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Summary
In this paper we prove:
Ju . du . - . . .
1) W + it —a—;—= f(x,t) has a unique ¢~ solution when f is analytic

2) Let f(x,1)ECT (R?) have the following properties:

f(x,t) = f(x,~t) for all (x,t)ER?; the supp f N {x-axis} = {(0,0)) ; [ f(x,t) dxdt# 0.
R2

Then Qu + it—“?1 = f does not have ¢’ solution.
at ox

1. Introduction

Throughout this paper § will denote an open

subset of R? R C:(Q) the space of C” complex-valued
functions in § having compact supports. We will
denote a point in R? by (x, t).

Let L be a smooth complex vector field in
defined by

=-§t_ + ib(x,t) 'éa;

where b(x,t) is a real-valued ¢~ function in 2.

When f and b are analytic, we know by the

Cauchy-Kovalevska Theorem that

(1,1) Lu=f

has always a solution locally in the neighborhood

of any point p€S2. For the details, see 1[.

But, in 1957, H. Lewy showed that, under some
restrictions of f(x,t), the equation (1.1) does not
have a ¢’ solution for the generic C” function f
in any neighborhood of P. The simplest case of
(1.1) without local solution is the Mizohata opera-

tor:
5 2
M=% " 1 5x

That is, the equation

du du
1.2) Mu=—-4+ji——=
(1.2) Mu =r+ig o=t
is not locally solvable for some function f.
A partial result on this questions was obtained

by F. Treves; namely,
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Theorem. Let f(x,t) € C.(R?) have the follow-
ing properties:

f(x,t) = f(x,-t) for all (x,t);
the supp f does not intersect the axis t = 0;
l{}" f(x,t)dxdt # o.
Then the equation in R? Mu=f does not have any
local solution.

The proof will be found in [9, §3]. In this
paper, we shall remove the condition ‘The supp f
does not intersect the axis t=o’ in the above

theorem. Instead of the theorem, we will prove;

Theorem. Let f(x,t) € C{(R?) have the following
properties:

f(x,t) = f(x,-t) for all (x,t); the supp f N {x-axis)

is a nonempty finite set{ (o,o)} ;

;{{ f(x,t) dxdt #* o,

Then the equation in R? Mu = f does not have any
solution,

This theorem is a generalization of Treves’ result.

II. The Solvability of The Mizohata’s
Partial Differential Equations.

In this section, we will give the solution existence
theorem when f is analytic on §2.

Theorem. Let Mu = f, ul,_ = u, be the Mizo-
hata’s partial differential equation with initial
value u, fEC;(Rz ). Then there is a unique solution
u € C(R?) where u, is considered to be C” on R.

Proof. Set

_ t t  du
u(t,x) = uo(x)+{) f(x,s)ds +fo-1s-a—x ds.

This is a required solution. For the uniqueness, it

. .. .. .. 0 Ju

is sufficient to prove that if -it=— =24 =
p 3x  ox’ u(x,0=0,

then u=o. Note that u(x,t) =ft -isg—: (x,s)ds.
t .

We may assume u is analystic on R?=C. Since
Z(w) = {(x,)ER?: u(x,t) = o} has limit points in
R?, Z(u) = R?. Therefore u=o on R?.

II1I. The Unsolvability of the Mizohata’s
Partial Differential Equations.

We need some preliminary results,

Theorem 3.1 Let f be holomorphic on the open
subset Q+ of the upper half plane; assume that a
segment (a, b) of the real axis forms part of the
boundary of 2% and that f is continuous on §2*

U(a,b) and real-valued on (a, b). Let £ be the
reflection of 2.

Q ={z: 2€Q+].

Define

f(z) for zeQ+U(a,b)
h(z)4
\ /(2) for zeQ™
Then h(Z) is holomorphic on Q=Q+' U(a,b)us.
Proof. If D(z,1) C 27, then D(Z5, D C QY
so for every Z¢ D(z,, 1) we have

- g Pr— n
ﬂ(Z)—nilcn(Z—zo)

Hence h(z) =n£l En(Z—zo)n (zeD(z,1)),

Since h(z) is representable by power series in Q_,

h(z) is holomorphic on Q+u.Q_ Let ze(a,b).

If €>0, there is a §>0 such that if weQ? and
Iw-2|<8, then [f(w)-f(z)|<e. If wefd— and
|w—2z[<§, then lW~z|=l‘W-z']=|w—z|<6, hence
[f(W)—f(z)i<e . Since f is real-valued on (a,b),

Ih(w)—h(z)[=If(w)—f(2)|=|f(w)—f( 2)] <e

Thus h( 2) is continuous on £,

Now assume ze(ab), and Iet D(z,n ). 1If
V is a triangle in D(z,r), then fv h=0 by the
Cauchy’s Theorem for a triangle, Hence by the
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Morera’s Theorem, h(z) is holomorphic on D(z,r).

