A NOTE ON STRATIFIABLE SPACES AND N-SPACES

by Sang Hun Rhee.

Contents

- 1. Introduction
- 2. Definitions and elementary properties
- 3. Main theorems
- 4. Properties by mappings
- 5. Conclusions

1. Introduction

Stratifiable spaces have been introduced by Borges [1] and [4] CEDER proved that any \aleph -space is k-semistratifiable spaces. In this note, we give a simple characterization of \aleph -space. We show that the image of Nagata space under a closed pseudo-open finite to one compact mapping is stratifiable and that the image of a compact and \aleph -space under a k-mapping is an \aleph -space. In the end we investigates the properties of the image of \aleph -spaces and stratifiable spaces under N-mapping.

2. Definitions and elementary properties

DEFINITION 2.1. [1]. A topological space X is a stratifiable space if X is T_1 and, to each open $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that

(a)
$$U_n^{-} \subset U$$
,
(b) $\bigcup_{n=1}^{\infty} U_n = U$,
(c) $U_n \subset V_n$ whenever $U \subset V$,

This correspondence $U \rightarrow \{U_n\}_{n=1}^{\infty}$ is a stratification of X whenever the U_n satisfy (a), (b) and (c) of DEFINITION 2. 1.

- 11 -

DEFINITION 2.2. [5]. A topological space X is a semi-stratifiable space if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}$ of closed subset of X such that

(a)
$$\bigcup_{n=1}^{\infty} U_n = U,$$

(b) $U_n \subset V_n$ whenever $U \subset V$

The correspondence $U \rightarrow \{U_n\}_{n=1}^{\infty}$ is called a semi-stratification for the space X. M. Henry showed, in [5], that stratifiable spaces are semi-stratifiable spaces, but these implication cannot be reversed.

DEFINITION 2.3. [2]. A regular T_1 space with a σ -locally finite k-network is called an \aleph -space.

DEFINITION 2.4. [2]. A k-network \mathscr{P} for a space X is a family of subsets of X such that if $C \subset U$, with C compact and U open in X, then there is a finite uion R of members of \mathscr{P} such that $C \subset R \subset U$.

A network \mathscr{P} for a space X is a family of subsets of X such that if $x \in U$, with U open, then there is a $P \in \mathscr{P}$ such that $x \in P \subset U$.

DEFINITION 2.5. [2]. A k-semistratification of a space X is a semistratifiable $U \rightarrow \{U_n\}_{n=1}^{\infty}$ for the space X such that given any compact subset K with $K \subset U_n$, there is a natural number n with $K \subset U_n$.

M. Henry. [5], obtained the following.

LEMMA 2.5. A space X is k-semistratifiable if and only if to each closed set $F \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that

(a) $\bigcap_{n=1}^{\infty} U_n = F$ (b) $U_n \subset V_n$ whenever $U \subset V_n$ (c) If $F \cap K = \phi$ with K compact in X,

then there is open set U_* with $U_* \cap K = \phi_*$.

- 12 -

Clearly stratifiable spaces are k-semistratifiable and k-semistratifiable spaces are semi-stratifiable, but these implications cannot be reversed.

Notation and terminology will follow that of J.L. Kelley [11] and all mappings will be continuous and subjective, and N is the set of natural numbers, we denote the interior of a subset A of a topological space by Int (A).

3. Main theorems

For this section, we consider the following terminologies. A collection \mathscr{B} of subsets of X is said to be a pseudo base if for each compact subset K of X and each open subset U of X containing K there is a $B \in \mathscr{B}$ such that $K \subset B \subset U$. Let \mathscr{G} be a subbase for a space X and let \mathscr{P} be a σ -locally finite family of subsets of X such that if $C \subset U \in \mathscr{G}$ with C compact, then $\exists R = \bigcup_{n=1}^{\infty} P_i \in \mathscr{P}$ such that $C \subset K \subset U$. We call such a family \mathscr{G}^3 (after Michael's \mathscr{G} -k-pseudo base) an \mathscr{G} -k-network.

THEOREM 3.1. Let X be a regular T_1 -space and \mathcal{S} be a subbase for X. Then X is **K**-space iff it has a σ -locally finite \mathcal{S} -k-network.

