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FUZZY STRONG LAW OF LARGE NUMBERS

J1 SOON LEE AND YONG SiK YUN

Department of Mathematics, Clieju National University, Korea

ABSTRACT. We investigate properties of fuzzy variables, fuzzy random variables, and its
membership functions. Furthermore, we study the relationship between expectation of fuzzy
random variable, its membership function and convex fuzzy variable. We define the con-
vergence of sequences of fuzzy variables and fuzzy random variables, and then prove the
convergence of sequences of fuzzy random variables and its membership function.

1. INTRODUCTION

Tlie notion of a fuzzy set wits introduced by Zadeh[6) and the theory of fuzzy sets have
been used to model situations where knowledge is imprecise. This imprecision is presumed
to arise when dealing with concepts that are ill-defined. We shall base our theory on the
work of Stein and Talati [10). In that paper, they defined the concept of afuzzy variable X
as a real-valued function defined on an arbitrary set I" and proved some properties of fuzzy
variables and their membership functions. They defined also a fuzzy random variable
Z :Q — RT as a fuzzy variable valued function defined on a probability space (§2, 3,P).
The set 2 is a sample space and we assume that a probability measure P is defined on
a a-algebra 3 of subsets of Q while RT represents all real-valued functions defined on
I'. For some fuzzy random variables Z,,- .. ,Z,, we proved the convergence of sequence

{.Zn = l](Zl +.. .t 2,)} and find the sufficient condition for the convergence of sequence
n

of their membership functions.

Tlie organization of this paper is as follows. In Section 2, we review certain properties
of fuzzy variables and relationship for their membership functions. We define the convex
fuzzy variable and ohserve properties of tlie convex fuzzy variables. In Section 3, we define
the fuzzy random variable and its expectation as a fuzzy variable and find the membership
function of the expectation of fuzzy randowm variable. We investigate properties of the
expectation of fuzzy random variable and its membership function. Furthermore, we study
the relationship between expectation of fuzzy random variable, its membership function,
and convex fuzzy variable. We carry over usual linear properties of probabilitic expectation
to fuzzy random variable and view the linear properties of expectation of fuzzy random
variables. In Section 4, we define the convergence of sequences of fuzzy variables and fuzzy
randon variables and tlieii prove tlie convergence of sequences of a fuzzy random variable
and its membership function.
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2. FUZZY VARIABLES

We define a scale o on the class of all subsets of a set T' as a function satisfying
(1) o(¢) = 0 and o(T) = 1,

(i) for any arbitrary collection of subsets {44} of T,
o(| |Aq) =supo(Ay).
(LGJ o) 0I) (4a)

Definition 2.1. A fuzzy variable X is a real valued function defined on T.

Tlie scale o is analogous to a probability measure P. The distribution of a random
variable is obtained from P and the definition of the random variable, while the membership
function of a fuzzy variable is determined from o and the definition of the fuzzy variable.

The membership function px : R — [0,1] of the fuzzy variable X is defined by

ex(z)=oc{yeTl: X(y)=12z}, r €R.

To obtain the membership function of g(X) where X is a fuzzy variable and g:R—-R
is any function, Nahmias [4] proved that

tex)(t) = sup  jpex(u).
u:g(u)=t

Example 2.2.

(i) tax(t) = px(L), for a#0 and t.

(1) px2(t) = px (VO V ux(=v1t), for t>0.

(i) If px(x) = e=E=*/6* then pxa(t) = e~ VI=laD*/B? g0 4 >,

Proof. (i) By definition,
pax(t) = o{y € T|(aX)(y) = t}
=o{yel|X(7) = 2}

/LX(g)-
(ii) By definition,
ux:(t) = o{y € T|X?(y) =t}
=o{y € TIX(7) = £V}
= ux(VB) V pux (V).

(iii) By (i), if pex(x) = e" GG~ then puya = e~ (Vi-1aD?/6* for ¢ >0, ]
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Fig. 1. The transformation g(z) = z? applied to
a triangular membership function.
In Fig. 1, the effect of the transformation g(X) = X? is shown applied to a triangular
membership function.
Nahmias [4] calls two fuzzy variables X, Y are unrelated (or noninteractive) if

X =znNY=y)=c(X =z)Ao(Y =y) for all z,y€R.

