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I'. Introduction

Computer simulation is a powerful and widely used technique for addressing problems
in the areas of operations and management. We may be interested, for example, in the
daily production of a newly planned manufacturing process. customers waiting time in a
banking service system, monthly transportation costs in many alternative logistic systems,
response time in a field service system, and so on. The above-mentioned quantities, being
affected by many variables, both stochastic and deterministic, are variables themselves
and evolve overtime. The sequence of such a variable over time is called a stochastic
process. Some characteristic or parameter of this process may be of interest. To find this
value, we translate the problem into a mathematical model, and attempt to solve it with

analytical methods. However, the class of models that have analytically tractable solutions
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is very limited. Usually, management problems are so complex that analytical solutions
are not available. Computer simulation is an appropriate technique for studying such
problems because there is little limit on the complexity of the simulation models and thus
we can build a medel that represents the problem in a more valid way.

An important problem in a simulation study is that of estimating the steady-state
expected value (process mean) of simulation output process. The choice of a point
estimator for the process mean is usually clear: the sample mean of the simulation output
data is an unbiased estimator for the process mean if the simulation is in steady state.
However, interval estimation - constructing a confidence interval (c.i.), which we need as a
measure of the precision of the point estimator - for the process mean is a difficult
problem owing to the autocorrelation inherent in ordinary simulation output process.

Suppose we make observations {X, X, -, X,} from a simulation run of length .
(In this dissertation, the term run length denotes the number of observations generated
by a simulation run, and thus has the same meaning as sample size.)

If the X,s were independent and identically distributed (iid.).then an interval

estimator for the process mean g is given by:

} + tl*a/Z.n*l /&7' .................................................... (1)
where
x =1 3x
n =

is the sample mean, and

~2 o _ 1 _ ¥
3 = oD ;(X,- X)?

is an estimator of the variance of the sample mean (in short. variance estimator), and

f1_a2.n-1 I the upper 1—a/2 critical point of the ¢ distribution with »—1 degrees of

freedom. This interval estimator is based on the assumption that (X—x)/ o4 has a ¢
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distribution with »—1 degrees of freedom, which is valid if X has a normal distribution,
n 9%/ &% has a #,_, distribution, and these two statistics are independent.

In general. though, the X/'s will be neither independent, identically distributed, nor
normal. For example, X, might be the delay in queue of the i-th arriving customer, so
that X,,, would be dependent on the value of X,. The normality assumption of X
may approximately hold for a long run length owing to various central limit theorems for
correlated data. But autocorrelation in the X,'s makes the usual variance estimator o %

biased for Var( X). Correcting for this bias is the primary focus of this dissertation.

Actually, the fact that the simulation output process is in general nonstationary is
another source of the bias in & (as well as in X as an estimator of ). The

nonstationarity problem exists because the simulation is started at a state that is not taken
from the steady-state probability distribution of the process. This study concentrates on the
problem related to the bias in variance estimation caused by autocorrelation. Therefore, we
assume that our simulation starts at a steady-state, or has been run long enough so that

steady-state conditions in the first moment are approximately attained.

Il. Terminating vs. Steady-State Simulation

We begin by introducing two types of simulations: ferminating and steady-state. They
each require different basic approaches for interval estimation of the process mean. A
terminating simulation is one for which the termination event is defined as a part of
modeling the system under analysis. For example, we may be interested in the
performance of a single 8-hour shift of a manufacturing facility that starts out with all
machines idle and no parts present, and ends exactly 8 hours later regardless of whether
parts are still in the system. In this case each simulation run or replication, being one
complete succession from starting to termination time, provides an unbiased and iid.

observation for the transient process mean, being the object of study. Thus, classical
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statistical methods can be directly applied to analyze the output from a set of
terminating simulation runs, leaving only the problem of determining the number of runs
to ensure the desired precision of the estimation. The problem of analyzing output from
terminating simulations is considered to be solved (Law 1980), at least in principle. We
will not treat terminating simulations further in this paper.

A steady-state simulation is one in which the parameters to be estimated are defined
as limits as simulated time goes to infinity: thus, the system being modeled has no
specific termination event. In the earlier manufacturing example, we might instead be
interested in the long-run production per shift if the facility never shuts down. Thus. the
estimation of interest is that for the steady-state or long-run expected value x of the
performance of the system. The autocorrelation problem is concerned with this type of

simulation. Steady-state simulations are the object of study In this paper.

