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INTRODUCTION

It is known (Herrlich 1974a, Herrlich 1974b)
the concept of nearness structures gives rise to a
single method for the investigation of various
known structures. e.g. topological, uniform, pro-
ximity or contiguity structures.

Moreover it is known (Hong et al 1979) the
category T— Near(or C— Near, P— Near) of topolo-
gical (or contigual, proximal, resp.) nearness
spaces and nearness preserving maps is contained
in the category Grill of grill-determined spaces and
nearness preserving maps.

I study some properties in the grill-determined
space, which is satisfying in the nearness space.
In this present note, we have the most results in
the grill-determined space are analogous to that of

the nearness space.
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1. PRELIMINARY

1.1. DEFINITION. Let PX denote the power
set of a set X and P2X=PPX. Let o and 8 be
subsets of PX.

(1) sec o = [BC X:for any Aed, A(\B+# ¢},

(2) stack s = |BC X:there is A€ 4 with ACB|.

(3) of is called a stack in X if stack of =

4) sfvbB=AUB:Aed and Begj,

#4N\B=|ANB:Aegd and BeHi.

(5) o is said to corefine B if for any A €4, there
is BeB with BCA. In this case we denote by #
<B.

(6)¢CPX is called a grillon X if ¢ ¢@, and for
any subsets A, B of X, AUBe@iff Ae@gor Beg.

1.2. PROPOSITION. Let X be a set and 54, B
CPX. Then
(1) sec o= |BCX:X—B ¢ stackd},

— 139 —



2 Cheju National University Journal Vol 22 (1986)

stack of = [BC X: X-B ¢ secd]| .

(2) #C B implies sec BCsecsf.
(3) stack #A=sec” of . sec’ d=secsf (i.e. secd is
a stack).
(4) grills(or filters) on X are stacks in X.
(5) 4¢B iff sec B ¢ secst,
# (B implies stack# ( stackB.
(6) A< iff 4 C stackB,

1.3. PROPOSITION. Let SX be the set of all
stacks in X, and let 4 and B be elements of SX.
Then

(1) #<B iff AT B iff sec BC secst.

(2) A\VEB=dANE.

(3) st =sec B iff B=sec of.

(4) of is a filter iff secsd is a grll

1.4. REMARK. (1) grills are precisely the union
of ultrafilters.(2) If B is a filter base for a filter 7.
then stack B=F,

The following definition is due to Herrlich

(1974b)

1.5. DEFINITIONS. Let X be a set and let &
be a subset of P2ZX. Consider
axioms :

(N1) if #¢B and Be ¢, then o € ¢.

(N2) ifed £ ¢. then b € &.

(N3) ¢ = & #P*X.

(N4) if #V.Bs &. then Ae & or Be £.

(N53) if {Cl;A:Aesf] € &, thenof € &.

where CleA={xe X. |A, [|x}| € &}.
¢ satisfying (N1), (N2) and (N3) is called a
prenearness structure on X. & satisfying (N1). (N2),

the following

(N3) and (N4) is called a quasinearness structure
on X.

Finally ¢ satisfying (N1), (N2), (N3). (N4) and
(N5) is called a nearness structure on X. The pair

(X, &) is called a (pre—, quasi—) nearness space. A

map f:(X, £)—(Y, 7) between prenearness spaces
is called nearness preserving if de & implies fid) €

7

1.6. DEFINITION. For a prenearness space (X.
&), r(&). or shortly 7.
family 7 = |4C PX:sec € &} and is called the

associated merotopic structure with £.

is defined to be the

1.7. REMARK. Let (X.
space and ¥ be the associated merotopic structure
with &. Then & is precisely the family |ofC
PX:sec A€ 7! (ie. € & iff sec dey. and Ae
7 iff sec A€ &)

&) be a prenearness

1.8. DEFINITION. A prenearness space (X. &)
is called seperated \ff d e ¢ (1Y implies £(sd )e§.
where £ (=)= [BC X ol |B} € £}.

