A Note on the Idempotent in a Ring

by Seung-il Baik

概 要

取에서 벽등원 (idempotent)의 성질을 이용하여 그 元으로 生成된 環 eRe의 根基(radical)가 R의 根基와 같음을 이용하여 R이 J-semisimple일때 eRe도 또한 J-semisimple이 됨을 보였고 또 다른 덕등원 u에 의하여 生成된 ideal Ru의 Re의 同形관계와 일치할 조건 및 덕등원이 環R에서 원시원 (primitive)이 될 조건과 環 R이 正則일때 덕등원이 원시원이 되려면 eKe가 體 (division ring)가 됨을 보임

An element e of a ring R is said to be an IDEMPOTENT if $e^{3}=e$.

LEMMA-1. If e is an idempotent of the ring R, then eRe is a ring with unity e.

LEMMA-2. If I is an ideal and e is an idempotent element of the ring R, then the subring $eIe = eRe \cap I$.

PROOF. Assume that $r = ere \in (eRe) \cap I$, then $r = ere \in eIe$. Thus $(eRe) \cap I \subset eIe$. Next, assume that $r \in eIe \subset I$, then $r = ere \in eRe$ since $I \subset R$. Thus $r = ere \in (eRe) \cap I$. Hence, $eIe = (eRe) \cap I$.

LEL: MA-3. Let R be a ring, if e is an idempotent in R, then $R = eR \oplus (1-e)R = Re \oplus R(1-e)$.

PROOF. If $r \in \mathbb{R}$, then r = er + (r - er). Hence we have R = eR + (1 - e)R, where $(1 - e)R = \{r - er | r \in \mathbb{R}\}$. But eb = b for all b in eR and eb = o for all b in (1 - e)R, so that $eR \cap (1 - e)R = (o)$ and thus $R = eR \oplus (1 - e)R$.

Moreover,
$$eRe=eR\cap Re$$
, $eR(1-e)=eR\cap R(1-e)$,

$$(1-e)Re=(1-e)R||Re, (1-e)R(1-e)$$

 $(1-e)R\cap R(1-e).$

And we can write

 $\mathbf{R} = \mathbf{e} \mathbf{R} \mathbf{e} \oplus \mathbf{e} \mathbf{R} (1-\mathbf{e}) \oplus (1-\mathbf{e}) \mathbf{R} \mathbf{e} \oplus (1-\mathbf{e}) \mathbf{R} (1-\mathbf{e}).$

This representation is called a two sided Peirce decomposition of R relative to e.

The prime radical of a ring R, denoted by Rad R, is the set

Rad $R = \bigcap \{P | P \text{ is a prime ideal of } R\}$.

Remark: Rad R is a nilpotent. (#1)

An element a of the ring R is quasi-regular iff there exists some b in R such that a+b-ab=o. The element b is called a quasi-inverse of a. The J-radical J(R) of a ring R, with or without an identity, is the set

 $J(R) = \{a \in R \mid ar \text{ is quasi-regular for all } r \in R\}$. If J(R) = (o), then R is said to be a J-semisimple ring.

THEOREM-4. If e and e^{*} are two idempotent of the ring R such that $e-e^* \in Rad R$, then $e=e^*$.

PROOF. Consider the product $(e-e^*)(1-(e+e^*))$ =0. Now, one may write

 $1-(e+e^*) = (1-2e) + (e-e^*)$

where $(1-2e)^2 = 1-4e+4e^2 = 1-4e+4e=1$.

- 17 --

2 논 문 집

Hence, $1 - (e+e^*)$ is the sum of an invertible element and a nilpotent element, (since Rad R is a nilpotent). It is necessarily invertible in R(# 1). So that $e=e^*$.

THEOREM-5. If Ri s a J-semisimple, then eRe also a J-semisimple.

PROOF. We claim that J(eRe) = (o) if J(R) = (o). Then, first we will show that J(eRe) = eJ(R)e = J(R) \cap eRe. It is clear that $J(R) \cap$ eRe = eJ(R)e (by LEMMA-2) and that this is a quasi-regular ideal in eRe. Hence $eJ(R)e \subset J(eRe)$.

Suppose $z \equiv J(eRe)$. By the two-sided peirce decomposition of R, we can write x in R as $x = x_{11} + x_{10} + x_{01} + x_{00}$ where $x_{11} \in eRe$, $x_{10} \in eR(1-e)$, $x_{01} \in (1-e)$ Re, and $x_{00} \in (1-e)R(1-e)$. Then $zx = zx_{11} + zx_{10}$, since $zx_{01} = zex_{01} = zx_{00} = zex_{00} = 0$. Now zx_{11} has a quasi-inverse, i.e. z^* in eRe. Since $zx_{10}z^* = 0$, we have $zx + z^* + zxz^* = zx_{10}$. Moreover, $(zx_{10})^2 = 0$ and hence zx_{10} is quasi-regular, since $zx_{10} + (-zx_{10}) + (-zx_{10})zx_{10}$ = 0. Therefore zx is quasi-regular for every $x \in R$, since the quasi-regular elements of R form a group under the circle composition. Thus $zR \subset J(R)$. Hence bza is quasi-regular for every a, b in R. But then $z \in J(R)$ and $z \in eRe \cap J(R) = eJ(R)e$. Hence $J(eRe) \subset eJ(R)e$. Thus J(eRe) = eJ(R)e. Hence if J(R) = (0), then eJ(R)e = J(eRe) = (0). Proved.