. Commonly Used C.I. Construction Procedures

We identify six types of ci. procedures for data from a steady-state simulation:
independent replications, batch means, regeneration cycles, autoregressive moving average
representation, spectral analysis, and standardized time series. Taken broadly, they may
be classified into two groups: one including the former three methods, and the other one
having the latter three methods. Those in the first group try to obtain approximately
independent random variables by aggregating data over the observations in each
replication, batch, or regeneration cycle, in the hope of making simple classical statistical
techniques applicable. Those in the second group try to use information on the

dependence structure rather than trying to destroy it through data aggregation.

3.1 Independent Replications

Suppose we can take» observations on the process. One simple approach to
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constructing a c.i. is to obtain % 1id. random variables from # independent replications
of length m = n/k (Suppose that we take = so that it is divisible by m). Each
replication starts from the same initial conditions, and uses an independent

random-number stream. If X,(m) denotes the sample mean of the m observations in the
j-th replication (replication mean), then the X/(m)'s are iid. random variables with

expectation u(m)= E{ X;(m)]. Assuming that p(m)=pu, we use
¥ - 1
X = 13 x0m,

as an unbiased point estimator for the process mean, and we estimate o’ = Var(X)
If we assume further that X;(m) has a normal distribution, then the ratio

= y

]

has a ¢ distribution with %#—1 degrees of freedom. Thus we can construct a 100(1- a)
ci. as presented in the equation (1) with » replaced by &

This ci. procedure is easy to understand and use, and completely free of the
autocorrelation problem. However, x(m) = 4 in general owing to the effect of the initial
conditions which are not from the steady-state probability distribution of the process, and
thus X is a biased estimator for x (Law 1977). This so-called initial bias problem tends
to be serious with the replication method because the simulation runs have to start anew
for each replication, refreshing the effect of the initial conditions. Therefore, the actual
probability of coverage of the c.i’s constructed by this procedure may turn out to be
much lower than the desired level if we increase % for fixed m, unless the initial
conditions are properly chosen, m is sufficiently large, or a large number of initial
observations in each replication are thrown away. Law and Kelton (1984) argue in effect
that, until there is are liable means of eliminating the initial bias problem. this method
has a dangerous potential for misleading the analyst in interpreting the results of a

simulation study.



58 o ZYZHAT HIA 2001 -8

3.2 Batch Means

We assume again that we can make » observations, with » = m#k As opposed to
independent replications, we make a single long simulation run of length =, and then
group the = observations into % batches such that each batch has m consecutive
observations. We denote X,(m) as the j-th batch mean (the sample mean of the
observations in the j-th batch), and define X and %% as in the method of
independent replications. Then we form a 100(1- @)% c.i. by (1.1) with » replaced by &,
assuming that the ratio (X—4x)/ ox has a ¢ distribution with %#—1 degrees of freedom.

Compared to the method of independent replications, this method suffers from the
initial bias problem much less by starting the simulation just once instead of # times.

However, the assumption that the X;(m)'s are iid. becomes valid only when m is
sufficiently large. Otherwise. the X(m)'s may be correlated and thus o may be
underestimated by o’ %, leading to a serious degradation in the coverage of the ci's for

¢ (Lawand Kelton 1984) Thus, procedures which seek to find an acceptably large batch
size have been developed (Mechanic and McKay 1966, Law and Carson 1979, and
Fishman 1978b).

3.3 Regeneration Cycles

This method, developed simultaneously by Crane and Iglehart (1974, 1974b. 1975,
1975b)] and by Fishman (1973), (1974) is applicable only to regenerative processes.

A process {X, t=1,2,--} is said to be regenerative if there is an increasing sequence
of regeneration points 1 < ¢ < t, < - such that the process {X, ¢ = ¢} starts over

probabilistically at each j=1,2,---. Thus, the process

{X.t =2 t} Is independent of the process {X,t < ¢} and is probabilistically identical
for each j=1,2,--. Now, divide the process {X, ¢=1,2,--) into a sequence of

regeneration cycles {X. t < t < t.,) of length N, = ¢,,,—¢ j=1,2,-.
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ts,—1
Denote Y, = Z:, X, .

Then Y;s are iid. random variables (Crane and Iglehart 1975). Suppose that

E(N;)<o, E(|Y})<oo, and we simulate for exactly % regeneration cycles. Let

Y o, O
C N = n On
ov( Nl) ( 012 022)

Z,‘ = Yl'—/lN,*

Y=ttty

N = 4 (N++N)
Then the Z's are iid. random variables with mean zero and variance
iz = on—2u0,+iioy
And thus, by the central limit theorem, we have
Z_ . N0.1), ask — o
oV k 47, 88 ’
provided that 0 < ¢*; < o, where — denotes convergence in distribution, and MO, 1)

is a standard normal random variable. Based on the above properties, we can construct

an asymptotically valid classical c.i. by (Law and Kelton 2000)

~

#e * Zl—a/zT:/‘Z—;.
where z,_,, Is the upper 1—a/2 critical point of the M0,1) distribution, zc = Y/N
is a strongly consistent point estimator for x. 6,={ 6, —2 rc 0+u% 02}, and
ou. 012 and oy are strongly consistent estimates for ¢,. o5, and o, respectively.