PROOF. The necessity is trivial. To prove the condition sufficient, Suppose that $\mathscr{P} = \bigcup_{n=1}^{U} \mathscr{P}_n^n$ is a σ -locally finite \mathscr{G} -k-network for X.

Let \mathscr{M} be the class of all finite subsets of N and for each $E \in \mathscr{M}$ put $\mathscr{F}(E)$ is the class of all finite intersections of members of $\bigcup \{ \mathscr{P}_n : n \in E \}$. Since $\bigcup \{ \mathscr{P}_n : n \in E \}$ is a subset of $\mathscr{F}(E)$ and each \mathscr{P}_n is locally finite. Then each $\mathscr{F}(E)$ is locally finite so that $\mathscr{F} = \bigcup \{ \mathscr{F}(E) : E \in \mathscr{M} \}$ is σ -locally finite. We shall show that \mathscr{F} is a k-network for X. First suppose that $C \subset U \in \mathscr{P}$, where C is compact \mathscr{P} is a base for X consisting of all finite intersections of members of \mathscr{G} . Then $U = \bigcap_{n=1}^{\infty} \{S_i : S_i \in \mathscr{G}\}$ and for each i $(i=1,2,\cdots n)$, there is a finite n=1union R_i of members of \mathscr{P} such that $C \subset R_i \subset S_i$. Then $C \subset \bigcap_{i=1}^n R_i \subset U = \bigcap_{i=1}^n S_i$ and $\bigcap_{i=1}^{n} R_i$ can be expressed as a finite union of members of \mathscr{F} . For by constract and \mathscr{P} is a σ -locally finite \mathscr{G} -k-network for X. Now let U be an arbitrary open set, and $C \subset U = \bigcup B_i$ ($B_i \in \mathscr{G}$) (C is compact). Then $C \subset \bigcup_{i=1}^{n} B_i = U(B_i \in \mathscr{G})$ and $B_i \subset U$ for each i. Since C is normal. Let $\mathscr{U} = \{B_i : i=1, 2, 3, \dots n\}$. Then \mathscr{U} is a point finite open cover of a normal C. Then it is possible to select an open set C_i for each B_i in \mathscr{U} in such a way that $\overline{C_i} \subset B_i$ and the family of all sets C_i is a cover of C. Hence for each i we have $C_i \subset \overline{C_i} \subset B_i$. Therefore $C_i \subset R_i \subset B_i$ for each i. Applying the result of the previous paragraph, we can find R_i, R_2, R_3, \dots R_n in \mathscr{F} such that $C_i \subset R_i \subset B_i$ for all i. Now if $R = \bigcup_{i=1}^{n} R_i$, then $R \in \mathscr{F}$ and $C \subset R \subset U$.

DEFINITION 3.2. [9]. Let (X, \mathcal{F}) be topological space and let $g: N \times X \to \mathcal{F}$ such that $x \subset \bigcap_{n=1}^{\infty} g(n, x)$ for each $x \in X$ if $y_n \in g(n, x)$ for each $n \in N$ implies that the sequence $\langle y_n \rangle$ has x as a cluster point. Then (X, \mathcal{F}) is called a first countable space.

DEFINITION 3.3. [9]. Let (X, \mathcal{F}) be a topological space and let $g: N \times X \to \mathcal{F}$ such that (1) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for each $x \in X$.

(2) If $y_n \in g(n, x)$ and $P_n \in g(n, y_n)$ for each $n \in N$, implies that the sequence $\langle p_n \rangle$ has x as a cluster point. Then (X, \mathcal{F}) is called a γ -space.

DEFINITION 3.4. Let (X, \mathcal{F}) be topological space, let $g: N \times X \to \mathcal{F}$ such that (1) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for each $x \in X$.

(2) If $x_n \in g(n, x)$ for each $n \in N$, implies that the sequence $\langle x_n \rangle$ has a cluster point. Then (X, \mathcal{F}) is called a *q*-space.

LEMMA 3.5. Let (X, \mathcal{F}) be a regular space in which points are $G_{s'}$. Then (X, \mathcal{F}) is a first countable space iff (X, \mathcal{F}) is a q-space.

PROOF : The necessity is trivial.