This is analogous to the concept of independent random variables. A collection of fuzzy
variables is called mutually unrelated if every finite subcollection has the property that
the scale of the intersection can be computed by the minimum of the scale of each term

(see [4]).
Using the concept of unrelated fuzzy variables, Nahmias [4] derived Zadeh’s extension
principle for the sum of two fuzzy variables.

Theorem 2.3 (Nahmias[4]). If XY are fuzzy variables, then
() px+v(@) =supo({X =z} n{Y =t —z}).

b 4
Furthermore, if X,Y are unrelated, then
() pxav(t) = suplix(z) A eyt — 2)).
T

Proof. (1) We have that
px+y(t)=o{y eT|(X +Y)(v) =t}
=of{y €eT|((X +Y)(v)=t)NT}
=o{y e T((X +V)(7) =t) Y (X () ==)}
=o{y e T JU(X () =2) N (X + Y)(7) = 1))}
= supo{y € TI(X(7) =) N (X +¥)() =1}

= supo{y € T|(X(7) = )N (¥ (1) = t = 2)}.
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(i) Since X,Y are unrelated, px4+y(t) = suplux(z) A py(t — z)). O

Note that in the above theorem, X + Y refers to the fuzzy variable defined by
(X +Y)(v)=X(y)+Y(y), forall yel.
The set of all fuzzy variables, RT, is a vector space over R. Scalar multiplication is also
defined in the usual manner.
(aX)(7) =X (7)) and (a+8)X =aX + BX.
This can be extended to define products and ratios of fuzzy variables. Let * be any binary
operation defined between pairs of real numbers. Then we can define the fuzzy variable
X +Y by (X Y )(v) = X(v) *Y (7). The following theorem is a definition in Chang [1]
and Nguyen [5] by the extension principle.

Theorem 2.4 (Stein and Talati [10]). If X,Y are unrelated fuzzy variables, then

pxay(t) = sup [ux(z) A py(y)).
rxy=t

Proof. Since

pxy(t) =o{y €T|(X *Y)(y) =t}

=o{y €eT(X()*Y(v) =t)uT}
=o{y eTIX (M *Y(M) =) (L (X () =z)n(¥Y(7) = ¥)))}
=e{y eTIU(X M+ Y(M =) (X(M) = =) N (Y (1) = y)))}

a(¢) if zxy#t,
- Jw o1 €TI(X(M =2)n(Y(M=y)} i z*y=t,

we have
pxey (t) = i‘;ﬂt[’”‘(z) A py (y))- o

Definition 2.5. A fuzzy variable X is convez if its membership function is quasi-concave.
That is, px{Aa+ (1= A)b) > px(a) A ux(b), for alla,b € R and 0 < XA < 1. We call ux is

convex if X Is convex.

A convex membership function is called a fuzzy number by Dubois and Prade [2). The
class of convex membership function includes
(i) functions that only assume the values 0 or 1,
(i1) monotone functions and
(iii) N(a,b) = e===0*/% for € R and b > 0.
In fact, (i) is clear. Since monotone functions are increasing or decreasing, (ii) holds. We
know that all N(a,b) are continuous and concave, thus (iii) holds.

We note the following result, that is, sufficient condition for convexity of composite
function without proof.
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Theorem 2.6 (Chang [1]). If f : R" — R is a continuous function and X;,--- , X, are
unrelated convex fuzzy variables, then f(X,,---,X,) is also convex fuzzy variable.

The above theorem implies that X +Y, X — Y, X .Y and X? are all convex if X
and Y are unrelated and convex. It is quite easy to find counter examples to show that
'unrelated’ is a necessary condition in the above theorem. For example, if X is N(0,1) and

y—{X if [X|<1,
“lo if |X)>1,

then

0 if |X|<1,
X-Y=

X if |X]|>1,

so that X — Y has a nonconvex membership function.

Theorem 2.6 can be extended to the case when f is defined on a convex subset of R™.
For example, if X is convex and X > 0, then X? is also convex (see Fig. 1).

The concept of a convex fuzzy variable will play a key role in the next sections.

