On the w^{4} -spaces

Chulsoon Han

₩1-공간에 관한 연구 한 철 순

Summary

Given a definition of the w^4 -space, we have proved what a w^4 -space is, and a metrization of the w-space with some conditions.

Furthermore, we will have an open problem:

Is a collectionwise normal w-space with a G_{\bullet} -diagonal metrizable?

Introduction

In this paper, we will show the following.

- (a) What space is a w⁴-space?
- (b) What is the property of a w⁴-space with somespace?
- (c) What w⁴-space is metrizable?

To do this we will introduce the following propositions.

propositions:

- (1) Every collectionwise normal Moore space is metrizable.
- (2) A T₂-space X is paracompact iff X is subparacompact and collectionwise normal.
- (3) A compact T₂-space with a G₀-diagonal is metrizable.
- (4) If X is a T₂-space, then X is compact iff X is countably compact and subparacompact.
- (5) Every developable space is subparacompact.
- (6) A regular subparacompact space with a G_0 -diagonal has a G_0 *-diagon1.

Main Theorems

Definition

A space X is a w^4 -space iff there exists a sequence

 G_1, G_2, \ldots of open covers of X such that if $x \in X$ and $x_n \in st(x, G_n)$, $n=1, 2, \ldots$, then the sequence x_1, x_2, \ldots has a cluster point.

It follows from Definition that developable spaces and countably compact spaces are w^4 -spaces.

Theorem 1

A locally compact subparacompact space is a w^{4} -space.

Proof:Let X be a locally compact subparacompact space. Then for each $x \in X$, there exists an open set O_x such that $x \in O_x$ and \overline{O}_x is compact. So, $\{O_x : x \in X\}$ is an open cover of X.

Let A_1, A_2, \ldots be open covers of X such that $A_1 = \{O_x : x \in X\}$ and for each n, A_{n+1} refines A_n and given n and x, there exists m such that $st(x, A_m) \subset V_m \in A_n$.

Let $x \in X$ and $O_y \in A_1$ such that $O_y \supset st(x, A_m)$ $\supset st(x, A_{m+1}) \cdots$. Let $x_n \in st(x, A_m)$.

Then x_m , x_{m+1} , $\rightarrow O_y$ and hence x_1, x_2, \ldots has a cluster point. Therefore, X is a w^4 -space.

Theorem 2

Every w^4 -space with a G_6^* -diagonal is developable.

2 논 문 집

Proof: Let X be a w^4 -space with a G_i^{*} diagonal. Then there exists G_1, G_2, \ldots , open covers of X such if $x \in X$ and for each n, $x_n \in \operatorname{st}(x, G_n)$ then the sequence x_1, x_2, \ldots has a cluster point. Furthermore, there exists a sequence H_i, H_2, \ldots open covers of X such that $x \neq y \in X$, then there exists n such that

$y \notin \overline{st(x, H_n)}$.

Let $K_1 = \{g_1 \cap h_1 : g_1 \in G_1, h_1 \in H_1\}$ and for each $n \ge 2$, let $K_{n+1} = \{g_{n+1} \cap h_{n+1} \cap k_n : g_{n+1} \in G_{n+1} \in H_{n+1}, k_n \in K_n\}$.

Then K_1, K_2, \ldots is a sequence of open covers of X.

Let $x \in X$ and U an open set of x.

Suppose for each *n*, st $(x, K_n) - U \neq \phi$.

Let $x_n \in \operatorname{st}(x, K_n) - U$ for each *n*. Then $x_n \in \operatorname{st}(x, G_n)$ for each *n*.

Let y be a cluster point of the sequence x_1 , x_2 ,... and $y \neq x$.

Then there exists $n \in N$ such that $y \in st(x, H_n)$.

So, $y \notin \overline{st(x, K_n)}$. On the other hand, $y \in X$ - $\overline{st(x, K_n)}$ and X- $\overline{st(x, K_n)}$ is open.