Theorem 3.2, Let f be holomorphic on the open
connected set S2CC. Suppose that f has a limit
point of zeros in 2, that is, there is a point z e
and a sequence of points z.€fd, z,#2,, such
that zp~> 24 and f(z,)=0 for all n=0, 1, 2, . . ..
Then f is identically 0 on 2.

Proof. Expand f in a Taylor series about zq, say

@0

f—— - n —
f(z)= n2=0 an(z zo) , |z zol <r.

We will show that all a =0. If not, let m be the
smallest integer such that am¢0. Then f(z)=
(z—zo)m g(z), where g(z) is holomorphic at z,
and g(zy)7#0.
neighborhood of z,, contradicting the fact that z,

By continuity, g is nonzero in a

is a limit point of zeros.

Let A={ZeQ: there is a sequence of points
2EQ, 2y #F 2o, Iy > Z with f(zp) =0 forall n },
Since zye A by hypothesis, A is not empty.
If ze€¢ A, then by the above argument f is
zero on a disc D(z,r) for some r>0 and it follows
that D(z,r) CA. Thus A is open. If we can show
that A is also closed in §2, the connectedness of
€1 gives A=S?, and the result will follow..

Let z,, — ze$}, z€A. If 2,;=2, there is nothing
to prove; thus assume zp¥2 for all n=1,2, ...
But since zn¥#z we have f(z;)=0, and hence zeA
by the definition of A. Thus A is closed in Q.

Theorem 3.3 (Stokes’ Theorem) If wisa (k—1)
—form on an open set ACR™ and ¢ is a k<chain
in A, then

[de=facw.

In particular, if w=f dx+g dy is a l-form on R?,
and ¢:T—> SCR? is a continuously differentiable

mapping of a closed rectangle T, then

a_g_gd/\dx=f fdx + gd
Yo 5y v A% =f, taxvaty

Proof will be given in [6] p.102.

Now let’s prove the following generalization of
F. Treves’ Theorem.
Theorem 3.4
following properties:

Let f(x,t)eC: (R?) have the

(3.1) f(x,t)=f(x,~1t) for all (x,t);
(3.2) the supp f N[x -axis] is a finite set {(0,0)};
(3.3) {{z f(x,t)dx dt #0.

Then the equation in R? Mu=f does not have any
¢’ solution.

Proof. We may choose a ¢co so that supp fC
{(x,t): t2c|x|} U{(x,1): t<—c|x|}. By (3.1) we may
write

f(x,)=F(x,5), s=;- 2 >0.

For 50, we define F(x,5)=0. Suppose that there
exists a solution u of Mu=f where u us a ¢” function.
Since we can put

u(x,t)=¢{x,s)+t ¥(x,s) (==0)
for some even functions ¢, ¥,

3 ..0 - .
Mu =(a—t+ it aﬂm\lf} = tog+id,) +
(‘Il+2s\lf8 + Zis\lfx)-F(x,s)=tIx,t).

Since f(x,t)=f(x,—t), F%t’, it is proved that Mu=f
is equivalent to

(3.5) ¢s+i¢x=0
(3.6) \P+2s\l's+2is\lfx=F

But equation (3.6) can be rewritten

. F
G Vs ¥)Hivs¥) = e 0

Put Vs W(x,5) = h(z) (£0), where z = x+is. As
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Vs ¥ vanishes when s=0, we define h(x,0)=0.
Due to Theorem 3.1, h(z) can be extended as a

holomorphic function, say h(z) again. Obviously

h(z)=0 on R™\ (supp F) N (supp F),

where (Supp F)™ = {(x, —t): (x,t)e suppF}. By
(3.7) we have then he C~ (R? \ {o}),

Let C be a circle with center o enclosing supp F
and Cn be a small circle with center 0, radius
approaching 0 as n—> e Let Dn be the annulus
surrounded by C and Cn‘ Then using the Green’s
Theorem,

F (x,s)

1 *
—[f f(x,t) dx dt =j ——dx d
Vo1 S
n

=limff [&/5¥)+i/s¥) ] dxds
n— p. x

=[_L\/s_\lrdx+fci\/?\llds]
+lim [f, Vs Wdx —f, sV ds].
n ¢n

But
lim f, Vs¥dx=1lim[ iyv/s¥ds=0.
n—eo “p n-¥o Cp

Since/s ¥ =0 on C,
Vs ¥ dx = [ iV/s ¥ ds=0.

1
Hence —ff f(x,t) dx dt =0,
53 R?
contrary to the hypothesis (3.3) .
This completes our theorem.
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