- 14 --

To converse, let X is a regular q-space and let a point $x \in X$ is a G_s -subset of X. Then there is a function $g: N \times X \to \mathcal{T}$ such that $\{x\} = \bigcap_{n=1}^{\infty} g(n, x)$ and $x_n \in g(n, x)$ for each $n \in N$, Then the sequence $\langle x_n \rangle$ has a cluster point in X. It follows that if $x_n \in g(n, x)$ for each $n \in N$, then every subsequence of $\langle x_n \rangle$ has x as its unique cluster point, since $\bigcap_{n=1}^{\infty} g(n, x) = \{x\}$. Hence the sequence $\langle x_n \rangle$ has a cluster point x.

The following LEMMA is obvious from the DEFINITIONS.

LEMMA 3.6. Suppose a topological space X has a semi-stratification $U \rightarrow \{U_n\}_{n=1}^{\infty}$ with the property that if U is an open in X and $P \in U$, then $P \in Int(U_n)$ for some $n \in \mathbb{N}$. Then X is a stratifiable.

By [4] LEMMA 3.5, and LEMMA 3.6. we obtain the following COROLLARY.

COROLLARY 3.7. Let X be a k-semistratifiable q-space in which points are $G_{a'a}$. Then X is stratifiable.

PROOF. Let U be an open set in a k-semistratifiable and q-space X and U--{U_n} $\underset{n=1}{\infty}$ is an increasing k-semistratification for the space X, and $P \oplus U$. Assume that $P \oplus X - Int(U_n)$ for each $n \oplus N$. Since X is q-space, there exists decreasing sequence $\langle V_{(n)} \rangle$ of neighborhoods of P such that if $x \oplus V_{(n)}$ for each $n \oplus N$, then $\langle x_n \rangle$ has a cluster point in X. We may assume that each point x_n is in the open set U and $\{P\} = \bigcap_{n=1}^{\infty} V_{(n)}$. It follows that if $x_{(n)} \oplus V_{(n)}$ for each $n \oplus N$, then every n=1subsequence of $\langle x_n \rangle$ has P as its unique cluster point, so $\langle x_{(n)} \rangle$ converges to P. Thus $\{x_n : n \oplus N\} \cup \{P\}$ is compact subset of U. Therefore exists a positive integer m such that $\{x_n : n \oplus N\} \cup \{P\} \oplus \mathbb{C}U_n$ for each $n \ge m$, which is contradict to choic ng x_n . Thus by LEMMA 3.6, X is a stratifiable.

4. Properties by mappings

DEFINITION. 4.1. [3] A mapping $f: X \rightarrow Y$ is compact if $f^{-1}(y)$ is compact for each $y \in Y$.

5

DEFINITION. 4.2. [3] A mapping $f: X \to Y$ is a ka-mpping if $f^{-1}(K)$ is a compact subset of X whenever K is compact set in Y.

DEFINITION. 4.3. A mapping $f: X \rightarrow Y$ is called *compact covering* if every compact subset of Y is the image of some campact subset of X.

EDWIN HALFAR [3] showed that if a mapping $f: X \rightarrow Y$ is closed and compact, then f is k-mapping.

DEFINITION 4.4. A mapping $f: X \to Y$ is *pseudo-open* if for each $y \in Y$ and any neighbourhood U of $f^{-1}(y)$. it follows that $y \in Int[f(U)]$.

LEMMA 4.5. If $f: X \rightarrow Y$ is a pseudo-open finite-to-one mapping and X is a first countable space, then Y is first countable.

PROOF. Since f is finite to one, we put $f^{-1}(y) = \{x_1, x_2, \dots, x_n\}$ for every $y \in Y$. Then for each x_i , there exists a countable decreasing open neighborhood base $\{U_{\binom{n}{2}}\}_{i=1}^{\infty}$. Let $U^n = \bigcup_{i=1}^m U_{\binom{n}{2}}^n$. Then $\{Int[f(U^n)]\}$ is a countable base of y. For, let U be an open neighborhood of y. Then $f^{-1}(U)$ is an open neighborhood of $f^{-1}(y)$. Hence there exists an integer k_i such that $U_{\binom{n}{2}}^{k_i} \subset f^{-1}(U)$. Let $k=\max\{k_1, k_2, \dots, k_n\}$. It follows that $y \in Int [f(U^k)] \subset U$.

