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I . Introduction

Recent progress in nanofabrication technique has made it possible to observe the
magnetophonon  resonance (MPR) effect in semiconductors with low-dimensional
structures and stimulated experimental and theoretical investigations(1-9] for the MPR
effect which provides useful information on the transport properties of semiconductors,
such as carrier relaxation mechanism, damping of the oscillations due to the
electron-phonon  interaction, the phonon frequencies, and band structure (ie., the

effective mass m" ). Therefore, a lot of work with respect to the ordinary(linear)
and hot-electron MPR effects have been made[2-9] on these low-dimensional
systems including two-dimensional electron-gas(2DEQG), quasi-two-dimensional
electron-gas(Q2DEG) and quasi-one-dimensional electron-gas(QIDEG)  systems.
However, concerning the hot-electron MPR in Q1D quantum structures, to the best
of our knowledge, we are not aware of experimental and theoretical work and are still
at an initial stage both experimentally and theoretically. It is therefore needed to
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develop a theory which could analyze hot-electron MPR effects in QID quantum
structures.

In this paper, we develop a thoery of hot-electron MPR in Q1D quantum  structures,
starting from the field-dependent conductivity formula(10] defined in the Ohm's law
form of the nonlinear current density and study the physical characteristics of the
hot-electron MPR effects in such structures. The origin of this formalism{10] dates
back to the discovery of the theory of nonlinear static conductivity. Here we apply the
theory to a simple model for a QIDEG confined in the quantum structure subjected to
the crossed electric and magnetic fields. We assume that the interaction with nonpolar
optical phonons is the dominant scattering mechanism. Based on the model, we will
evaluate the field-dependent transverse magnetoconductivity and the field-induced
relaxation rate which is closely related to the electric-field-induced MPR (EFIMPR)
effects.

The present paper is organized as follows: In SecIl, we will describe the simple
model of the system In Secll, we present the field-dependent dc conductivity

o..(E) formula given in the Ohm's law form of nonlinear electric current and the
field-induced relaxation rate due to the collision process on the basis of nonlinear
response theory[10] obtained previously. In Sec. IV, the field-induced relaxation rate for
bulk optical phonon scatering in the QID quantum structure is calculated. The EFIMPR
effect is also discussed for such a system, where the special attention is given to the
unusual behavior of the EFIMPR line shape such as reduction in EFIMPR amplitude,
conversion of EFIMPR maxima into minima or splitting of the EFIMPR peaks, and
shift of EFIMPR peaks. Concluding remarks are given in Sec.V. In the Appendix, the
explicit expression for the EFIMPR broadening parameter is derived for nonpolar optical
phonon scattering.

II. Model for a Q1D quantum structure

We consider the high-field transport of electron gas in a Q1D quantum structure,

where a static magnetic fild B(J| 2) and a dc electric field E(| %) are
applied perpendicularly to the barriers of the potential well (such as realized in the
heterointerface) and along the lateral direction of their wells. The QID quantum
structure is modeled by a parabolic potential well with the confinement frequency &
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in the z direction, in order to see the effect of the confinement frequency in the
nonlinear magnetoconductivity. Applying the effective mass approximation for
conduction electrons confined in the Q1D quantum structure and taking the z

abscissa origin at one interface, the one-particle Hamiltonian (h ) for such

electrons subject to the crossed electric ( E) and magnetic ( E) fields, its
normalized eigenfunctions (|A>) and eigenvalues (E,), in the Landau gauge

A= (0, Br,0), are respectively, given as

h,p = [p+ e Al2/2m’ +m' 22}/2+ e Br )
A >=IN,n,k, >= (1/L,)*¢nlc—22)8, ()explik, y) (2)
E,=E  (k)=(n+1/2 o +{+1/2 A2~ eEx +m V2 3)

where ; is the momentum operator of a conduction electron, N(=0,1,2,---) and
n(=1,2,3,--) are, respectively, the Landau- and subband-level indices, and

¢ ,(x—x,) represents harmonic-oscillator ~wave  functions, centered at
=1, =—H§(ky+m‘ V,5). Here b=o 0., k, is the wave vector in the
y direction, V {=E/B) is the center drift velocity of the electron, and
1,=(h/m'&)"? is the effective radius of the ground-state electron orbit in the
(x,y) plane. ® ,=(02+2%H " and m=m'w./?* means the renormalized
cyclotron frequency with respect to the cyclotron frequency © = eB/m"* and
the renormalized mass with respect to the effective mass m°, respectively. As
shown in Egs.(2) and (3), the electron energy spectrum in Q1D quantum wire is

hybrid-quantized by the confinements in the =z and 2 direction and the
anisotropy in the single-electron energy spectrum in y and z direction is through

the difference between m® and m , which is mainly due to the confinement

frequency. Furthermore, we see that the inclusion of the electric field effect is to
shift the center position of the orbits by Ew./ Bc:wf and to lift the %k, degeneracy
of the energy spectrum. We shall designate a set of quantum numbers

