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The Volume of a Parametrized
3-Surface under Inversion

Hyun, Jin-Oh - Ahn, Seong-Eui
Abstract

A mapping f : E* — {(0,0,0)} — E? which sends a point P into a
point P’ is called an inversion in an Euclidean space E® with respect to a
given circle or sphere with center O and radius R, if OP - OP' = R? and
if the points P, P’ are on the same side of O and O, P, P' are collinear.

This thesis shows that, for a parametrized 3-surface in E? is given

by X(u1,uz,u3) = (z(ul,u2,u3),y(u1,ug,U3),z(u1,u2,U3) , the volume

of f(X) is equal to RG/ ,;ls V9 duy duy duz ,where V9 1s the absolute
U

value of Jacobian matrix of z,y, z with respect to uy, usq, us.

Introduction

In this paper, we study the volume of the parametrized 3-surface in
Euclidean space E3.

In section 1, we present the basic concepts of a parametrized 3-surface
in E3 and a natural instrument to treat the volume of a parametrized 3-
surface in £°. And we also show how to find the volume of a parametrized
3-surface.

In section 2, we introduce the definition and some properties of in-
version in E? and show that f(X):U — E3is a parametrized 3-surface,

RG
and \/_: IXIG\/j

Finally, in section 3, we show the volume of f(X) under inversion is

© EAABK WEA BEREH

TR ME A
.67-



2 HEHE 124 (1995.12)

1
| X1

equal to R® / /9 duy dug dus, and give the example for the above
U

theorem.

1. The volume of a parametrized 3-surface

In this section, we introduce the basic concepts of a parametrized
3-surface in E3. And we define the volume of a parametrized 3-surface.

Definition 1.1 A parametrized 3-surface 1s a smooth map
X : U — E?® which is regular, where U C E3 is open.

If we write X (uy,u2,us3) =(:c(u1 ,ug,u3), y(ui, uz, us), 2(u1, uz, Ug))
for any (ui,uz,usz) € U C E3, then X is smooth if and only if
z(u1,u2, us), y(ui,uz, u3) and z(u1,uz,u3) have continuous partial deriva-
tives of all orders in U. Regular condition means that dX, is non-singular
(has rank 3) for each ¢ € U. Let us compute the matrix of the linear map
dX, with respect to the canonical bases e; = (1,0,0),e; = (0,1,0) and
es = (0,0,1) of E® with coordinates (uy,uz,u3) and i) = (1,0,0),22 =
(0,1,0) and i3 = (0,0,1) of E3 with coordinates (x,y,z).

By the definition of the differential, we have

0z Oy Oz o0X

4Xo(e) = (Gur Bur ) = w0 (1)
dr Jdy Oz 0X
dXQ(eZ) - (a'U.2, 6u2’ duz = duy = Xuzv (12)
dr Oy Oz 0X
dXq(ea) = (Bus’ Bus’ Ouz’ ~ Ous Kua: (1:3)
Regular condition implies that for each ¢ € U,
0r Oy Oz
ox ox ax |3 B %
z Yy z
. = . 4
aul 6UQ % 8u3 8u2 6’UQ 3u2 76 0 (1 )
8z Oy Oz
611.3 611.3 a'u.3

The mapping X is called a parametrization or a system of local coor-
dinates in a neighborhood of p € U.
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Example 1.2 Let X : U — E3 be defined by
X(r,6,¢) = (r cos@sin ¢, sin §sin ¢, r cos ¢),
where U = {(r,0,4)|0 <7 <a,0< 80 <2m,0< ¢ < 7}.
Then X : U — E3 is a parametrized 3-surface
and the image X (U) = B\{(z1,z2,23) € B|z; > 0,z, = 0},
where B = {(z1,z2,23) |2 + 22 + 2% < a?}.
Since z(r,8,¢) = rcos@sin ¢, y(r,0,¢) = rsinfsin ¢ and
z(r,0,¢) = rcos ¢ have continuous partial derivatives of all orders in U,
X 1s smooth.
Moreover, since

X
E\(p) = 68— = (cos #sin ¢, sin @ sin @, cos @),
T
0xX e .
E,(p) = 50 = (—rsin@sin¢g,r cosfsin¢,0) and
0X . :
Es(p) = 5 = (r cos@cos ¢, rsinfcos ¢, —rsind),p = (r,0,¢) € U,
we have aai( . aa); X %‘Z l # 0. Hence the regular condition is satisfied.

