A Note on the Idempotent in a Ring
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An element e of a ring R is said to be an
IDEMPOTENT if e*=e.

LEMMA-], If e is an idempotent of the ring R,
then eRe is a ring with unity e.

LEMMA-2. If I is an ideal and e is an idempo-
tent element of the ring R, then the subring ele=

eReNl.

PROOF. Assume that r=erec(eRe) NI, then r=
ereCele. Thus (eRe) NICele. Next, assume that r
€eleCl], then r=ere €eRe since ICR. Thus r=

erec= (eRe) N1. Hence, ele= (eRe)N 1.

LEI-‘ZMA—3.‘ Let R be a ring, if e is ah idempo-
tent in R, then R=eR@P(1—e)R=ReER(1—e).

PROOF. If r&R, then r=er+ (r—er). Hence we
have R=eR+(1—e)R, where (1—e)R={r-er|rc
R}. Buteb=b for all bin eR and eb=o0 for all b in
(1—e)R, so that eRN(1—e)R=(0) and thus R=e

RE(1-€)R.

Moreover, eRe=eRRe, eR(1—¢€)=eRNR(1—¢),
(1—e)Re=(1—e)RNRe, (1—e)R(1—e)=

(1—e)RNR(1—e).
~ And we can write

R=eReeR(1—e)B(1—e)ReD(1—e)R(1—e).
This representation is called a two sided Peéirce
decomposition of R relative to e.
The prime radical of aring R, denoted by Rad R,
is the set

Rad R=[1{P|{P is a prime ideal of R}.

Remark: Rad R is a nilpotent. (#1)

An element a pf the ring R is quasi-regular iff
there exists some b in R such that a+b—ab=o.
The element b is called a quasi-inverse of a. The
J-radical J(R) of a ring R, with or without an
identity, is the set

J(R) = {acR|ar is quasi-regular for all rR}.

If J(R)=(0), then R is said to be a J-semisimple
ring.

THEOREM-4. If e and e* are two idempotent of

the ring R such that e—e*cRad R, then e=e*.

PROOF. Consider the product (e—e*) (1— (e+e*))
=0. Now, one may write

1—(e+e*)=(1—2e)+ (e—e*)

where (1—2e)?=1—4e+4e?=1—4e+4e=1.
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Hence, 1— (e+e¥) is the sum of an invertible element
and a nilpotent element, (since Rad Risa nilpotent).

It is necessarily invertible in R(#1). So thate=e*.

THEOREM-5. If Ri s a J-semisimple, then eRe
also a J-semisimple.

PROOF. We claim that J(eRe) = (o) if J(R)=(0).
Then, first we will show that J(eRe)=eJ(R)e=]
(R)NeRe. It is clear that J(R) NeRe=eJ(R)e (by
LEMMA-2) and that this is a quasi-regular ideal in
eRe. Hence e]J(R)eC J(eRe).

Suppose z =J(eRe). By the two-sided peirce decom-
position of R, we can write x in R as x=Xy;+Xst
Xo1+Xoo Where x;;=eRe, Xjp=eR(1—€), XanE(1—¢€)
Re, and % =(1—e)R(1—e). Then zx=2Xy+2Xy0,
since ZXop=ZzeXq = 2Xg=2€Xeo=0. NOW zx, has a qu-
asi-inverse, ie. z* in eRe. Since zxjz*=o0, we have
zx +z*¥+2xz%=2z%,,. Moreover, (zx;,)*=o0 and hence
2Xyp is quasi-regular, since zxio+ (—zX10)+(—2X10)2%10
=o0. Therefore zx is quasi-regular for every xR,
since the quasi-regular elements of R form a group
under the circle composition. Thus zZRCJ(R). He-
nce bza is quasi-regular for every a, b in R. But
then z=J(R) and zZeReNJ(R)=eJ(R)e.
J(eRe) ceJ(R)e. Thus J{eRe)=eJ(R)e. Hence if
J(R) = (0), then eJ(R)e=](eRe) = (0). Proved.

