Quotient of Row Finite Matrix Semiring

Yang Sung-ho

행유한 행열 반환의 몫

梁 成 豪

INTRODUCTION AND PRELIMINARIES

When A is a semiring and J is an ideal of A, the collection $(x+J)_{x\in A}$ of sets $x+J= \{x+j | j\in J\}$ need not be a partition of A. P. J. Allen [1] defined Q-ideal and maximal homomorphism and established the Fundamental Theorem of Homomorphisms in a large class of semirings.

Moreover, [2] builds the quotient structure in nxn matrix semirings. This paper is to prove an analogue of results for row finite matrix semirings.

The definitions of semiring, Q-ideal and maximal homomorphism used in [1] will be used throughout this paper. These definitions and theorems are given as follows.

Definition 1. A non-empty set A together with two associative binary operations called addition and multiplication (denoted by + and ., respectively) will be called a *semiring* provided;

- (1) addition is a commutative operation,
- (2) there exists $O \in A$ such that x + O = x and xO = Ox = O for all $x \in A$ and
- (3) multiplication distributes over addition both from the left and from the right.

Definition 2. A non-empty subset J of a semiring A will be called an ideal if $a,b\in J$ and $r\in A$ implies $a+b\in J$, $ra\in J$ and $ar\in J$.

Definition 3. A mapping ϕ from the semiring A into the semiring A' will be called a homomorphism if $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$ for each $a, b \in A$. An isomorphism is an one-to-one homomorphism. The semirings A and A' will be called isomorphic (denoted by A \cong A') if there exists an isomorphism from A onto A'.

사범대학 조교수

Definition 4. An ideal J in the semiring A will be called a Q-ideal if there exists a subset Q of A satisfying the following conditions; (1) $(q+J)_{q \in Q}$ is a partition of A and (2) if $q_1, q_2 \in Q$ such that $q_1 \neq q_2$, then

 $(q_1 + J) \cap (q_2 + J) = \phi.$

Definition 5. A homomorphism ϕ from the semiring A onto the semiring A' is said to be maximal if for each a \in A' there exists c. $\in \phi^{-1}(\langle a \rangle)$ such that x+ker ϕ c.+ker ϕ for each $x \in \phi^{-1}(\langle a \rangle)$, where ker $\phi = \langle x \in A | \phi(x) = 0 \rangle$.

Lomma 6. Let J be a Q-ideal in the semiring A. If $x \in A$, then there exists a unique $q \in Q$ such that $x + J \subset q + J$.

Theorem 7. If J is a Q-ideal in the semiring A, then $A/J=(\{q+J\}_{q} \in Q, \oplus Q, \odot Q)$ is a semiring.

Theorem 8. If ϕ is a maximal homomorphism from the semiring A onto the semiring A', then $A/\ker\phi \cong A'$.

THE QUOTIENT OF ROW FINITE MATRIX SEMIRING

Consider a semiring A and nonempty countable index set I. Mappings $M : Ixl \rightarrow A$ are called matrices over A. The values of M are denoted by m_{ij} , where $i, j \in I$. The values m_{ij} are also referred to as the entries of the matrix. In particular, m_{ij} is called the (i, j)-entry of M. The matrix M is denoted by $[m_{ij}]$ and the collection of all matrices M over A as defined above is denoted by $[A]^{1\times I}$.

For each $M = [m_{ij}] \in [A]^{I \times I}$ and each $i \in I$,

consider the set of indices $\mathbf{R}_{\mathbf{M}}(\mathbf{i}) = \{\mathbf{j} \in \mathbf{I} | \mathbf{m}_{ij} * \mathbf{O}\}$. Then M is called a row finite matrix iff $\mathbf{R}_{\mathbf{M}}(\mathbf{i})$ is finite for all $\mathbf{i} \in \mathbf{I}$. The collection of all row finite matrices over A as defined above is denoted by $[\mathbf{A}]_{\mathbf{RF}}^{1 \times 1}$.

Theorem 9. If A is a semiring, then $[A]_{RF}^{1\times I}$ is also.