Now, consider the ideals generated by a nonzero idempotent e of the ring R, say eR or Re.

LEMMA-6. If e and u are the two nonzero idempotent of the ring R. then eR=uR if and only if eu=u and ue=e.

PROOF. Suppose that eR = uR, let u in R, then seu=u \cdot u=u²=u. Similarly, e=e \cdot e=ue ie, ue=e.

Conversely, if eu = u, ue = e and $a \in eR$, then

a=er for some r∈R. Since a=er=uer=ur* (r*=er ∈R), a∈uR. Hence eR⊂uR. Similarly, uR⊂eR.

THEOREM-7. If e and u are two idempotent of the ring R, then $eR \approx uR$ as R-modules if and only if there exist r, s in R such that rs=u and sr=e.

PROOF. Suppose $eR \ge uR$ and let $ex \rightarrow ur^*ex$, $x \in R$, be the isomorphism. Let $uy \rightarrow es^*uy$, $y \in R$, be its inverse. Then $ees^*uur^*e=e$ and $uur^*ees^*u=u$. Let $r=ur^*e$ and $s=es^*u$. Thus rs=u and sr=e.

Conversely, suppose that sr = e and rs = u. Then the homomorphism $ex \rightarrow rex = rsrx = rs \cdot rx = urx \in u\mathbf{R}$ for $ex \in eR$ has the mapping $uy \rightarrow suy$ for $uy \in u\mathbf{R}$ as inverse. Hence $eR \approx uR$.

COROLLARY. Re Ru as R-modules if and only if there exist r, s in R such that rs=u and sr=e. Now, we can prove the following theorem.

THEOREM-8. The ideals eR and uR are isomorphic as R-modules if and only if the ideals Re and Ru are isomorphic as R-modules.

PROOF. If $eR \approx uR$ if and only if there exist r,s in R such that rs=u, sr=e if and only if $Re \approx Ru$. LEMMA-9. Let e and u be idempotents in the ring R with 1, and let J be the radical of R. Suppose $r^*s^*=e(mod J)$ and $s^*r^*=u(mod J)$. Then there exist r and s in R such that rs=e and sr=u.

PROOF. $us^* \equiv s^*r^*s^* \equiv s^*e$ and $er^* \equiv r^*s^*r^* \equiv r^*u$ (mod J) imply $er^*us^* \equiv r^*us^* \equiv r^*s^*e \equiv e^2 \equiv e \pmod{J}$. Therefore $x = e - er^*us^* \in J$ and since x = ex, $er^*us^* = e(1-x)$. Now $x \in J$ and hence there exists $y \in J$ such that (1-x)(1-y) = 1. Let $s = us^*(1-y)$ and $r = er^*u$. Then $rs = er^*us^*(1-y) = e(1-x)(1-y) = e$ and hence $(sr)^2 = srsr = ser = sr$. This implies $(u-sr)^2 = u - usr - sru + sr = u - sr$. But since $sr = us^*(1-y)er^*u \equiv us^*er^*u \equiv u^3 \equiv u \pmod{J}$, u = u

- 18 -

 $sr \in J$. Hence u = sr.

THEOREM-10. Let N \subset radical of R, f: R \rightarrow R/N canonically and e and u are idempotent of R, then eR \approx uR as R-modules if and only if feR \approx fuR as R-modules.

PROOF. By THEOREM-7, LEMMA-9.

THEOREM-11. If a ring R with 1 has no nilpotent element, then every idempotent of R is in the center of R.

PROOF. Consider the element ex(1-e), then (ex $(1-e))^2 = ex(1-e)ex(1-e) = (ex-exe)(ex-exe)$ = exex - exexe - exeex + exeexe = exex - exexe - exexe + exexe = o. Thus ex(1-e) = o since R has no nilpotent element. Hence ex = exe.

Similarly, $((1-e)ex)^2 = ((1-e)xe)((1-e)xe) =$ (xe-exe)(xe-exe) = xexe-xeexe-exexe+exeexe= xexe-xexe-exexe+exexe=0. Thus (1-e)xe=o, ie, xe=exe. Hence ex=xe. So that e is in the center of R.

Let e_1, \ldots, e_n be nonzero idempotents in a ring R. They are mutually orthogonal if $e_i e_j = 0$ whenever $i \neq j$. In this case $e = e_1 + e_2 + \ldots + e_n$ is also an idempotent. An idempotent is PRIMITIVE if it cannot be written as the sum of two orthogonal idempotents. Remark: It is well known that e is primitive iff Re is minimal ideal generated by e.

THEOREM-12. An idempotent $e \neq o$ of the ring R is primitive if and only if R contains no idempotent $g \neq e$ such that eg = ge = g.