Hence

Now, consider the ideals generated by a nonzero

idempotent e of the ring R, say eR or Re.

LEMMA-6. If e and u are the two nonzero ide-
mpotent of the ring R. then eR=uR if and only if
eu=u and ue=e.

PROOF. Suppose that eR =uR, let u in R, then
eu=u . u=u’=u. Similarly, e=e-e=ue ie, ue=e.

Conversely, then

if eu=u, ue=e and aZeR,

a=er for some r<=R. Since a=er=uer=ur* (r*=er
€R), a=uR. Hence eRCuR. Similarly, uRCeR,
THEQREM-7. If e and u are two idempotent of
the ring R, then eR~uR as R-modules if and only
if there exist r, s in R such that rs=u and sr=e.
PROOF. Suppose eR = uR and let ex—ur¥ex, x €R,
be the isomorphism. Let uy—es*uy, y&R, be its
inverse. Then ees*uure=e and uur*ees*u=u. Let
r=ur*e and s=es*u. Thus rs=u and sr=e.
Conversely, suppose that sr=e and rs=u. Then
the homomorphism ex—rex=rsrx=rs-rx=urx& uR
for ex= eR has the mapping‘uy—’suy for uy=uR
as inverse. Hence eR ~uR.
COROLLARY. Re~Ru as R-modules if and only
if there exist r, s in R such that rs=u and sr=e.
Now, %e can prove the following theorem.
THEOREM-8. The ideals eR and uR are isomor-
phic as R-modules if and only if the ideals Re and
Ru are isomorphic as R-modules.
PROOF. If eR~uR if and only if there exist r,8
in R such that rs=u, sr=e if and only if Re~Ru.
LEMMA-9, Let e and u be idempotents in the
ring R with 1, and let J be the radical of R.
Suppose r*s¥=e(meod J) and s*r*=u(mod J). Then
there exist r and sin R such that rs=e and sr=u.
PROOF. us*=s*r*s*=s"e and er*=r*s*r*=r*u
(mod ]) imply er*us*=r*us*=r*s*e=e’=e(mod J)-.
Therefore x=e—er*us* & J and since x=ex, er*
us*=e (1—x). Now x&] and hence there exists
y=J such that (1—x) (1—y)=1. Let s=us*(1-—y)
and r=er*u. Then rs=er*us*(1—-y)=e(l—-x)(1—

y)=e and hence (sr)?=srsr=ser=sr. This impl-

ies (u—sr)!=u—usr—sru+sr=u—sr. But since

sr=us*(l—y)er*u= us*er*tu= uw'=a(mod J), u-—
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sr&J. Hence u=sr.

THEOREM-10. Let NCradical of R, f: R—R/N
canonically and e and u are idempotent of R, then
eR~uR as R-modules if and only if feR~fuR as R-
modules.

PROOF. By THEOREM-7, LEMMA-9,

THEOREM-11, If a ring R with ] has no nilpo-
tent element, then every idempotent of R is in the

center of R.

PROOF. Consider the element ex(1—e), then (ex
(1-e))?

=eXexX —exexe—exeex + exeexe =exex —exexe —exex

=ex(l—e)ex(l—e) =(ex—exe)(ex—exe)
+exexe=o. Thus ex(1—e) =0 since R has no
nilpotent element. Hence ex =exe.

((1-e)ex)*=((1—e)xe) ((1—e)xe) =

(xe—exe) (xe—exe) = xexe — xeexe —exexe + exeexe=

Similarly,
xexe—xexe—exexe+exexe=0. Thus (1—e)xe=o,

ie, xe=exe. Hence ex=Xe. So that e is in the

center of R.

Let e;,...,e, be nonzero idempotents in a ring R.
They are mutually orthogonal if e;e;=0 whenever
i#j. In this case e=e,+e;+... +e, is also an ide-
mpotent. An idempotent is PRIMITIVE if it cannot
be written as the sum of two orthogonal idempote-
nts. Remark: It is well known that e is primitive

iff Re is minimal ideal generated by e.