Proof. For $M = [m_{ij}]$, $N = [n_{ij}] \in [A]_{RF}^{1 \times 1}$, we define the addition and the multiplication by

Then the addition and the multiplication are well-defined operations on $[A]_{RF}^{1\times 1}$ since $R_{M+N}(i) \subset R_M(i) \cup R_N(i)$ for all $i \in I$,

$$\sum_{j \in I} m_{ij} n_{jk} = \sum_{\substack{j \in R_{N(i)} \\ j \in R_{M}(i)}} m_{ij} n_{jk} \text{ and } n_{jk}$$

$$R_{MN}(i) \subset \bigcup_{j \in R_{M}(i)} R_{N}(j)$$

Now we introduce the zero matrix denoted by O that the entries of O are O. Then O is an additive zero.

Furthermore, the addition is commutative and associative and the multiplication is associative and distributes over addition both from the left and from the right. Hence $[A]_{RF}^{I \times I}$ is also a semiring.

Corollary 10. If A is a semiring and J is a Q-ideal of A, then $[A/J]_{RF}^{I\times I}$ is a semiring.

Proof. It is obvious by Theorem 7 and Theorem 9. In this corollary, the binary operations are defined as follows:

(1) $[q'_{ij}+J] + [q''_{ij}+J] = [q_{ij}+J]$ where $q'_{ij}+q'_{ij}+J \subset q_{ij}+J$ for all $i,j \in I$ (2) $[q'_{ij}+J] [q'_{ij}+J] = [q_{ij}+J]$ where $\sum_{k \in I} q'_{ik}q''_{kj}+J \subset q_{ij}+J$ for all $i,j \in I$. Since $M = [q'_{i} + J]$ is row finite, the range of k in (2) is $R_M(i)$. So the range of k is finite.

Theorem 11. If A is a semiring and J is a Q-ideal in A, then $[J]_{RF}^{I \times I}$ is a $[Q]_{RF}^{I \times I}$ -ideal in $[A]_{RF}^{I \times I}$.

Proof. It is clear that $[J]_{RF}^{1\times 1}$ is an ideal in $[A]_{RF}^{1\times 1}$

(1) Suppose $[m_{ij}] \in [A]_{RF}^{i \times i}$. Since $m_{ij} \in A$ for all $i, j \in I$ and J is a Q-ideal in A, $m_{ij} \in \bigcup_{q \in Q} \{q+J\}$ for all $i, j \in I$. i.e. for all $i, j \in I, m_{ij} = q_{ij} + n_{ij}$ for some $q_{ij} \in Q$ and some $n_{ij} \in J$. Thus $[m_{ij}] = [q_{ij} + n_{ij}] = [q_{ij}] + [n_{ij}] \in P + [J]_{RF}^{i \times i}$ for some P = $[q_{ij}] \in [Q]_{RF}^{i \times i}$.

Hence $[\mathbf{m}_{ij}] \in \bigcup_{\substack{P \in \exists [i_Q] \ RF}} \{P + [J]_{RF}^{[i_X]}\}.$

(2) Let $[p_{i,j}]$ and $[q_{i,j}]$ be in $[Q_i]_{RF}^{i|\chi|i}$ and let $[p_{i,j}] \neq [q_{i,j}]$. Then there exist i, $j \in I$ such that $p_{i,j} \neq q_{i,j}$.

Since J is a Q-ideal in A, $(p_{i,j}+J) \cap (q_{i,j}+J) = \phi$. So, $p_{i,j}+m \neq q_{i,j}+n$ for all $m,n \in J$.

Consequently, the (i,j) -entry of every matrices in $[p_{ij}] + [J]_{RF}^{1 \times 1}$ is different from the (i,j) -entry of every matrices in $[q_{ij}] + [J]_{RF}^{1 \times 1}$.

Thus $([p_i] + [J]_{RF}^{1 \times 1}) \cap ([q_i] + [J]_{RF}^{1 \times 1}) = \phi$. Hence $[J]_{RF}^{1 \times 1}$ is a $[Q]_{RF}^{1 \times 1}$ -ideal in $[A]_{RF}^{1 \times 1}$.