1.9. NOTATION. Let (X, £¢) be a prenearness-
space and #CPX.

A (< )= {BCTX:there 1s Ae 4 with A, X-Bj{
&l

1.10. REMARK.
sec(ed(¢(;))= {BCX:for any Aesf, |A, Ble
&l

In the above notation

1.11. PROPOSITION. If (X. §)1s a prenearness
space,then the following conditions are equivalent:

(1) if #(<.)e & then o€ &.

(2) if A€ 7 then 94((5)6 Y.

(3) sfe y iff secf(<e)e &

(4) of € &1ff secl(< ) e Y.

1.12. DEFINITION. A prenearness space is cal-

led regular iff it satisfies one of the above condi-

tions in 1.11.

1.13. REMARK. Every regular prenearness
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space 15 seperated.

II. A GRILL-DETERMINED SPACE

2.1. DEFINITION. Let (X. &) be a prenearness
space. A non-empty subset # of PX is called:

(1} a & —cluster iff 4 is a maximal element of
the set &, ordered by inclusion.

(2) a & —cocluster iff ¥4 is a minimal element of
the set |Be 7 :B=stackB|. ordered by
inclusion.

(3) a &—grill iff 4 is a grill and e &.

(4) a ¥ ~filter(or Cauchy filter) \f of is a filter
and ey

2.2. REMARK.

(1) If A is a filter in X then o Csecsd.

(2) H oA is a grill in X then sec sf CH.

(3) #is a &—grill iff sec of is a Cauchy filter.
and B is a Cauchy filter on (X. £) iff
sec B is a &—grill.

2.3. PROPOSITION. Let (X, &) be a prenearness
space, and let A4 be non—empty stack in X. If f is a
¢ —grill, then e ¢ N7y

PROOF. Since o is a & —grill, sec 4 A by
2.2(2). Thus secs < & sc that secde £. Hence &
€Y. But f is a &—grill. which implies fe ¢&.
Therefore e ¢ 7.

2.4 DEFINITION. A prenearness space (X. &)
ts called grill determined if for any of € £ there is a
¢ —grill ¢ with 4Cgo

25 NOTATION. The category of grill-de-
termined spaces and nearness preserving maps

will be denoted by Grill (Hong et al 1978).

2,6. PROPOSITION. Let (X, &) be a prenear-

ness space and ¥ the associated merotopic struc-
ture with it. Then (X. &)e Grill iff for any sf € 7

. there is a Cauchy filter ¥ with ¥ Cstack af. ie.
F s

PROOF. It 1s immediate from 1.2(3) and 2.2(3).

2.7. PROPOSITION. Every grill determined space

IS a quasinearness space.

PROOF. Let (X. ¢)e Grill, and suppose 4V B
€ &. Then there is a & —gnll @ with «\VVBCG. If
AKP and BEY. then there is Aed—% and Be
B-% Hence AUB e (2\/B)—¢. which is a contra-
diction. Therefore #C ¢ or BC@. so that afe &

or Be & Hence (X. £) is a quasinearness space.

. THE MAIN RESULTS

3.1. LEMMA. Let (X. ¢)e Grill and let of be a
non-empty subset of PX. If o§ is a & —cluster. then A

is a maximal & ~grill

PROOF. For any A, Bed, it is clear that AUB
esd. Since (aflJ IAI AU IBI)< of and sfe £ (il
ANV (AUBI)e €. But (X. &)e Grill, then by 2.7

AU IAl € ¢ or 4 Bl € £ This implies Aedfor B
€of. Thus of is a & —grill. Assume that A C B and
Bis a ¢&—grill. Thensd=F, so that of is maximal.

3.2. THEOREM. Let (X, &) be a seperated grill-
determined space. Then the following conditions are
equivalent

(1) of is a & —cluster.

(2) o 1s a maximal & —grill.

(3) sec of is a minimal ¥ —filter.

PROOF. By the sec—operator, it i1s obvious (2)
itf (3). It suffices to show that (2) implies (1).
Suppose that s is a maximal & —grill. Then & is
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a stack in X, and by 2.3, e £ 7. Since (X, §)
is seperated, £ (f)e & . Obviousely AC & (s4). If for
any Ae £(4), |AlUsde & And |AUB]Ud < |A]
Usé. Thus JAUB} U € €. so AUBe £,
Note that (JA} Ush)V/( IBIU#) < IAUBIUA. Then
Ae &) or Be &(el). Therefore @) is a £
—grill. Since s is maximal, #= & ¢d). Because (X,
£)eGrill &(#) is a & —cluster.