Since st $(x, K_n) \cap (X - \operatorname{st}(x, K_n)) = \phi$, we have a contradiction.

Hence, $st(x, K_n) \subset U$. Therefore, X is developable.

Theorem 3

A regular countably compact space with a G_{\bullet}^{*} -diagonal is metrizable.

Proof: Let X be a regular countably compact space with a $G_{\bullet}^{\#}$ -diagonal.

Since X is countably compact, then X is a w^4 -space and so by Theorem 2, X is developable. From proposition (5), X is subparacompact.

From proposition (5), X is compact. Since X has a G_i^* -diagonal, then X has a G_i -diagonal. From proposition (3), X is metrizable.

Theorem 4

The following are equivalent for a regular

space X.

- (1) X is a Moore space.
- (2) X is a w^{4} -space with a G_{0}^{*} -diagonal.
- (3) X is a subparacompact w⁴-space with a G₀-diagonal.

Proof: (1)⇒(2)

Let G_1, G_2, \ldots , be a sequence of open covers of X such that if $x \in U$ open, then there exists *n* such st $(x, G_n) \subset U$.

Suppose $x \neq y$.

Since X is regular, there exists an open U such that $x \in U \overline{U} \subset X - \{y\}$ and there exists *n* such that $st(x, G_n) \subset U$

So, $y \notin \overline{\operatorname{st}(x, G_n)}$.

Hence X has a G_{i} *-diagonal.

For each *n*, let $x_n \in st(x, G_n)$.

Since $st(x, G_n)$, n=1, 2, ... is a base at x, then $x_1, x_2, ...$ has x as a cluster point.

Therefore, X is a w^4 -space.

(2)⇒(3)

From Theorem (2), X is developable and so X is subparacopact by proposition (5).

Since X has a G_{\bullet}^{*} -diagonal, then X has a G_{\bullet} -diagonal.

Therefore, X is a subparacompact w^4 -spacewith a G_6 -diagonal.

(3)⇒(1)

From Proposition (6), X has a G_{*}^{*} -diagonal.

Hence, X is developable from Theorfm 2. Therefore, X is a Moore space.

Theorem 5

A T_2 -space X is metrizable iff X is a paraco-mpact w^4 -space with a G_4 -diagonal.

Proof : Suppose X is metrizable.

Then X is paracompact and so by Proposition (2), X is subparacompact and collectionwise normal. Furtherrmore, X is normal and regular.

Since X is metrizable, then X is a Moore: space. From Theorem 4, X is a subparacompact w^4 -space with a G_4 -diagonal.

But then X is paracompact.

Therefore X is a paracompact w^4 -space with a G_4 -diagonal.

For the converse, suppose X is a paracompact w^{a} -space with a G_{a} -diagonal.

From Proposition (2) and Theorem 4, X is subparacompact and collectionwisenormal, and

X is a Moore space.

From proposition (1), X is metrizable.

Conclusion.

From Definition, if we required x to be a

〈초 특〉

w⁴-공간에 관한 연구

한 철 순

도입과정에서 주어진 명제의 *w⁴*-space의 정의를 가지고 *w⁴*-space가 될 수 있는 공간, 그리고 어떤조건을 "주어서 이외 거리화 문제를 증명하였다. 그러나 어떤 조건을 가진 *w⁴*-space는 거리화가 될 수 있는지의 미해 결문제를 결론에서 제시함으로 이 논문을 끝내고자 한다.

cluster point of the sequence x_1, x_2, \ldots , then st (x, G_x) would be a base at x and we would have defined a developable space.

This paper ends by giving an open problem.

Is a collectionwise normal w^4 -space with a G_6 -diagonal metrizable?

Literatures Cited

- 1. J. Dugundji, Topology, Allyn and Bacon CO. 1966
- J.L.Kelley, General Topology, Van Nostrand, New York, 1965
- 3. Taylor, A note on metrization of Moore spaces, Proc. Amer. Math. 1963