The Number of Partitions of a set

Han, Yong Hyeon

집합의 분할의 갯수 韓 溶 鉉

Summary

In this paper, we obtained the general formula for the number of partation of a finite set.

In this paper, we find the number of partitions of a finite set.

The set $\{1,2,...,m\}$ is denoted by Z_m , and the set of all positive integers is denoted by Z_+ . For a finite set A, let #(A) denote the number of elements of A. A partition θ of the set Z_m is said to divide Z_m into n parts if $\#(\theta) = n$.

DEFINITION 1. For any $m \in \mathbb{Z}_+$, $\oint(m)$ denote the family of all partitions of \mathbb{Z}_m .

DEFINITION 2 For any $m, n \in \mathbb{Z}_+$, $\oint (m, n) =$ $\{\theta \in \oint (m): \#(\theta) = n\}$, and $\{m\} = \#(\oint (m, n))$.

The following is immediate from definitions. PROPOSITION 1. i) For any $m \in \mathbb{Z}_+$, $\{\frac{m}{l}\} = 1$. ii) For any $n \in \mathbb{Z}_+$ with $n \ge 2$, $[\frac{1}{n}] = 0$.

We have the following important formula.

THEOREAM 2. For any $m, n \in \mathbb{Z}_+, [\frac{m+1}{n+1}] = [\frac{m}{n}] + (n+1) \{\frac{m}{n+1}\}.$

proof) Let $\mathcal{A} = \{\theta \in \mathfrak{g} \ (m+1, n+1) : \{m+1\} \in \theta \}$ and $\mathcal{B} = \{\theta \in \mathfrak{g} \ (m+1, n+1) : \{m+1\} \notin \theta \}$. Obviously, $\mathfrak{g}(m+1, n+1)$ is the disjoint union of \mathcal{A} and \mathcal{B} .

It is easy to see that $\#(\mathcal{A} = [\frac{m}{n}]$. Thus it remains to show that $\#(\mathcal{I}) = (n+1)[\frac{m}{n+1}]$. Obviously, $\#(m,n+1) = \phi$ if and only if $\mathcal{B} = \phi$. Let $\mathcal{B} \neq \phi$, and let $\theta = \{A_p, A_{2}, ..., A_{n+1}\} \in \#(m, n+1)$. Define $\theta_i = \{A_p, A_2, ..., A_{i-1}, A_i \cup \{m+1\}, A_{i+1}, ..., A_n, A_{n+1}\}$, for all i $\in \mathbb{Z}_{n+1}$. Then θ_i , $\theta_2, ..., \theta_{n+1}$ are distinct partitions in \mathcal{B} Let θ and Λ be distinct partitions in #(m, n+1). Then it is easy to see that $\theta_i \neq \Lambda_p$ for all $i, j \in \mathbb{Z}_{n+1}$. Thus we get (n+1) $\binom{m}{n+1}$ distinct partitions in \mathcal{B} from $\binom{m}{n+1}$ partitions in $\mathfrak{F}(m,n+1)$. The fact that any partition in \mathcal{B} is equal to θ_i for some $\theta \in \mathfrak{F}(m,n+1)$ and for some $i \in \mathbb{Z}_{n+1}$ completes the proof.

Note that $\begin{bmatrix} m \\ n \end{bmatrix}$'s are completely determined by **Proposition 1** and Theorem 2.

We define a function f on $Z_+ \times Z_+$, and prove that $f(m,n) = \begin{bmatrix} m \\ n \end{bmatrix}$.

DEFINITION3. For any
$$m,n \in \mathbb{Z}_+$$
, $f(m,n) = \prod_{k=1}^{n} \frac{(-1)^{n-k} k^{m-1}}{(n-k)! (k-1)!}$

We have the following propositions which correspond to **Proposition 1** and **Theorem 2**.

PROPOSITION 3. i) For any
$$m \in \mathbb{Z}_+$$
, $f(m, 1) = 1$.
ii) For any $n \in \mathbb{Z}_+$ with $n \ge 2$,
 $f(1,n) = 0$.

proof) i) For any $m \in \mathbb{Z}_+$, $f(m, 1) = \frac{(-1)^0}{0! \ 0!} 1^{m-1} = 1$.