Using an analogue to proof Theorem 2.3. in [5] the following LEMMA 4.6. may be proved.

LEMMA 4.6. If a mapping $f: X \rightarrow Y$ is a pseudo-open closed compact mapping and X is a k-semistifiable space, then Y is k-semistratifiable.

PROOF. If $F \subset Y$ be a closed, then $f^{-1}(F)$ is closed in X. For each closed set F of Y and each natural number n, let $F_n = Int[f(f^{-1}(F)_n)]$ where $f^{-1}(F) \rightarrow f^{-1}(F)_n$ is a dual k-semistratification for X. we will show that the correspondence $F \rightarrow \{F_n\}$ is a dual k-semistratification for Y. Since $f^{-1}(F) \subset f^{-1}(F)_n$ for each $n \in N$, $f^{-1}(F)_n$ is an open neighborhood of $f^{-1}(y)$ for each $y \in F$, and f is a pseudo-open mapping, therefore, we have $F \subset \bigcap_{n=1}^{\infty} Int[f(f^{-1}(F)_n)] = \bigcap_{n=1}^{\infty} F_n$. For the reverse n=1

6

direction, assume $z \in F$. Then $f^{-1}(z) \cap f^{-1}(F) = \phi$ with $f^{-1}(z)$ compact in X, and therfore there exists a natural number *n* such that $f^{-1}(z) \cap f^{-1}(F)_n = \phi$. Then $z \in F_n$ for some *n* consequently, we have $F = \bigcap_{n=1}^{\infty} F_n$. Next, if F and G are closed subsets of Y such that $F \subset G$, then clearly $Int[f(f^{-1}(F)_n)] \subset Int[f(f^{-1}(G)_n)]$. Finally, et $K \cap F = \phi$ in Y with K compact and F closed in Y. Then $f^{-1}(K) \cap f^{-1}(F) = \phi$, $f^{-1}(K)$ is compact and $f^{-1}(F)$ is closed in X. Hence, $f^{-1}(K) \cap f^{-1}(F)_n = \phi$ for some *n*. Therefore, $K \cap Int[f(f^{-1}(F)_n)] = \phi$. By LEMMA 2.5., Y is k-semistratifiable.

THEOREM 4.7. Let X be a Nagata space. If $f: X \rightarrow Y$ is closed pseudo-open finite to one compact mapping. Then Y is stratifiable.

PROOF. By [4]. Since Nagata space are equivalent to the space is first countable and stratifiable. Since first countable and k- semistratifiable is stratifiable. Hence by LEMMA 4.5. and LEMMA 4.6., Y is stratifiable.

COROLLARY 4.8. Let X be k-semistratifiable and if f is pseudo-open k-mapping and Y is first countable. Then Y is a Nagata space.

THEOREM. 4.9. If $f: X \rightarrow Y$ is a strongly continuous function. Then f is compact covering mapping.

PROOF. It is sufficient to show that image of any compact subset of X is compact. Let A be a compact subset of X. Since f is stronly continuous, therefore $f^{-1}(y)$ is open for every y in Y, then clearly $\{f^{-1}(y) : y \in f(A)\}$ in an open covering of A. Hence there are the family many points $y_1, y_2, \dots, y_n \in f(A)$ such that $A \subset \bigcup$ $\{f^{-1}(y_i) : i = 1, 2, \dots, n\}$. If f(A) not compact, there is $z \in f(A)$ such that $z \neq y_i$ for every $i = 1, 2, \dots, n$, therefore there is a element $x \in A$ such that f(x) = z. Therefore $x \in \bigcup \{f^{-1}(y_i) : i = 1, \dots, n\}$, it is contradict. Hence f(A) is compact.

S. MACDONALD AND S. WILLARD in [10] showed the following THEOREM 4. 10-

THEORE M 4.10. X is compact if and only if every function image of X is regular.

THEOREM 4.11. If f: X-Y is k-mapping and X is compact and X-space.

- 17 -

Then Y is N-space.