3. Fuzzy RANDOM VARIABLES

We will consider only fuzzy random variables that take on a finite number of values
(each value is a fuzzy variable):

Z(w) =) Ig(w)X;
i=1

where X, .-, X, are fuzzy variables and E;,--- , E, are a partition of the sample space
and w € Q. Thus Z takes the value X; with probability P(E;). We shall call Z is convex
if each Xj is convex. Note that 3 I, p; =1 if P(E;) = p;.

Definition 3.1. With the above notation, define the expectation E(Z) = Y.I_, piXi.
This defines E(Z) as a fuzzy variable.

Proposition 3.2. If Z is a fuzzy random variable, then E(aZ + ) = aE(Z) + § for all
reals a and f3.

Proof. Since aZ + f =a )i, I, Xi+ = Y, Ig.(aXi+ B), we have E(aZ + B) =
S piaXi+B)=aX i piXi+ B =aE(2Z)+ 8. a

The following theorem can be used to determine the membership function of E(Z).

Theorem 3.3 (Stein and Talati [10]). Let Z = 3., Ig, X;, where {X;} are fuzzy
variables and p; = P(E;). Then

1Ez)(t) = sup[px, (z1) A - A px,(za));

where the supremum is taken over (zq,--- ,z,) subject to the constant Y opizi=t.

Proof. We have that
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o{y € T|E(Z)(y) =t}

oy € Fl(Zst.')(‘/) =t}

RE(Z)

=o{y € D|(Y_pi- Xi(y) =t) nT}

=1

o{v €TID pi- Xi(y) =1)

NG Y. () =200 Xay) = 20)}
=o{yer| |J ((ZP:"X«'('Y) =t)
N (X](’)‘) =z1N---N Xn(7) = In))}
o(9) Yl pizi A
= zsgpﬂa{’y eN(Xi(y)=z1N--- NXa(y) = za)}
if Yo, pirzi=t
= ziflzl?zt[“x‘(x‘)/\”'A”x"(x")]’ O

Corollary 3.4. If Z is a fuzzy random variable with

7. { X with probability p,
Y with probability q,

where X, Y are unrelated fuzzy variables and p+ ¢ = 1, then

T t—z
#E(2)(t) = suplux (—) A py ( )]_
z P q

The following theorem shows that convexity is required for a sensible interpretation of
the expectation when all values are unrelated.

Theorem 3.5 (Stein and Talati [10]). Assume that Z is a fuzzy random variable as
in Theorem 3.3. Also assume that each X; has the same membership function y. Then
E(Z) has membership function y (for every py,--- ,pn ) if and only if Z is convex.

Proof. First we consider the case n = 2. Then E(Z) = py X1 + p2 X2 with py + p2 = 1.
Now for fixed p; and p;, the following statements are equivalent.
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(1) p1 X1 + p2 X2 has membership function p.

(2) For all ¢, p(t) = suplp(z1) A p(z2)] where the supremum is taken over z; and z,
such that pyz; + paze =1t.

(3) u(t) > p(x1) A p(xz) for all t, where pyx) +prz, = t (equality occurs at z; = z; = ¢t).

14) pu(prz1 + p22) > p(z1) A px2) for all ¢,z and z2.

Note that these equivalences hold for all probabilities p; and pa with p; + p; = 1. We
see from above that y is required to be convex. Thus by (1) and (4), the result holds for
n=2

For arbitrary n € N, consider

E(Z) = P]Xl +P2X2 +-- '+anu
D Pn—-1
={— X +...+—__.Xn_)
(P1+"'+]7n—1 ! P1+ 4+ Paar !
. (Pl + - +Pn—l) +Pan-

Then we can extend the result from n = 2 to arbitrary n by induction. O

Corollary 3.6. Let Z = Y Ig, X, with unrelated convex fuzzy variables X;. Then E(Z)
is a convex fuzzy variable.

Proof. Since E(Z) =3 piX;, E(Z) is a convex fuzzy variable by Theorem 2.6. O

We may extend u to the positive reals to obtain another membership function ji. If we
consider the computation of E(Z) as in Theorem 3.5, we will obtain different results if we
choose i rather than p. The following theorem summarizes the extent of the differences
between these results and leads to an ’optimal’ extension.

