On the General Weighted Orlicz-Sobolev Spaces

李世烈*

一般加重 올릭쯔 · 소볼레프 空間에 관하여

Lee Se-yuohl

Summary

The space $W^m L_{\emptyset,\omega}(\ell_{\phi})$ is a Banach space. For $\emptyset_1 = \{\phi\}$ and $\emptyset_2 = \{\phi\}$, if ϕ dominate ϕ then $W^m L_{\emptyset,\omega}(\ell_{\phi}) \subset W^m L_{\emptyset,2}(\ell_{\phi})$ and ϕ_1 dominates ϕ_2 then $W^m L_{\emptyset,\omega}(\ell_{\phi}) \subset W^m L_{\emptyset,2}(\ell_{\phi})$.

Introduction

For a given open set Ω in \mathbb{R}^n and a given N-function ϕ , $\mathbb{W}^m L\phi(\Omega)$ denotes an Orlicz-Sobolev space Which consists of those (equivalence class of) functions u in $L\phi(\Omega)$ whose distributional derivatives D^{α} also belong

to $L\phi(\Omega)$ for all α with $|\alpha| \le m$. $W^m L\phi(\Omega)$ is a Banach space with respect to the norm

$$\|\mathbf{u}\|_{\mathbf{m},\mathbf{p}} = \|\mathbf{u}\|_{\mathbf{m},\mathbf{p},\Omega} = \max_{0 \le |\alpha| \le m} \|D^{\alpha}\mathbf{u}\|_{\mathbf{p},\Omega}$$

General weighted Orlicz-Sobolev spaces

Let A be a Banach space with norm $\|\cdot\|_{A}$

^{*} 사범대학 조교수

and le Ω be open in \mathbb{R}^n . If ω is a Lebesgue measurable function on Ω such that $0 \langle \omega(x) \langle \infty \text{ for } x \in \Omega \rangle$. We define $L_{p,\omega}(A)$, the space of all functions $u : \Omega \rightarrow A$ such that

$$\|\mathbf{u}\| L_{\mathbf{p},\omega}(\mathbf{A}) = \{\int_{\Omega} (\|\mathbf{u}(\mathbf{x})\|_{\mathbf{A}} \omega(\mathbf{x}))^{\mathbf{P}} d\mathbf{x} \}^{1/\mathbf{p}} \langle \infty$$

Then $L_{p,\omega}(A)$ is a Banach space (Triebel, 1978; Turpin, 1978). For an N-function ϕ , the Orlicz-sequence ℓ_{ϕ} is a Banach space with respect to the norm $\|\cdot\|_{L^{p,\omega}}(\ell_{\phi})$.

For a sequence $\phi = \{\phi_n\}$ of N-functions, define the class

$$k_{\phi,\omega}(A) = \{ u \in A^{\Omega} : \sum_{n} \int_{\Omega} \phi_n(\| u(x) \|_A \omega(x))$$

dx $\langle \infty \rangle$

Clearly $K_{\mathcal{O},w}(A)$ is a convex set since all ϕ_n are convex but it may not be a vector space.

A sequence $\phi = \{\phi_n\}$ of N-function is said to satisfy a \triangle_2 -uniform condition globally if there exists a positive constant C such that for every $t \ge 0$ and all $n \in \mathbb{N}$

$$\phi_n(2t) \leq C \phi_n(t)$$

This is equivalent that for every r)1 there exists a positive constant C=C(r) such that for all $t\geq 0$ and all $n\in N$,

$$\phi_n(\mathbf{rt}) \leq C \phi_n(\mathbf{t})$$

LEMMA 1. $K_{\phi,\omega}(A)$ is a vector space if ϕ satisfies a Δ_2 -uniform condition globally.

Proof. Since all ϕ_n are convex we have; (i) $\lambda u \in K_{\phi, \omega}(A)$ provided, $u \in K_{\phi, \omega}(A)$ and $|\lambda| \leq |$ and (ii) if $u \in K_{\varphi,\omega}(A)$ implies $\lambda u \in K_{\varphi,\omega}(A)$ for every complex λ , then $u, v \in K_{\varphi,\omega}(A)$ implies $u + v \in K_{\varphi,\omega}(A)$.

It follows that $K_{\varphi,\omega}(A)$ is a vector space if and only if $u \in K_{\varphi,\omega}(A)$ and $|\lambda| > 1$ implies λ $u \in K_{\varphi,\omega}(A)$.