8

PROOF. Since X is N-space, let $\mathscr{V} = \bigcup_{n=1}^{\infty} \mathscr{V}_n$ be a σ -locally finite k-network for X. We shall prove that $\mathscr{W} = \bigcup_{n=1}^{\infty} \mathscr{W}_n$, where $\mathscr{W}_n = \{f(V) : V \in \mathscr{V}_n\}$, is a σ -locally finite k-network for Y. Since f is continuous, each \mathscr{W}_n will be locally finite in Y. To prove that \mathscr{W} is a k-network for Y, let K be a compact subset of Y and U be an open subset of Y sub that $K \subset U$. Since f is k-mapping, $f^{-1}(K)$ $\subset f^{-1}(U)$, therefore $f^{-1}(K)$ is compact and $f^{-1}(U)$ is open set. Let R be a finite union of members of such that $f^{-1}(K) \subset R \subset f^{-1}(U)$. Hence $K \subset f(R) \subset U$ and f(R)is a finite union of member of \mathscr{W} . since X is compact, by THEOREM 4.10. Y is regular. Y is N-space.

COROLLARY 4.12. If $f: X \rightarrow Y$ is k-mapping and X is compact and \aleph -space and Y is first countable. Then Y is stratifiable.

PROOF: By THEOPEM 4.11, Y is \aleph -space and since \aleph -space is k-semistratifiable and Y is first countable, Y is stratifiable.

DEFINITION 4.13. [9] Let X and Y be topological space, let $\Psi: X \to Y$ be a mapping, and let g be a COC-function for X. Then Ψ is an N-mapping relative to g if given any $y \in Y$. and neighborhood W of y, there is a neighborhood V of y and a positive integer n such that if $g(n, x) \cap \Psi^{-1}(V) \neq \phi$ then $\Psi(x) \in W$.

DEFINITION 4.14. [9], Let (X, \mathcal{F}) be topological space and let g be a function from $N \times \mathcal{F}$ into \mathcal{F} . Then g is called a COC-function for X if it satisfies these two conditions: (1) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for all $x \in X$,

(2) $g(n+1, x) \leq g(n, x)$ for all $n \in N$ and $x \in X$.

By KENNETH ABERNEHY [9], we have the THEOREM.

LEMMA. 4.15. If Y is a regular space in which points are $G_{s'}$. Then Y is q-space if and only if there is a metrizable space X and a open mapping from X onto Y.

PROOF: By THEOREM 2.1 [9] and LEMMA 3.5. is obvious.

LEMMA 4.16. Let (X, \mathcal{J}) and Y be topological spaces. If $f: (X, \mathcal{J}) \to Y$ is mapping and Y is q-space and **X**-space in which points are $G_{\mathfrak{s}'}$. Then f is an N-mapping.

PROOF, By LEMMA 3.5, Y is first countable and by [4], Y is k-semistratifiable. Therefore Y is stratifiable. Let h be a stratifiable function for Y, and define $g: N \times \mathcal{T} \to \mathcal{T}$ by $g(n, x) = f^{-1}[h(n, \overline{v}(x))]$. Since h is COC-function for X, therefore $f(x) \in h$ [n, f(x)] for every n. Hence $x \in f^{-1}f(x) \subset f^{-1}[h(n, f(x))]$ for every n, therefore $x \in g(n, x)$ for every n, and another condition is trivial. There -fore g is a COC-function for X. Now let $y \in Y$, and let W be an open set containing y. Then Y - W is closed and $y \notin Y - W$, hence there exists an $n \in \mathbb{N}$ such that $y \notin \bigcup \{\overline{h(n,p)}: p \in Y - W\}$. Let $V = Y - \bigcup \{\overline{h(n,p)}: p \in Y - W\}$. Now if $g(n_0, x)$ $\cap f^{-1}(V) \neq \phi$, then $h(n_0, \overline{v}(x)) \cap V \neq \phi$. But this means that $\overline{v}(x) \notin Y - W$.

THEOREM: 4.17. Let X and Y be topological spaces. If there is an open-N-mapping from X onto Y. Then Y is stratifiable.