Theorem 3.7 (Stein and Talati {10]). Let Z = 5 Ig; X; with unrelated fuzzy variables
X;, each with membership function . with support contained in the nonnegative integers.
Let i be an extension of i to the nonnegative reals that is convex. Let Z be the fuzzy
random variable obtained if we use ji instead of u. Then

(i) #u<upz < FEZ) = jt and

() we@z)(t) =ngz(t) i te{u>0}

Proof. (1) Taking x; =1t,

tez)(t) = sup [p(zi) A Ap(za)] 2 p(t).
pizi=t
Since ji is extension of s, we have u < ji. Thus from the definition, pp(z) < pgz)- By
Theorem 3.5 and convexity of ji, we have pp 3 = ji.
(ii) Since fi is an extension, u = jt on {g¢ > 0}. Thus (ii) follows from (i). O

This theorem shows in (i) that the membership functions of E(Z) and E(Z) are close
if 4 and ji are ; and in (ii) that the membership function of E(Z) and E(Z) agree on the
original points. So we see that we should choose an extension fi that is close to u as is
possible and is also convex.
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Definition 3.8. Let ;i be as above. Define for t > 0,

{ () if u(t) >0,
p(tD A pu(lt] +1) if w) =0.

If i is convex, we call it the minimal eztension of p.

ut) =

g P

Fig. 2. A discrete membership function and its minimal extension.

In Fig. 2, the minimal extension of a typical membership function is given. It is clear
that if 7z is convex and fi is any extension of u that is also convex, then & < fi. So in this
sence, i 15 the closest convex membership function to u.

A fuzzy random variable can be considered as a generalized random variable, since it
takes values in the linear space RT. This is sufficient to be able to define an expectation
(Definition 3.1) as a linear operator. Extending the linearity proven in Proposition 3.2, we
can show the following theorem.

Theorem 3.9 (Stein and Talati [10]). Let Z,,---, Z; be fuzzy random variables and
let ay,-- -, be any real numbers. Then

k k
EQ) «iZ) =) a:E(Z:)
=1 =1
Proof. Since

k
E() «iZi) = E(c1Zs + - + o Zx)
i=1

= E((Y]Z]) + -4 E(Cthk)
E(Z))+ -+ ax E(Zk)

.
= Za.-E(Z;),

the theorem holds by Proposition 3.2. a
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In probability theory, we know that the sample mean X is an unbiased estimator of the
population mean when all the summand show the same expectation.

Corollary 3.10. Let Z;,---,Z, be fuzzy random variables with all the E(Z;) unrelated
. . 5 1

and each having the same convex membership function p. If Z = —(2Z, + --- + Z,,), then
n

E(Z) has the membership function p.

Proof. By Theorem 3.9,

E(Z) = {B(Z1) + -+ E(Z,)).

Thus E(Z) has the membership function g by Theorem 3.5. (W]

Proposition 3.11(Stein and Talati [10]). Let Z,W be independent fuzzy random
variables. Then E(ZW) = E(Z)E(W).

Proof. Let Z = 3 1, Ip, X; and W = 377 I, Y;, where {E;} and {Fj} are both parti-
tions of . Since Z and 1V are independent, P(E; N F}) = P(E;)P(Fy). Thus

n n
E(zW)=E() IeX: Y IgY;)
i=1 =1

= i i P(E,‘ n Fj)X,'Yj
= i: i: P(Ei)P(F;)XiY;
i=1 j=1
=Y P(E)X:)  P(F})Y;
i=1 j=1
= E(Z)E(W). S

4. CONVERGENCE OF FUZZY RANDOM VARIABLES

Definition 4.1. The sequence of fuzzy variables {X,} is said to converge to the fuzzy
variable X if X, (v) — X(v) for all y € T.

Definition 4.2. The sequence of fuzzy random varibles {Z,,} is said to converge almost
surely (a.s.) to the fuzzy random variable Z if there exist a set F' C Q2 with P(F) = 0 such
that for every w € F*, Z,(w) — Z(w) as n — oo.