3.3, COROLLARY. Let (X. &) is a seperated
grill-determined space. If s is a & —grill then there

exists a unique & —cluster containing A, namely & (sf).

PROOF. Let of be a & —gnll Then £(ef)e &
an also &) is a & —cluster. Assume that B be
any & —cluster with #CB. Then BC & (). Hence
B= £ ().

3.4. COROLLARY. In a seperated grill-determined
space, every Cauchy filter contains a unique minimal
Cauchy filter.

PROOF. It is immediate from the sec-operator
in 3.3

35. THEOREM. Every regular grill-determined

space is a nearness space.

PROOF. Let (X,
space. Then (X. §£)
quasinearness space. We must show that £ satis-
fies (N5). suppose #CPX with |Cl A:Aexf| € ¢
. Assume sd £ £ Then (<) £ & because of being
regular. Take any Besd((,). there exist Aedd
such that |A, X-Bl £ . If xe X-B. then |A,
x| £ &, which implies x#Cl B and also Cl A
CB.So we have #(¢) ¢ {Cl,A:Aed} Thus g

(¢)e &. This is a contradiction.

£) be a regular grill-

determined is a regular

The following is due to Herrlich (1974b)

3.6. PROPOSITION. For any regular grill-deter-
mined space (X, £ ). the underlying topological space (X,
&) is a regular space.

37. LEMMA. If (X, &) is a regular grill-
determined space and e &€ (N7, then

(1) sec(ef<z))= ¢ (4).

(2) sec( & (#A)=5A(<s).

PROOF. (1) Since (X. &) is regular, g€ 7
implies sec(s(¢.)) e &. It is obvious that & (ef)C
sects(()). But from 1.13 and 33, &(sf) is a ¢
—cluster. Hence ¢ (#)=sec(sd({;)).

(2) By (1),sec? sf(<s)=sec( & (sf)). So that stack
#(()=sec(é§). On the other hand. #((.) is
stack in X Therefore sec( & () ==f(<¢).

3.8. PROPOSITION. If (X, &) is a regular
grill-determined space and B¢ & [\ 7 | then (sec A)(<,)
is the unigue minimal Cauchy filter contained in s4.

PROOF. If e £{) 7, then secshe&(Ny by 1.7.
From 3.3, ¢ (sec of)

containing secs#. Then sec &(sec of)

is the unique & —cluster
is the
unique & —cocluster cotained in stack 4. Hence
(sec #A)<¢) is the unique minimal Cauchy filter

contained in #.

39 THEOREM. Let (X, &) be a regular grill-
determined space. If s is a Cauchy filter, then A((¢)
is the unique minimal Cauchy filter contained in &.

PROOF. Since & is a Cauchy filter, sec # € ¢
and also #C sec . This implies € £. Thus s
€ £ 7. But from 3.8, (sec #AX<¢) is the unique
minimal Cauchy filter contained in s4. On the
other hand. #(<;)=sec( ¢ (sd)) by 3.7(2). 3.3 and
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3.2 is a minimal Cauchy filter. But s((,)C(sec
AN (). so that A(¢.)=(sec #){¢). Hence (<)
is the unique minimal Cauchy filter contained in
o

3.10. THEOREM. Let (X. &) e Grill If (<) is
a Cauchy filter for any Cauchy filter &, then (X, &)

is regular.

PROOF. Since (X. &)e€ Grill. pick any Be 7Y,

there is a Cauchy filter ¥ with ¥ ¢ B We will show
that (¢, )CB(<,). Take any A € F(<¢). there is F
€¥ with [F, X-A] ¢& Now % < Bimplies |F,
X-A} ¢(|B, X-A| for some BeB. So that |B,
X—-A} £ ¢, and also A €B(<;). On the other hand,
B(<¢) is stack in X by the definition of B((¢).
From 1.3(1),%(<¢) ¢ B(¢¢). But F(<¢) is a Cauchy
filter, €((,)e ¥. Therefore B(( )€ 7.
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