (A) > k.
Conversely, suppose mc; (A) = k. Then 3 k columns, Y;, Yg,---, ¥ which
are linearly independent over By. If Y; = Z#i(aj)Yj where a; € By, then

Yi= (Yo, =) _(03)p(Yi)p

J#
= Z(a.')ij-
J#
This is a contradiction. Therefore
mc(A) > k. O

Definition 3.5 [3(B, m,n)]. B(B,m,n) is the largest integer r such that for
all A€ M,, ,(B), b(A) = mc(A) if b(A) < r.

In general,
0< B(B,m,n) < n.

(3.4) Over any Boolean algebra B, if mc(A) > b(A) for some p x ¢ matrix
A, then for all m > p and n > ¢, (B, m,n) < b(A).

Proof. Since mc(A) > b(A) for some p x ¢ matrix A, we have 3(B,p,q) < b(A)
from the definition. Let B = (3 8) be an m X n matrix containing A as a
submatrix. Then

b(B) = b(A) < mec(A) = me(B).
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So, b(B) < mc(B). Hence

ﬂ(B’ m" n) < b(B)7

forallm>pandn > q.

Lemma 3.2. In By, b;(A) = 1 if and only if me;(A) = 1.

Proof. (<) ; It is obvious.

(=>) ; Suppose b;(A) = 1. Then A can be split into two matrices, that is ,

(™
ma
A= . (r1 mg M )1 xn
\mm mxl1
(mlnl m)n; myn,
many man; MmNy
\mmnl MmN My Nin

If 3 ng,n; # 0 (i #7), then n; = n; =1 (- niyn; € By = {0,1}) So 4th and

jth columns of A are linearly dependent. Thus we get mc; (A4) = 1.

O

Generally speaking, it is false that b(A) = 1 if and only if mc(A) = 1. Now,

we suggest a counter-example.

oy 09 O3
Counter-example 3.3. Let A= | 01 03 03 | where 01,02,03 are mutu-
gy 02 O3
ally distinct.
1
Then since A= |1 ]| (o1 02 o03),
1
b(A) = 1.

But it is easily obtained that mc(A) = 3.
Theorem 3.1.

if min{m,n} =1,
if m>3 and n=3,

otherwise.
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Proof. We can have

B(Blim! Tl) = 11
0110
whenever min{m,n}=1. Let A= |1 0 0 1]. A simple computation
0 011
gives
mec (A) =4 and b(A4) =3.
By (3.4),

B(By,m,n) <2

—_ ¥

for all m > 3 and n > 4.
Suppose m > 2 and n > 2. Then

bi(A)=2 iff me(A)=2-——————— (+).

For if me;(A)=2 ,then b;(A)=1or 2.
So we can have b;(A)=2 from the above.
Conversely, suppose b;(A)=2. Then 3 Frn2,G2n such that A = FG. For

some permutation P,

GP:(1 0 z3 24 - z“), or

0 1 y3 ys -+ Yn

P P N
0 1 ys Ys -+ Un

GP:(1 0 z3 24 - z") with z;,y; € By
1 1 y3 y4 . yn 1 1 1 .

If not, then b; (G)=1 and hence b, (4)=1. This is a contradiction. Hence certain
two columns of F are maximal linearly independent columns of A. That is to
say, mc;{A)=2. Therefore we get

ﬂ(Bl’m,n) Z 21

for all min{m,n} > 2.
Finally we only show the case of m >3 and n=3. Note that

bl (A) =3 iff mcey (A) = 3,

whenever A € My, 3(B;)(m > 3).
For if mc;(A)=3 ,then b;(A)=1or 2 or 3.
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But 5,(A) # 1 and 2 by (*). Therefore
by (A) = 3.
Conversely , if b;(A)=3 ,then mcy(A) > 3 but mc;(A) < 3. Therefore
me; (A) = 3.

Hence
1 if min{m,n} =1,

B(By,mn)=<{ 3 if m>3 and n =3,
2 otherwise.

Theorem 3.2. For a nonbinary Boolean algebra B,

0 if n>2,
1 otherwise.

(8, m,n) = {

Proof. Let A= (01 03)1x2 , where 0y and o, are distinct. Then b(A4) = 1 ,but
mc(A) = 2. So by (3.4), we have

/B(B’ mi n) = 0’

for all n > 2.
Consider the case, n=1. Then for any A € M,, 1, 5(A) = 1 and mc(A4) = 1.
Therefore
B(B,m,1) = 1.