If Φ satisfies a global \triangle_2 -uniform condition and $|\lambda|\rangle 1$, then there is a constant C such that $\phi_n(|\lambda| t) \leq C |\lambda| \phi_n(t)$ for all t $\rangle 0$ and all $n \in \mathbb{N}$

Thus, for u∈K_{Ø, w}(A).

$$\sum_{n} \int_{\Omega} \phi_{n}(|\lambda u(x)||_{A} \omega(x)) dx$$
$$\leq c |\lambda| \sum_{n} \int_{\Omega} \phi_{n}(|u(x)||_{A} \omega(x)) dx. ///$$

The general weighted Orlicz space $L_{\emptyset,\omega}(A)$ is defined to be the linear hull of the class $K_{\emptyset,\omega}(A)$. (A). Thus $K_{\emptyset,\omega}(A) \subset L_{\emptyset,\omega}(A)$ and these sets are equal if \emptyset satisfies \triangle_2 -uniform condition globally.

We define the functional $\|\cdot\|_{L^{\phi,\omega}}(A)$ on $L_{\phi,\omega}(A)$

$$\|\cdot\|_{L_{\phi,\omega}}(A) = \inf\{k > 0:$$
$$\sum_{n} \int_{\Omega} \phi_{n}\left(\frac{\|u(x)\|_{A} \omega(x)}{k}\right) dx \leq 1\}$$

Clearyly, $\|\cdot\|_{L_{\phi,\omega}}(A)$ is a norm. We have the following.

THEOREM 2. $L_{\emptyset,\omega}(A)$ is a Banach space with respect to the norm $\|\cdot\|_{L_{\emptyset,\omega}}(A)$.

COROLIARY 3. $L_{\phi, \omega}(\ell_{\phi})$ is a Banach space with respect to the norm

 $|\cdot|_{L^{(a)}}(\ell_{\phi})$

The general weighted Orlicz-Sobolev space $W^m L_{\partial, \omega}(\ell_{\phi})$ is defined by

$$\mathbb{W}^{\mathsf{m}} \mathbb{L}_{\boldsymbol{\phi}, \boldsymbol{\omega}}(\boldsymbol{\ell}_{\boldsymbol{\phi}}) = \{ \mathsf{u} : D^{\boldsymbol{\alpha}} \mathsf{u} \in \mathbb{L}_{\boldsymbol{\phi}, \boldsymbol{\omega}}(\boldsymbol{\ell}_{\boldsymbol{\phi}}), |\boldsymbol{\alpha}| \leq \mathbf{m} \}$$

with the norm

-230-

 $\| \mathbf{u} \|_{\mathbf{w}^{\mathbf{m}} L^{\alpha}, \omega}(\ell_{\phi}) = \sum_{n} \| \mathbf{D}^{\alpha} \mathbf{u} \|_{L^{\phi}, \omega}(\ell_{\phi})$

THEOREM 4. $W^{m}L_{\phi,\omega}(\ell\phi)$ is a Banach space with respect to $\|\cdot\|_{W^{m}L_{\phi,\omega}}(\ell_{\phi})$.

Proof. Since $L_{\emptyset,\omega}(\ell_{\phi})$ is a Banach space, the vector space $W^m L_{\emptyset,\omega}(\ell_{\phi})$ is complete with respect to the norm $\|\cdot\|_{W^m L_{\emptyset,\omega}}(\ell_{\phi})$ by Theorem 7.13 in Kufner (1977).

REMARK 1. Triebel (1980) considered the space $L_{p,w}(\ell_q)$. This is the case $\phi(t) = |t|^q$

and $\phi_n(t) = |t|^p$ for each n in our spaces (Trjebel, 1980)

we consider imbedding between general weighted Orlicz-Sobolev spaces.

THEOREM 5. If ϕ_{1n} dominate ϕ_{2n} and ϕ_{1} dominates ϕ_{2} then we have the following imbedding diagram

$$\begin{array}{c} \mathbb{W}^{m} L_{\phi, \omega}(\ell_{\neq 1}) \hookrightarrow \mathbb{W}^{m} L_{\phi, \omega}(\ell_{\neq 2}) \\ \mathbb{G}_{W^{m} L_{\phi, \omega}(\ell_{\neq 1})} \hookrightarrow \mathbb{W}^{m} L_{\phi_{2}, \omega}(\ell_{\neq 2}) \end{array}$$

References

Kufner, A., 1977, Function spaces, Noordhoff International Company.

Triebel, H. 1978, Interpolation theory, function spaces, differential operators, North-Halland Pub. Company.

Triebel, H. 1980, Maximal inequalities, Fourier

Multipliers Littewood – Paley theorems and approximations by entire analytic functions in weighted spaces, Analysis – Mathematica 6, 87 - 103.

Turpin, P., 1978, Properties of Orliz-Pettis or Nikodim type and bara elledness conditions, Ann. Inst. Fourier, Grenoble 28, 67-85.

〈摘要〉

一般加重 올릭쯔・소볼레프 空間에 관하여