Corollary 12. If A is a semiring and J is a Q-ideal in A, then $[A]_{RF}^{I\times I} / [J]_{RF}^{I\times I} = (\{P+[J]\}_{RF}^{I\times I} p \in [Q]_{RF}^{I\times I+\frac{1}{2}} [Q]_{RF}^{I\times I+\frac{1}{2}} [Q]_{RF}^{I\times I+\frac{1}{2}})$ is a semiring.

Proof. This corollary is the immediate result

of Theorem 11 and Theorem 7. The operations are as follows:

(1)
$$(\mathbf{P_1} + [\mathbf{J}]_{RF}^{1\times 1}) \pm [\mathbf{Q}]_{RF}^{1\times 1} (\mathbf{P_2} + [\mathbf{J}]_{RF}^{1\times 1})$$

= $\mathbf{P} + [\mathbf{J}]_{RF}^{1\times 1}$

where
$$P_1 + P_2 + [J]_{RF}^{I \times I} \subset P + [J]_{RF}^{I \times I}$$
 and
(2) $(P_1 + [J]_{RF}^{I \times I}) \cdots [Q]_{RF}^{I \times I}(P_2 + [J]_{RF}^{I \times I}) =$
 $P + [J]_{RF}^{I \times I}$ where $P_1P_2 + [J]_{RF}^{I \times I} \subset P +$
 $[J]_{RF}^{I \times I}$

Theorem 13. If A is a semiring and J is a Q-ideal in A, then $[A]_{RF}^{I\times I} / [J]_{RF}^{I\times I}$ is isomorphic to $[A / J]_{RF}^{I\times I}$.

Proof. For each $m_{ij} \in A$, there exists a unique $q_{ij} \in Q$ such that $m_{ij} + J \subseteq q_{ij} + J$ by Lemma 6. Define the map $\phi : [A]_{RF}^{1\times i} \longrightarrow [A/J]_{RF}^{1\times i}$ by $\phi ([m_{ij}]) = [q_{ij} + J]$ for each $[m_{ij}] \in [A]_{RF}^{1\times i}$, where $m_{ij} + J \subseteq q_{ij} + J$ for each $i, j \in I$. Then it is clear that ϕ is a homomorphism from $[A]_{RF}^{1\times i}$ onto $[A/J]_{RF}^{1\times i}$ and $\ker \phi = [J]_{RF}^{1\times i}$ by proposition 14 in [2]. For each $[q_{ij} + J] \in [A/J]_{i\in F}^{1\times i}, [q_{ij}] \in \phi^{-1}([q_{ij} + J])$. If $[a_{ij}] \in \phi^{-1}([q_{ij} + J])$, then $a_{ij} + J \subseteq q_{ij} + J$ for all $i, j \in I$. Thus $[a_{ij}] + \ker \phi = [a_{ij}] + [J]_{RF}^{1\times i} \subseteq [q_{ij}] + [J]_{RF}^{1\times i} = [q_{ij}] + \ker \phi$. Hence ϕ is a maximal homomorphism from the semiring $[A]_{RF}^{1\times i}$ onto the semiring $[A/J]_{RF}^{1\times i}$.

Therefore $[A]_{RF}^{1\times 1}$ /[J] $_{RF}^{1\times 1} \simeq [A/J]_{RF}^{1\times 1}$ by Theorem 8.

LITERATURES CITED

- Allen, P. J. 1969; A fundamental theorem of homomorphism for semirings, Proc, Amer. Math. Soc. 21; 412-416
- [2] Yang, S. 1983; Quotients of Matrix Semiring, Cheju University J. 15, Natural Sciences, 133-135.

國文抄錄

이 논문에서는 A가 semiring이고 J가 A에서의 Q- ideal이면 [J] ^{I×I}는 [A] ^{I×I}에서 [Q] ^{I×I} - ideal이 되어 [A] ^{I×I}_{RF} / [J] ^{I×I} 는 semiring이 됨을 보였고 또 [A] ^{I×I}_{RF} / [J] ^{I×I}_{RF} 와 [A/J] ^{I×I} 는 서로 동형임을 보였다.