Definition 4.1 is not same as pointwise convergence of the membership functions. For
example, consider I' = {«, 8} with a scale o defined on each element. Define the fuzzy
variables:
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X, (a) =1, X(a)=1,
X, =14+1/n, X(B) =1,
so thar X', — ' Now,

limpy, () =

{ o(e) if t=1,

0 otherwise,

o{a L) if t=1,
Hlim .\',,(t) = .
0 otherwise,
which will not Le the same if () > o(«).
Theorem 4.3. Ler {Z;} be independent fuzzy random variables. Let
5 X with probability p,
N Y with probability q,

_ 1 ’ _
where X,Y are nnrelated fuzzy variables. If Z,, = —(Zy + ---+ Z,,), then Z, converge
n
almost surely (a.s.) to E(Zy) asn — oo and pigz.y = HE(2,)-

n—=~L

- k
Proof. Note that Z,(w) = (—)X + ( )Y, where k is a binomial random variable
n 1
that represents the number of the successes in the first n trials. By the nonfuzzy strong

k .
law of large numbers, — converge to p a.s., so that there exist F' C 2 with P(F') = 0 such
n

k(w)

that for every w € F°, converge to p(w) = p as n — oo. Therefore Z,, converges to

E(Z)) =pX + qY as..
By Theorem 3.9, E(Z,(w)) = %(E(Zl) + .-+ E(Z,)). Since E(Z;) = E(Z;) for all 1
and j,

RE(Zy(w)) = FL(E(Z)++E(Z2)) = FL((pX+gY)++(pX+qY))
= HRi(npX+nuqY) = HpX+qY
= MHE(Z,)-

Theorem 4.4. Let {Z;} Le independent fuzzy random variables such that
X,  with probability p,
Z‘ = .
Xm with probability pu,

_10_
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1113 - - — 1 -
where ). pi = 1, X|s are unrelated fuzzy variables. If Z, = —(Zy4+ -+ Z,), then Z,
n
converge almost surely(as.) to E(Zy) asn — oo and pig(z,) = BE(2,)-

n—(kl+"'+km—1)
n

k
Proof. Note that Z,(w) = (—)X; +--- + ( )Xm, where ks are
n

k:
multinomial random variables. By the nonfuzzy strong law of large numbers, ;' converge to
ki(w)
_ n
to pi(w) = pi as n — oo. Therefore Z,(w) converges to E(Z;) =p1 X1 + -+ + pmXm as..

- 1
By Theorem 3.9, E(Z,(w)) = —(E(Z1)+ --- + E(Z,)). Since E(Z;) = E(Z;) for all i
1

1

pi a.s., so that there exist ' C  with P(F') = 0 such that for every w € F*, converge

and j,

IE(Zp(w)) = FL(B(Z))++ E(Z2))
=Ll X+ A pm Xm)+ -+ (P1 X1+ +Pm X m))
Z Hlap X+ tnpmXm) = Epi X1+ 4pmXm

= LE(Z))-

Using the same approach as in the above theorem, it is also possible to reformulate
the fuzzy random variables Z; so that the values are merely unrelated fuzzy variables. In
this case, we shall consider pointwise convergence of membership functions. The following
lemma will be required.

Lemma 4.5. If X;,---,X,, are unrelated fuzzy variables with X; having an N(a;,b;)
membership function, b; > 0, so that px,(z) = exp{—(z — a;)*/b;®}, then ;X1 + --- +
cn X, is a fuzzy variable with membership function N(}_ ciai, Y ¢ib;) for any positive real
numbers ¢y, - , cy.

Proof. Consider Z = X, + X;. Without loss of generality, we can assume that a; > a;
and b > b;. Then we have pz(z) = suplux,(z) A ux,(z — z)] by Theorem 2.3. Let

g:(z) = px, (2) A jex,(z —z) for fixed z. As a function of z, ¢g.(z) is unimodal and achives
its maximum of 2,(z) solving

px,(z1(2)) = pux,(z — 21(2)),
which gives z;(z) satisfying the quadratic equation

[(21(2) = @)/} = [(z = 21(2) — a2)/b2])”.

The solutions obtained from the quadratic formula.

c1(2) = (b2 = b H)! {a1by? = (= - ag)b12 £ bb2(z — ay — az)}.