PROOF, Let g be a COC-function for X reltive to which f is an N-mapping. Let $y \in Y$, $n \in N$. Then choose any $s \in f^{-1}(y)$ and define h(n, y) = f[g(n, s)] for every n. We claim that h is a stratifiable for Y. Let H be closed in Y, and suppose that $p \in \bigcup \{h(n, z) : z \in H\}$, for each $n \in N$. Suppose $p \in H$; then $p \in Y - H = W_{-}$ which is open. Thus there exists a neighborhood V of p and an $n \in N$ such that if $g(n_o, x) \cap f^{-1}(V) \neq \phi$ then $f(x) \in W$. Now since V is a neighborhood of p, $V \cap (\bigcup \{h(n, z) : z \in H\}) \neq \phi$ for each $n \in N$. Thus there is a $z \in H$ such that $h(n_o, z) \cap V \setminus \phi$ Therefore, if t is such that $h(n_o, z) = f[g(n_o, t)]$, we have $g(n_o, t) \cap f^{-1}(V) \neq \phi$. But this implies that $f(t) = z \in W$, an obvious contradition.

5. Conclusions

In a regular T_1 -space and if \mathcal{G} is a subbase for the space, we are investigated.

that the space is \aleph -space iff it has a σ -locally finite \mathscr{G} -k-network. Also obtained that if a k-semistratifiable q-space in which points are $G_{\theta'}$, then the space is stratifiable, and that if a regular space in which points are $G_{\theta'}$, then q-space is a first countable spaces. It is shown that the image of a k-semistratifiable space under a pseudo-open closed compact mapping is k-semistratifiable space and that if X and Y are two space and if there is an open N-mapping from X onto Y, then Y is stratifiable.

REFERENCES

- [1] C. J. R. Borges, On stratifiable spaces. Pac. J. M. 17 (1966) 1-16.
- [2] D.J. LUTZER, Semimetrizable and stratifiable spaces. Gen. Top and its applications 1 (1971) 43-48.
- [3] E.HALFAR, Compact mappings. Am M. So 1957 August 828-830.
- [4] J.G. CEDER. Some Generalizations of metrics spaces. Pac. J.M. 11 (1961) 105-126.
- [5] M. HENRY. Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings. Pac. J.M. Vol. 37. No. 30 (1971) 697-700.
- [6] J.A. GUTHRIE. A characterization of N.-spaces. Gen. Top, and its applications 1 (1971) 105-110.
- [7] E.MICHAEL. K.-spaces. J. Math. Mech. 15 (1960) 983-1002.
- [8] R.E. HODEL. Some theorems for topological spaces, Pac. J. of Ma. Vol 30, No. 1, (1969) 59-65.
- [9] KENNETH. ABERNETHY. On characterizing cetain classes of first countable spaces by open mappings. Pac. J of M. Vol 53, No. 2. (1974) 319-326.
- [10] S. MACDONALD AND. S. WILLARD. Domains of paracompactness and regularity. Can, J. M. Vol XXIV No. 6 (1972) 1079-1085.
- [11] J. C. Kelley, General topology, Von. Nostrand, 1955.

10

<요 지>

Stratifiable 空間과 ℵ-空間에 관해서

李 尚 憲

11

Stratifiable 空間과 第-空間에 對해서는 최근 C.J. R Borges와 P.O' Meara에 依히 定 義 되었으며 世界各國에서 이들 空間에 對해 研究되어 오고 있다. 本 論文에서는 於-空間의 定義와 비슷한 性質을 導入하여 同值條件을 구하였으며, 第一可附番 公理의 特性과 pseudoopen finite to one mapping 下에서 第一可附番 公理의 image (像)을 照查한 결과 k-semistratifiable 空間이 stratifiable 空間이 되기위한 條件을 얻었으며, Nagata 空間에서 한 mapping의 image (像)이 stratifiable 空間이 되기 위한 條件들을 照查하였으며, 그리고 어떤 函数가 k-函数이며 한편 그 空間이 진밀성 (Compact)과 X-空間을 滿足하면 그 函数 의 image (像)이 또 X-空間임을 밝혔다. 최근 KENNETH ABERNETHY On characterizing certain classes of first countable spaces by open mappings [9] (1974)에 依 한 N-mapping을 導入, N-mapping의 性質을 얻고 입이의 空間에 對한 N-mapping의 像 (image)이 stratifiable 空間임을 照查하였다.