PROOF. Suppose e is not primitive, then e=g+h, with $g\neq o$, $h\neq o$ orthogonal idempotents. Thus $ge=g^2+gh=g$ and $eg=g^2+hg=g$. Therefore $ge=g^2+gh=g$ and $eg=g^2+hg=g$.

eg = g but $e \neq g$. Hence contradiction for R.

Conversely, if there exist g in R such that $o\neq g^{a}$ = $g\neq e$ and g=ge=eg, then g and e-g are nonzero orthogonal idempotents whose sum is e. Hence e is not primitive.

THEOREM-13. Any idempotent e in a nil-semisimple left Artinian ring R is the sum of a finite number of orthogonal primitive idempotents.

PROOF. Let I=Re, where $e\neq o$ is an idempotent. If I is minimal, then e is primitive and theorem proved. If I is not minimal, there exists a minimal left ideal J_1 of R such that $J_1 \subset I$.

Then, there exists an ideal J_1^* such that $J_1^* \neq (0)$ and $I = J_1 \oplus J_1^*$ and there exist orthogonal idempotents e_1 , e_1^* such that $J_1 = Re_1$, $J_1^* = Re_1^*$, and $e = e_1 + e^*_1$. Since J_1 is minimal, e_1 is primitive. If J_1^* is minimal, then e_1^* is primitive and we are finished. If J_1^* is not minimal, we decompose it as $J_1^* = J_2 \oplus J_2^*$ as above, where e_2 and e_2^* are orthogonal idempotent generators of J_2 and J_2^* . Since J_2 is minimal, e_2 is primitive and $e = e_1 + e_2 + e_2^*$. Now e_1 and e_2 are orthogonal since $e_1e_1^* = 0$ and thus $e_1e_2 + e_1e_2^* = 0$ while $e_2^*e_2 = 0$, giving us $0 = (e_1e_2 + e_1e_2^*)e_2 = e_1e_2 + e_1e_2^*e_2 = e_1e_2$ and similary $e_2e_1 = 0$.

After n steps we obtain

 $I = J_1 \bigoplus J_2 \bigoplus \dots \bigoplus J_n \bigoplus J_n^*, \ J_i = \operatorname{Re}_i, (i = 1, 2, \dots n)$ $J_n^* = \operatorname{Re}_n^*, \ e_1, \dots, e_n \text{ mutually orthogonal and}$ primitive and $e = e_1 + \dots + e_n + e_n^*.$

THEOOREM-14. An idempotent $e \neq o$ of R is primitive if and only if eRe contains no idempotent other then o and e.

PROOF. Assume that ere is an idempotent for some r in R, and let e be primitive. Then, since

- 19 --

4 논 문 집

 $(e-ere)^3 = e^2 - e^2re - \sigma re^2 + (ere)(ere) = e - ere - ere$ + ere = e - ere, e - ere is also idempotent. At the same time, ere(e - ere) = (e - ere)ere = o.

Hence, e = ere + (e - ere), where ere and e - ere are idempotent and orthogonal. From the primitivity of e, either ere = o or ere = e.

Conversely, if e is not primitive, then we may write we may write e=u+v, where u and v are nonzero orthogonal idempotents. Hence, $u \neq e$ and eu=ue=u, which implies that the element u=eueis in eRe.

THEOREM-15. If R is a regular ring and e an idempotent, then e is primitive if and only if eRe is a division ring.

PROOF. Suppose e is primitive and a in eRe, $a \neq a$. o. Then Re is minimal and $a \in Re$ and so $Ra \subset Re$. Hence Ra=Re or Ra=(o). But $a=ea \in Ra$, so that $Ra \neq (o)$. Therefore Ra=Re. Thus $e \in Ra$, ie, there is an $x \in R$ such that e=xa. Then exe is a left inverse in eRe for a. Hence eRe is a division ring.

Coversely, if eRe is a division ring and that I is a left idel of R with $I \subset Re$. Then eI is a left ideal in eRe. Hence either eI = (o) or eI = eRe. If eI = (o), then $I^2 \subset ReI = (o)$ and I = (o) since R is regular, R has no nonzero nilpotent ideal. (#6) Now suppose that eI = eRe. Then there is an $x \in I$ such that $ex \in eRe$ and $ex \neq o$. Also, exe = ex since e is the identity for eRe.

Moreover, ex has an inverse in eRe, say eye. Then (eye)(exe) = e and e \in Rexe=Rex \subset I. Then Re \subset I and I=Re, so that Re is a minimal left ideal of R. Hence e is a primitive.

REFERENCES

- David M. Burton. A first course in Rings and Ideals. 1970. Addison-Weseley.
- 2. E.A. Behrens. Ring Theory. 1972. Academic Press.
- 3. R. Gordon. Ring Theory. 1972. Academic Press.
- 4. T.W. Hungerford. Algebra. 1974. Holt.
- 5. M. Auslander. Groups, Rings, Modules. 1974. Harper.
- 6. Gray. A radical approach to algebra. 1970. Addison-Wesley.
- 7. J. W. Fisher. Idealizers in Rings. 1976. Jun, of Algebra. 39.