_11_
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Since pz(z) = px,(x1(2)) = exp{—(z1(2) — a1)*/b:%}, we can alternatively substitute the
positive and negative roots for z,(z). Substituting the positive root, we obtain

1%, (21(2)) = exp{=((b = b1) (2 — a1 — a2))?}

and substituting the negative root,

tex, (x1(2)) = exp{—((b2: + bh) N z—a; — a))*}.

Since by > 0 and by > b, we have ux (2:1(2)) > ,u')*’(1 (z1(2)) and the supremum is
achived at the negative root. Hence

pz(2) = exp{=((bz + b)) 7' (z — (a1 + a2)))*}.

For any n € N, we consider Z = }7'_, X;, then Z is a fuzzy variable with membership

function N(3_ a;, Y b;) by induction.

Suppose that Z = 1 X; , ¢; # 0. Then uz(z) = nx,(Z) = exp(—(& —a )2/6%) =
exp(—(z —c1a1)*/(e1b1)?), so that Z is a fuzzy variable with membership function N(c;a;,
aib). Thus, if Z = 31 ¢;X; for ¢; # 0, then Z is a fuzzy variable with membership

function N3 ciai, Y ¢;b;) by induction. a
Theorem 4.6. Let {Z;} be independent fuzzy random variables. Let
7. — { X; with probability p,
! Y; with probability q.
Aassume that {X;} and {Y;} are all unrelated fuzzy variables. Suppose that each X;
has an N(1,1) membership function while Y; has an N(0,1). If Z, = %(Zl + -4 Zp),

then the membership functions of the sequence Zy(w) converge almost surely (a.s.) to the
membership function of E(Z,) = pX; + ¢Y; which is N(p, 1).

Proof. By Lemuma 4.5, we know that X; + X, has the same membership function as 2X,,
_ k -k

so the membership function of Z,,(w) is the same as that of (M)X 1+ (_n__(_w_)) Y,
n n

where k(w) is the valne of a binomial random variable.
Since X; has a membership function N(1,1) and ¥; has a membership function N(0, 1),

k - k(w k
(E)XI + (w) ’y has a membership function N(E, 1) by Lemma 4.5. Since
n n

n
k(w) is the valne of binomial random variable and N(a, b) is continuous, N (—, 1) converges

n
a.s. to N(p,1) as n — oco. So there exist a set F C @ with P(F) = 0 such that for every
w € F¢ puz () converges to jp(z,y with membership function N(p,1) as n — oo. O

Theorem 4.7. Let {Z;} be independent fuzzy random variables. Let

X} with probability p,,
Z; =

X with probability p,,

_12_
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where 3L, pj = 1.
Aassume that {X7}'s are unrelated fuzzy variables. Suppose that each X has an N(a;, b;)
membership function , 1 <j <mandl1 <i<n If Z, = -};(Zl + -+ Z,), then the
membership functions of the sequence Z,(w) converge a.s. to the membership function of
E(Z)) = p X} + -+ pu X" which is N(371, piaj, 2252, pibj)-

Proof. By Lenuna 4.5, we know that X +X] has the same membership function as 2X},so
the membership function of Z,(w) is the same as that of (kl—flw—))Xll +---+ (k—m:#)
n—(kW)+ -+ kno1(w))

n

D S ( )X{" ,where k;(w) is the value of a multinomial

random variables.

. k k-
Since X has a membership function N{a;, b;), ( l(w))X} 4o (_T_i_(_“'i)_)xlm—l_{_

n

(n — (B F km_l(u”)X{" has a membership function N(E;":l (%)aj, 5’"_:(&)

n n

j=1
b;) by Lemma 4.5. Since kis are the multinomial random variables and N(a,b) is con-
. k; k;

tinuous, N(32L, (7—;—)(1]-, PRy (T:)bJ) converges a.s. to N(3LT., Pjaj, 2 i, pjbs) as
n — oo. So there exist a set Fj C Q with P(Fj) = 0 such that for every w € F}*, piz, (u)

converges to jig(z;) as n — oo with membership function N(37, pjaj, Yimapib). O
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