ii)
$$f(1,n) = \sum_{k=1}^{\infty} \frac{(-1)^{11-k}}{(n\cdot k)! (k-1)!}$$

$$= \frac{1}{(n-1)!} \sum_{k=1}^{n} \frac{(n-1)!}{(n\cdot k)! (k-1)!} (-1)^{n-k}$$

$$= \frac{1}{(n-1)!} \sum_{k=1}^{n} \binom{n-1}{n\cdot k} (-1)^{n-k}$$

$$= \frac{1}{(n-1)!} (1-1)^{n-1}$$

$$= 0, \text{ if } n > 2$$

- 141 -

2/論 **T** 僿

PROPOSITION 4. For any $m, n \in Z_+$, f(m+1, n+1)= f(m,n) + (n+1)f(m,n+1).**Proof**) f(m,n) + (n+1)f(m,n+1) $= \sum_{k=1}^{n} \frac{(-1)^{n-k} k^{m-1}}{(n-k)! (k-1)!} (n+1) \sum_{k=1}^{n+1} \frac{(-1)^{n+1-k} k^{m-1}}{(n+1-k)! (k-1)!}$ $= \sum_{k=1}^{n} \left(\frac{n+1}{(n+1-k)! (k-1)!} - \frac{1}{(n-k)! (k-1)!} \right) (-1)^{n+1-k} k^{m-1}$ $+\frac{(n+1)^m}{n!}$ $= \sum_{n=1}^{n+1} (-1)^{n+1-k} k^{m}$

$$k=1$$
 (n+1-k)! (k-1)!

= f(m+1, n+1)

By the above propositions we have the following theorem, one of our main results.

THEOREM 5. For any m, n
$$\epsilon Z_+$$
, $\{m_n\}_n^m$
= $\sum_{k=1}^n \frac{(-1)^{n-k} k^{m-1}}{(n-k)! (k-1)!}$
= $\frac{1}{(n-1)!} \{ \binom{n-1}{0} n^{m-1} - \binom{n-1}{1} (n-1)^{m-1} + ... + (-1)^{n-1} \binom{n-1}{n-1} \}.$

Proof) By Proposition 1, Theorem 2, Proposition 3, and Porporition 4, we can conclude that for any positive integer m and n, $\begin{bmatrix} m \\ n \end{bmatrix} = f(m,n)$. The second equality is obvious.

REMARK. By Proposition 1 and Theorem 2, we have the following triangular array of positive integers, which is similar to Pascal's triange.

TABLE OF $\begin{bmatrix} m \\ n \end{bmatrix}$

EXAMPLE: (*)
$$\begin{bmatrix} 1\\2 \end{bmatrix} = 0; \begin{bmatrix} 4\\1 \end{bmatrix} = 1$$
 (Proposition 1),

$$(**)$$
 $\begin{bmatrix} 5\\ 3 \end{bmatrix} = 7 + 3.6 = 25$ (Theorem 2).

We have some formulas.

COROLLARY 5. For any $m_1 n \in \mathbb{Z}_+$.

 $\binom{m-1}{0}m^{m-1} - \binom{m-1}{1}(m-1)^{m-1} + \ldots + (-1)^{m-1}$ i) = (m-1)!,ii) $\binom{n-1}{0}n^{m-1} - \binom{n-1}{1}(n-1)^{m-1} + \ldots + (-1)^{m-1}$

= 0 if m < n.

Proof) i) $[\frac{m}{n}] = 1$, ii) $[\frac{m}{n}] = 0$ if m < n.

We now consider the number of all partitions which divide Z_m into less than or equal to n parts.

DEFINITION 4. For any $m, n \in \mathbb{Z}_+$, $\{\frac{m}{n}\}$ denote the number of partitions which divide Z_m into less than or equal to n parts, that is, $\binom{m}{n} = \sum_{i=1}^{n} \binom{m}{n}$.

DEFINITION 5. For any nonnegative integer n, let

$$d_n = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + (-1)^n \frac{1}{n!}$$

that is, a partial sum of the convergent series

 $e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} + \dots$

The following are our main results.

THEOREM 6. For any m, n $\epsilon Z_{+}, \{ {n \atop n} \} = \sum_{k=1}^{n} \frac{k^{m-1}}{(k-1)!} d_{n-k}$

Proof)
$$\binom{m}{n} = \sum_{i=1}^{n} \binom{m}{i}$$

 $= \sum_{i=1}^{n} \sum_{k=1}^{i} \frac{(-1)^{i-k} k^{m-1}}{(i-k)! (k-1)!}$
 $= \sum_{k=1}^{n} \sum_{i=k}^{n} \frac{k^{m-1} (-1)^{i-k}}{(k-1)! (i-k)!}$
 $= \sum_{k=1}^{n} \frac{k^{m-1} n^{-k}}{(k-1)! j=0} \frac{(-1)^{j}}{j!}$
 $= \sum_{k=1}^{n} \frac{k^{m-1}}{(k-1)!} d_{n-k}$

COROLLARY 6. For any $m \in \mathbb{Z}_+, \#(\mathfrak{f}(m)) = \{m\}$

$$=\frac{\sum_{k=1}^{m}\frac{k^{m-1}}{(k-1)!}}{d_{m-k}}$$

- 142 -

ł

1 •

١

٠

1

ŧ.

References

Mood, A.M. and Graybill, F.A. 1963 "Introduction to the theory of statistics," McGraw-Hill Book Company, Inc., New York. Riordan, J. 1958 "An introduction to combinatorial analysis," John, Wiley.

國文抄錄

本 論文은 有限集合의 分割의 総가지수를 구하는 一般的인 公式을 求하였다.