Definition 1.3 Let X : U — E® be a parametrized 3-surface
where U € E? is open.
Then the volume of a parametrized 3-surface X denoted by V(X) is defined
0X 0X 0X

by
V(X) :L aul . 6u2 X 6u3

where (uy,uz,u3) is a local coordinate system on U.
The function |X,, - Xy, X Xu,| defined in U, measures the volume of
a parallelepiped generated by the vectors X,,, Xu,, Xu;.

du1 dU2 d‘u;;, (15)

Proposition 1.4 Let X : U — E3 be a parametrized 3-surface
Or Oz Jdy Oy 0z 0z
+ Then

Bui . au,- 6u,~ . 6’u_,' + 8u,‘ . Bu]-'

and let g;; = X, - Xy; =

where g = |det(g;;)|.
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Corollary 1.5 The parametrization X has the regularity condition
iff \/g is never zero, that is /g > 0.

Example 1.6 Let X : U — E® be the parametrization in the
example 1.2. Then

1 0 0
g=10 r?sin’¢ O = r*sin’ ¢.
0 0 r?
Hence we get
2n
V(X) 2/ / / V9gdrdfde
o Jo

2T

/ r?sin ¢ dr df do

Il
CQl > ;-._5

2. Definition and some properties of an inversion

In this section, we define an inversion in E? and study some properties
of an inversion.

Let the symbol (O)r denote the sphere with center O and radius R
Definition 2.1 Two points Pand P’ of E® are said to be inverse

with respect to a given sphere (O)g if
OP.OP' = R?. (2.1)

and if P, P! are on the same side of O and the points O, P, P’ are collinear.

A (O)p is called the sphere of inversion, and the transformation which
sends a point P into P’ is called an inversion.
Note that the center O of the sphere of inversion has no inverse point.
From now on, we take the center O as an origin in E3?, and denote the
distance from O to a point X by | X|.

Then we have the following properties.
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Proposition 2.2 An inversion in a space E? is a mapping
f:E®—{(0,0,0)} — E® such that

R*X R*X
X) = =
X =ZFxs=xp

(2.2)

where < X, X >= X - X is the dot product.

Proof. Since f is an inversion and O, X and f(X) are collinear.
Hence f(X) = kX for some positive real number k.
Since f(X) is inverse point of X, by means of (2.1),
1 X|1£(X)| = R*.
k|X|? = R
Since |X| # 0, we have
R2
k= —.
| X[

2

The inverse point f(X) = le)g

is the vector of length R?|X|~! on the
ray of X.

Theorem 2.3
(1) A plane through O inverts into a plane through O.
(2) A plane not through O inverts into a sphere through O.
(3) A sphere through O inverts into a plane not through O.
(4) A sphere not through O inverts into a sphere not through O.

Proof. Let B be any nonzero constant vector in E3, and consider
the equation

a|X|*+ < B,X > +c=0, (2.3)

where a,c € R.
Then the equation (2.3) represents a sphere for a # 0 and a plane for

a=0.
2

For | X| # 0, multiplying both sides of (2.3) by %, we have

R?*< B, X > N R?%c
| X |2 | X |2

R%a + = 0. (2.4)
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R*X
X1

Let Y = Then we have

%|Y|2+ <B,Y > +R% =0. (2.5)

Thus (2.3) is transformed into (2.5) under inversion. Hence we get:

(1) When a = 0,¢ = 0, (2.3) and (2.5) represent a plane through O.

(2) When a = 0,c # 0, (2.3) represents a plane not through O and (2.5)
represents a sphere through O.

(3) When a # 0,c = 0, (2.3) represents a sphere through O and (2.5)
represents a plane not through O.

(4) When a # 0,c # 0, (2.3) and (2.5) represents a sphere not
through O.

RX
| X2

where (uj,uz,u3) € U and X = (m(ul,ug,u3),y(u1,ug,ug),z(ul,u2,u3)).

Theorem 2.4 Let X : U — E* — {(0,0,0)} be a parametrized 3-
surface for U C E® and f: E® — {(0,0,0)} — E? be an inversion.
Then f(X) = f o X is a parametrized 3-surface.

Define fo X : U — E* by (f o X)(ur,uz,u3) =

R*X

Proof. Since X is a parametrized 3-surface and foX = f(X) = X7

f(X) is smooth and regular.
Hence f(X) is a parametrized 3-surface.