Hence we obtain the desired result. a

3.2 Comparisons of rank, column rank and maximal col-
umn rank over Boolean matrices

In this section, we shall now discuss some proofs which are related with u,a

and §in B;,Z* Ft, and B.
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Theorem 3.3. Let Zt be a semiring of nonnegative integers. Then form > 1,

1 if n=1,

z+,1 =
AEZ™, m,n) {0 it n>2.

Proof. It is clear when n=1. Consider A = (2 3)1x2 Then 5(4) = 1 but
mc(A) = 2. By (3.4),

B(Z*,m,n) =0,
for all n > 2. Hence the proof is completed. O
Corollary.
1 if n=1
z+’ ] = ,
wZT,mm) {0 if n> 2.

Proof. Similarly, consider A = (2 3);x2. Then we can obtain the desired result
from the fact that b(A) =1 and ¢(A) = 2. O

Theorem 3.4. Let F be a subfield of the reals, and F* be the subset of F
consisting of the nonnegative members of F. Then

1 if min{m,n} =1,
B(Ft,m,n)=¢ 3 if m>3 and n=3,

2 otherwise.
Proof. In F+,

r(Ay=1 iff me(4)=1 ————~—— (%).

The sufficient condition is obvious and so we only show that the necessary
condition. Suppose r(A) = 1. Then there exist F,x1,G1xn such that A = FG.
Put F = (21,22, -~ ,2m)? and G= (y1,¥2, - ,Yn) , Where z;,y; € Ft. Then

AmX'n= mlean

[ 1
I2

= . |(n w2 - )
\z,.
(zlyl T1Y2 T1Yn
To2y1 I242 Tayn
\xmyl Zml2 Tmln
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I I
) zo
Since .y = (vily)) ) -y;, mec(A) = 1. Therefore
I ITm
B(Ft,m,n) > 1.

So if min{m,n} =1, then it is clear that S(Ft,m,n) = 1.
In Ft,
r(A) =2 iff mc(A)=2.

For if mc(A) = 2, then it is trivial that r(A) = 2 by (x). Conversely, suppose
r(A) = 2. Then mc(A) > 2. If mc(A) > 2, then there exist linearly independent
columns, say a;,a; and a, of A over F¥. Since the rank of A over the subfield
F of the reals 2, there exist scalars a,8 and <, not all zero, such that aa; +
Ba; + yax = 0. Since all the entries in A are nonnegative, at least one of a,3
and v is positive and one negative. We may assume that two are positive(or at
least nonnegative) and one negative, say v is negative. Then (a/—7v)a;+(8/ -
v)a; = a;. Thus a;,a; and a; are linear dependent over F* which leads to a
contradiction of the fact that they are linearly independent. Hence mc(A) = 2.
Therefore we have

,B(F",m,n) >2 ——— —— — = - (x%)

for min{m,n} > 2.
If Ae M, , for n > 2, then mc(A) = r(A) < 2. Thus (*+) implies that

B(Ft,2,n) =2 for n > 2.

If m>3,n=3and A € M, 3(F") with mc(A) = 3, then by (x) and (),
r(A) = 3. Therefore we obtain

B(Ft,m,3) =3 for m > 3.
Finally, if m > 3 and n > 4, then
B(Ft,m,n) <2.

0 a; as 0

Forlet A={|a 0 O as) where a;,as,---,as € F*, then mc(A) = 4
0 0 a4 Qg

and b(A) < 3. Therefore from (3.4) we get,

B(Ft,m,n) < 2.
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Hence from (**) we have
B(FT,m,n) =2,
for m > 3 and n > 4. Hence the proof is completed. ]

4. Linear operators that preserve maximal column rank
of the nonbinary Boolean matrices

In this section, we obtain the characterizations of the linear operators that
preserve Boolean maximal column rank of the nonbinary Boolean matrices.

If V is a vector space over a Boolean algebra B, a mapping T : V — V which
preserves sums and 0 is said to be a (Boolean) linear operator.

Definition 4.1. A linear operator T on M, ,(B) is said to preserve Bool-
ean maximal column rank if me(T(A)) = mc(A) for all A € My, o(B). In
particular, T preserves Boolean maximal column rank r if me(T(A)) =r
whenever mc(A) =r.