This method (as well as the method of standardized time series) is founded on a solid
mathematical basis. There is no decision (except that on the number of cycles, %) to be
made arbitrarily when we apply this method, while the other methods have some
rules-of-thumb involved.

However, use of this method is very limited because it is applicable only to

regenerative processes for which the expected length of the regeneration cycles 1is
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sufficiently small so that enough cycles become available within the budget, which is

rarely the case for complex systems often encountered in real-world studies.

3.4 Autoregressive Moving Average (ARMA) Representation

As in the other c.i. procedures, we use the sample mean X as a point estimator for 4.
However, in this c.i. procedure we do not try to obtain iid. random variables from given
simulation output data to estimate ¢’ = Var(X). Instead, we try to represent the

process by an ARMA model. and we use a limiting property related to o and the

ARMA parameters of the model representing the data.
This method. developed by Fishman (1971. 1972, 1973) as the AR representation and
extended by Schriber and Andrews (1984) as the ARMA representation. has an

underlying assumption that the process is covariance stationary (ie.y, = Cov(X; X .

is independent of i and is thus a function of ¢ only).

In the AR representation, we model the process {X, i=1} of interest as

Zb¢'(Xi"_ﬂ) e R R R R R R (2)

where ¢,=1 and {e;}is a sequence of uncorrelated random variables with mean 0 and
variance o>. The process defined by equation (2) is called an AR process of order », or,

in short, an AR(p) process. It has been shown (Fishman 1978) that
iz o 2l thﬁf)z as n — oo, provided that

,=2_m|7't| { oo
Therefore, we can estimate o3 by
Fa- Tellnb(n]

where

b= 3, ¥
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» is a specified value for », and o and the &s are estimates for o and the ¢,5s,
respectively. If we assume that the distribution of (X—u)/ o4 can be approximated by

a ¢ distribution with
F= (n B/ 2r+ 1) BN —4 2t 3N} -1

degrees of freedom (Fishman 1978), then we form a 100(1- 2)% c.i. as

X * tp_ap Oa

In this method, it is critically important to choose right value of » as an estimate of
the true AR order p, which is seldom a simple task. Also, there are several possible
sources of error, as Law and Kelton (1984) state “--- the process is assumed to be
covariance stationary and to satisfy (2): neither will generally be the case in practice.
Further, the assumption of a ¢ distribution necessary to specify the ci. will generally be
violated. Hence, the true probability of coverage of the c.i. proposed here need not be
1—a, as claimed.”

In the ARMA representation, the process is assumed to be represented by a more
flexible ARMA( p,¢) model, where the AR order » and the MA order ¢ are identified

from the data. This c.i. procedure is closely related to the one developed in this paper.

3.5 Spectral Analysis

Suppose the simulation output process is covariance stationary and we have data

{X,X,....X,} taken from this process. Then the variance of the sample mean is given

by (Fishman 1978)

where C($ = CoX,X .. This formula suggests using

~2
g% =

=Z.1+1(1— %)C(,), ......................................... 4)

1
n ot
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where
()= n+t gt[X.-—Tf][Xm“—X], ....................................... (5)

as an estimator for Var( X). However, this idea has problems: First, it would take a lot
of computation to estimate »—1 covariances when = is large. Perhaps more importantly,
the covariance estimators ( C(#'s) would be based only a few observations for ¢ near
n, so will be highly variable. Therefore, it is reasonable to ask if there is a weighting
function other than (1 — |¢|/») in Eq. (4) that allows approximation to Var( X) in
Eq. (3) by a linear combination of considerably few autocovariances. Based on spectral

analysis, several alternative variance estimators of the following form have been proposed:
s = L Sum e,

where /< n and is prespecified. and the C(#'s are as shown in Eq. (5) with
1/(n — ¢ replaced by 1/n. The weighting function wA¢) is called spectral window. One
example is the Tukey-Hanning window
wdH = (0.5(01+cos(nt/)  4<k
{ 0 otherwise

Fishman (1978) suggests that (X—u)/ o5(H be treated as having a ¢ distribution
with the “effective degrees of freedom”™ 7, and derives that 7=2.667n/!/ for the
Tukey-Hanning window.