Theorem 2.5 Let f(X) : U — E? be an inversion of a para-
metrized 3-surface X. Then

—__ () o) _ R

95 Tou " Tow, T [XP (2:6)
he < 0X 0X S
where g;; =< 7——, 73— > .
J au,' 611.]'
R2
Proof. Since f is an inversion, we have f(X) = |X|2X from (2.2).

df(X) R® 3X 3 2R? 0|X|
Ou;  |X|?0u; |X|? Ou;

By the equation X,
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—~ __9f(X) 9f(X
9iy =< Ou; ' Bu]-) >
_ R? 98X B 2R? 9|X|, R? 90X _ 2R? 9| X|
| X |2 0u; |X]P Qu; T |X|20u; | X Ou;
_. R* 80X R® 08X S
| X |2 Ou;’ | X|? Ou;j
R? 0X 0X
T XF S G du;
R4
= ngj-

Corollary 2.6 Let X : U — E® — {(0,0,0)} be a parametrized
3-surface and f : E3 — {(0,0,0)} — E3 be an inversion.
6

Then the /g of f(X) is equal to |)}§—|6\/§ where § = det(gi;).
Proof.

g11 ?12 g13

d=1{921 G22 o3
§31 g32 933
R* R* R?
XpE OXpET xpEe
Rt Rt R*

= |X|4921 —IX'4922 |X|4923
Rt R* R
|X|4931 |X—I4‘932 |X|4933

RY 3 911 12 913

(W) g2y 922 923
g31 ¢g32 933

1212

-

. RS
Hence /g = IX_|6\/§
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3. The volume of a parametrized 3-surface under
inversion

In this section, we show that the volume of V(f(X)) under inversion

1
1s equal to RG/ X V9duiduadus and give example for the following
U

theorem.

Theorem 3.1 Let X : U — E3 — {(0,0,0)} be a parametrized
3-surface defined by
X(uy,ug,u3z) = (x(ul,uz,U3),y(u1,u2,u3),z(ul,ug,ug)) for (uy,uz,u3)
€U C E®, and let f: E* — {(0,0,0)} — E?® be an inversion of X,

then the volume of f(X) under inversion is equal to

1
| X1

Proof. By corollary 2.6 and proposition 1.4, we have

V(f(X)) = /U V4 duy dug dus

R6
= |X|6\/§du1 d'U.z d'U,3
U

1
=R6/ |X|6\/§duldU2dU3-
U

Example 3.2 Let X : U — E3 - {(0,0,0)} be a mapping defined
by
X(r,0,¢) = (rcosfsing,rsinfsing,r cos ¢),
where U = {(r,6,¢) |1 <r <2,0<8<2r,0< ¢ < 7}.
Then, by example (1.2), X is a parametrized 3-surface, and

|X|? = r? cos® @sin® ¢ + r% sin® fsin® ¢ + r? cos® ¢
= 72 sin® ¢(cos? 8 + sin® 8) + r? cos? ¢
= r?(sin® ¢ + cos® ¢)

=r?
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Thus | X|® = r® and /g = r?sin ¢. Hence
L 27 2 1
V(f(X)) = Rf‘/ / / — sin¢dr df d¢
o Jo 1 T
= gﬂRG.
On the other hand,
R2
f(X)= — (rcos@sin ¢, rsin@sin ¢, r cos §)
r
2

= —(cos sin @, sin O sin ¢, cos ¢).
r

Thus BF(X B2
m = —f(% = ——(cos@sin ¢, sin fsin ¢, cos ¢),
T
o 2
E;(p) = % = RT(—sinﬁsin #,cos@sin¢,0) and
o 2
Es(p) = %f) = i(cochos $,sinf cos ¢, — sin @).
T
Hence P
g1 g1z 913
=191 22 Go3
931 32 §33
R4
— 0 0
4
r 4
=0 = sin? 0
Rt
0 0 o
R* R®
= — . —sin
IR
Thus

™ 27 2
V(f(X)) =R6/ / / %sind)drdﬁdd:
o Jo 1 T
= gﬂRG.
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<F B = 5>
ZI0h 218t WA &Tt=22) =1

240 O o]z VAES Yo7t R Q 391 @ T+ 74 Euclid 32 E3
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X(u17u27u3) = (l‘(ul,UQ,U3),y(U1,U2,U3),Z(ul,UQ,U3)>
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