Similarly we can define the terms, such as Boolean rank preserver and
Boolean rank r preserver.

Definition 4.2 ([9]). Let T be a linear operator on My, » (B). For each 1 <
p < k, a map T, is called its p-th constituent if Tp(B) = (T(B))y for every
B € M, . (By).

Lemma 4.1 ([9]). If A € My, »(B) and U,V are invertible matrices, then
me(A) = me(UA) = mc(AV).
Lemma 4.2. Assume T is a linear operator on My, »(B). If T preserves

Boolean maximal column rank r, then each constituent T, preserves Boolean
maximal column rank r on My o (B1).

Proof. Suppose that A € M, ,.(B;) with me,(4) =r. By Lemma 3.3, we have
me(A)(= mer(A)) = r, and mc(opA) =T,
for each p=1,2,---,k. since T preserves Boolean maximal column rank r,
me(T(0,A)) = r. But
r = me(T(0,4)) = me(o,T(A))

= mc(op Z 0;Ti(A:))

= me(opT5(Ap))
= me(a,Ty(4)).
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Therefore mc(o,T,(A)) = r for each p=1,2,-- k, and hence me;(Tp(A4)) = r.
O

Lemma 4.3 ([9]). Suppose T is a linear operator on My, ,(B). If each con-
stituent T, preserves binary Boolean rank r, then T preserves Boolean rank
r.

Suppose T is a linear operator on My, ,,(B). Say that T is a
(i) Congruence operator if there exist invertible matrices m x m and
n X n Boolean matrices U, V such that T'(A4) = UAV for any A
in M,, »(B).
Let o* denote the complement of ¢ for each o in B.
(ii) the p-th rotation operator, R(P) on M,, ,.(B) if

R (A) = 0,AL + 0} A, for 1< p <k,
where A;', is the transpose matrix of A,.
We see that R(P) has the effect of transposing Ap while leaving the remaining

constituents unchanged. Each rotation operator is linear on the n x n matrices
over B and their product is the transposition operator, R : 4 — A'.

0 0 O
Example 4.1. Let A= | o3 o0, 1 | be a matrix over B. Then mc(A) =3
0 1 1

. But RM(A) = 0, A} + 0} A = A?, the transpose matrix of A, has Boolean
maximal column rank 2. Consider B = A @ 0,_3,,—3 for n > 3. By property
(3.2), the rotation operator does not preserve Boolean maximal column rank 3

on M,, . (B). O

Lemma 4.4 ([5]). IfT is a linear operator on the m X n matrices (m,n > 1)
over a general Boolean algebra B, then the followings are equivalent.
(1) T preserves Boolean ranks 1 and 2.
(2) T is in the group of operators generated by the congruence (if
m=n , also the rotation) operators.

Theorem 4.1. Suppose T is a linear operator on M,, ,(B) for m > 2 and
n > 1. Then the following are equivalent.

(1) T preserves Boolean maximal column rank.

(2) T preserves Boolean maximal column ranks 1,2 and 3.
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(3) T is a congruence operator.

Proof. Clearly (1) implies (2). Now we show that (2) implies (3). Assume T
preserves Boolean maximal column rank 1,2 and 3. Then by Lemma 4.2, each
constituent T}, preserves binary Boolean maximal column ranks 1,2 and 3. For
A € My, ,(B), Theorem 3.1 implies by (A) = mey(A) for bi(4) < 2. Thus
T, preserves binary Boolean ranks 1 and 2, and hence T preserves Boolean
ranks 1 and 2 by Lemma 4.3. So T is in the group of operators generated
by the congruence( if m=n, also the rotation ) operators by Lemma 4.4. But
the rotation operator does not preserve Boolean maximal column ranks 3 by
Example 4.1. Hence T is a congruence operator since T preserves Boolean
maximal column rank 3. That is (2) implies (3). Finally, assume that T is a
congruence operator of the form T'(4) = UAV, where U and V are invertible
m x m and n X n Boolean matrices respectively. Then T preserves Boolean
maximal column rank by Lemma 4.1. Hence (3) implies (1). O

If m < 2, then the linear operators that preserve maximal column rank on
M., »(B) are the same as the Boolean rank-preservers, which were characterized
in [5].

Thus we have characterizations of the linear operators that preserve the
Boolean maximal column rank of general Boolean matrices.
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