THEOREM-12. An idempotent eo0 of the ring
R is primitive if and only if R contains no idempo-

tent g7e such that eg=ge=g.

PROOF. Suppose e is not primitive,
h, with g,

then e=g+
h=#o0 orthogonal idempotents. Thus
ge=g'+gh=g and eg=g*+hg=g. Therefore ge=

eg=g but &*g. Hence contradiction for R.
Conversely, if there exist g in R such that o#g?

=g7e and g=ge=eg, then g and e—g are nonzero

orthogonal idempotents whose sum is e. Hence e is

not primitive.

THEOREM-13. Any idempotent e in a nil-semi-
simple left Artinian ring R is the sum of a finite
number of orthogonal primitive idempotents. )

PROOF. Let I=Re, where e7o0 is an idempotent.
If 1 is minimal, then e is primitive and theorem
proved. If I is not minimal, there exists a minimal
left ideal J; of R such that J,CI.

Then, there exists an ideal J,* such that J,*+#(o)
and I=],BJ,* and there exist orthogonal idemp-
otents e,, e,* such that J,=Re;,, J,*=Re,*, and
e=e,+e*. Since J; is minimal, e, is primitive. If
Ji* is minimal, then e,* is primitive and we are
finished. If J,* is not minimal, we decompose it
as J,*=J,@J,* as above, wheree; and e,* are orth-
ogonal idempotent generators of J; and J,*. Since
Je is minimal, e; is primitive and e=e;+e;+e;*.
Now e, and e, are orthogonal since e;e;*=o0 and
thus eje;+eje,* =0 while e,*e,=o, giving us
o={(eie;+ee,*)er=ese;+ejes*e;=ese, and similary
e:e;=o0,

After n steps we obtain

I=Jl$12®"'$-}-®]u*, Ji =Reh (i = ln 21 '"n)
Ju*=Re,*, ey,---,e, mutually orthogonal and

primitive and e=e;+---+e,+e,*.
THEOOREM-14. An idempotent e#o of R is
primitive if and only if eRe contains no idempotent
other then o and e.
PROOF. Assume that ere is an idempotent for

some r in R, and let e be primitive. Then, since
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(e—ere)?=e*—e’re—are?+ (ere) (ere) =e—ere—ere

+ere=e—ere, e—ere is also idempotent. At the
same time, ere(e—ere) = (e—ere)ere=o.
Hence, e=ere+ (e—ere), where ere and e—ere are
idempotent and ort‘hoéonal. From the primitivity of
e, either ere=0 or ere=e.
-Conversely, if e is not primitive, then we may
write we may write e=u+v, where u and v are
nonzero orthogonal idempotents. Hence, u #e and
eu=ue=u, which implies that the element u=eue
is in eRe.

THEOREM-15. If R is a regular ring and e an
idempotent, then e is primitive if and only if eRe
is a division ring. .

PROOF. Suppose e is primitive and a in eRe, a#

o. Then Re is minimal and acRe and so RaCRe.

Hence Ra=Re or Ra=(0). But a=ea&Ra, so that

Ra+#(0). Therefore Ra=Re. Thus e=Ra, ie, there
is an xER such that e=xa. Then exe is a left
inverse in eRe for a. Hence eRe is a division ring.

Coversely, if eRe is a division ring and that I is
a left idel of R with ICRe. Then el is 5 left
ideal in eRe. Hence either el=(o0) or el=eRe. If
el= (o), then I3 Rel=(0) and I=(0) since R is
(#6)

Now suppose that el=eRe. Then there is an x&I

regular, R has no nonzero nilpotent ideal.
such that ex& eRe and ex¥o. Also, exe=ex since
e is the identity for eRe.

Moreover, ex has an inverse in eRe, say eye. Then
(eye) (exe) =e and e Rexe=RexC I. Then ReCl
and I=Re, so that Re is a minimal left ideal of R.

Hence e is a primitive.
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