Thus, the 100(1- a)% c.i. for x is given by

Xt t gy 0s(D.

One drawback of this method is that derivation of the spectral window is based on
highly sophisticated statistical knowledge and thus may not be so intuitive for those who
are not familiar with thinking in the frequency domain. Moreover, there is no definitive
rule to choose 7 while it is an important issue.

In the experiments executed by Law and Kelton (1984). this method turns out to be

the only competitor against the usual batch-means method with large value of 7/ (Note



Qutput Analysis Procedures for Computer Simulations ° 63

that the standardized time-series method was not available at the time of their survey).
This finding suggests that the performance of this method is sensitive to the
specification of 7 and that we may have to ailocate much computing time to estimating

{—1 covariances.

3.6 Standardized Time Series

In the standardized time series (STS) method, developed originally by Schruben (1983),
we transform the entire time series in order to use properties of the limiting process of
the transformed process.

Supposing again that we can make »=mék observations on a process with mean s, we
may make # replications of length m each, or group (into % batches) the observations
obtained through a single simulation run of length #  Consider the j-th
batch{X (- 1ym-s s=1,2,--,m} (or replication), which will be called the j-th time series}.
This series can be centered to have mean zero by the transformation:

S() = Xn.— X

where 7,:% SZIX (-nmss denotes the cumulative average of the first i observations in

this series, and thus X, is the j-th batch mean (or replication mean). The resulting

series is then scaled by being divided by oV m/:i, where
& = 'lnx_rng Var( X,.).

Also, the time index i is transformed to ¢ = #/m = [0,1]. Through these steps. we
have the STS,

T()= [mt) S([me] )V m), 0<i<1,

where [ - 1 denotes the greatest integer function.

It is shown (Schruben 1984) that the limiting (as » — o) model of this STS is a
Brownian bridge(a standard Wiener process on the unit interval conditioned to start and
end at zero) and that known properties of this limiting Brownian bridge process lead to

many alternative methods for constructing asymptotically valid ci's for the process mean .
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A strength of this method is that it requires only the mild assumption that the original
process is phi-mixing (ie. the “distant™ future becomes essentially independent of the
past or present). Schruben shows that all finite-state discrete-event computer simulations
satisfy this assumption. According to his empirical results, the c.i. procedures based on the
notion of the STS seem to perform well, at least, with fairly large run length. However,

their success for short or moderate run lengths is less clear.

V. Modifications of the Batch-Means Method

As mentioned earlier, the batch-means (BM) method may be the simplest and most
popular among all the ci. procedures for the process mean developed to date. A few
procedures have recently been or are being developed to improve the quality of the
variance estimator of the sample mean. One of them is the overlapping batch-means
method proposed by Meketon and Schmeiser (1984). Another one is the weighted
batch-means method (Bischak 1988).

The batch-means method before modifications will be referred to as the usual BM
method from now on, to be differentiated from its modifications.

The overlapping BM estimator of Var( X) is defined by
ot 12
Falm = KD

X n n—2m+1

where

X{(m)= % Z;:Xin
1s the batch mean of size = beginning with observation X, Because of the role of batch
independence in the usual batch means, the idea of using the overlapping BM estimator
may appear unnatural, since the common observations in the overlapping batches cause
substantial positive correlation. However, this idea in many ways is a good one. It has

been shown that the overlapping BM variance estimator, based on the same assumptions

and batch size as the usual BM variance estimator, has essentially the same mean and
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only 2/3 the asymptotic variance of the usual BM variance estimator.

However, it should be noticed that the above statement is only asymptotically valid.
Sargent, Kang, and Goldsman (1987) show that the degradation in coverage for short run
lengths is even worse with the overlapping BM method compared to the usual BM
method, even though the former method results in shorter intervals without sacrificing

coverage for long run lengths.

V. Conclusions

Proper analysis of output is one of the most important aspects of any simulation study.
Since simulation output is never iid. normal, the experimenter must be careful when
making conclusions about such data. Indeed, the purpose of this tutorial has been to
inform the experimenter about some of the issues and techniques relevant to conducting
valid analyses. ‘

There are many interesting sides of output analysis that we have not had space to
discuss in this paper, e.g. multi-variate parameter estimation, sequential methods, and
other variance reduction techniques. Fortunately. a number of excellent general resources
are avallable that devote substantial discussion to the subject, e.g.. Banks (1998), Banks,
Carson, and Nelson (1995), Bratley. Fox, and Schrage (1987), Fishman (1978), Law and
Kelton (2000).
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