(NMn,k,) by a greek letter lambda. lambda *1 will then indicate the state
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(N+1,n,k,). The dimensions of the sample are assumed to be V=L L L.
It is interesting to note that Eqs.(2) and (3) enable us to see the dimensional
crossover by simply varying the confining potential parameter, ie, 2— 0 ,
which gives the Vasilopoulos et al.’s[3] and Suzuki’s (8] result obtained for the Q2D
quantum structure. The dependence of the single-electron energy spectrum in Eq.(3) on
thewidth(Lz)ofthewixe,theconﬁnementfmquency,andthesh'engmofﬂ]eelecuic
and magnetic fields has an important effect on the transverse magnetoconductivity and
the relaxation rates, as well as the MPR effects for a QID quantum structure. The
detailed discussion about these effects will be given explicitly in next two sections.

II. Electric-field-dependent magnetoconductivity

We want to evaluate the electric-field-dependent transverse magnetoconductivity
® () for the QIDEG system subjected to the crossed electric B( 1l 3) and magnetic
B(Il 2) fields by taking into account the general expression for the nonlinear dc
conductivity o ; (EXi,j=x,y, 2) given in Eq.(438) of Ref. 10 and considering the
following matrix elements in the representation (2):

je==(e/m")p,, @
KM7IND 2= (e 158 VD) LN+ 1)6 45, + N6, o], (5)
| < Nexp(ig - 1IN > ! = Ly (2 £ g2y 1y (2 g, 28, o ®)
Ui (220 1o 20) 2= )] 2= 2 g g Mg b e

sin{t) ]2 ninn'%? @®)
cos(t) ] £ —[(x/2)(n—n'2)22 — ((x/2)(n+n"2)? "

B (£ )2 =B, (2)? = [

where j, is the x component of a single-electron current operator and the Kronecker
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symbols & x- xs1 =8 & N:18 w. a0 .k, denote the selection rules, which arise during
the integration of the matrix elements with respect to each direction. N, = min{N,N'},
N, =max{N,N}, u= /2, & =q§+l;2q§ . t=L ,q.,/2, and L*(w) is an
associated Laguerre polynomial. It should be noted that the general expression for the
nonlinear dc conductivity o;; derived in Ref. 10 is the basis for the present theory and
is strictly valid when the scatters(phonons) remain at equilibrium. The above equations
except for Eq.(8) are similar to those of Vasilopoulos et al[3] and Suzuki (8] obtained
for the Q2D quantum-well structure. The main difference is that the effect of the

confinement frequency is included in Eqgs.(5), (6) and (7). The upper sin( ) in Eq.(8) is
for n and n’ both even or both odd, the Jower cos( ) is for one of them even and the

other odd; hence for interelectric subband scattering ( = "#+n ), the term with cos( )
must be taken in Eq.(8). The overlap integrals Juw and F,, in Eq.(6) are,
respectively, the quantities defined as

T (% 0 £ X 0) = f_wwd) “(x—x e 70 p(x—xy )dx 9

L., ..
F,(xg))=@2/L)) f e ¥ “sin(mmz/L )sin(n'nz/L )dz (10)

For the calculation of the electric-field-dependent transverse magnetoconductivity
o (E) for the Q1D quantum structure, we apply the general expression for the

electric-field-dependent dc conductivity © A E) (i,j=x,y,2) given in Eq.(4.38) of Ref.
10 to the Q1D gquantum structure modeled in SecIl by using the selection rules of
Eq.(5) and replacing the A, and A, states of Eq.(438) in Ref. 10 with the

representation (2). Then, 0 «(E) can be easily obtained by

elly ©

0 L(E)= ——E= TN+ DIAES )~ AEVIA 1 14(E), (1)

where the summation over A means };,= N.f;;k since IN=IN, n, k>, AES) is a

Fermi-Dirac distribution function with E}=(N+1/2) A o +e (k)+ R 2m,
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and the spectral density A r+1.A(E) is given by

Ty (E)
[EA+1—EA+ 6 A+14(E)]2+[ rh+l)(E)]2 ’

Ay n(BE)= (12

Here the quantites T and ¥ » Which appear in terms of the collision broadening
due to the electron-background (phonon and/or impurity) interaction, play role of the
width and the shift in the spectral line shape, respectively. We assume T,
V << ho.(=Ey,1— E,) and shift zero to observe the oscillatory behavior of MPR
as some other authors did [368], the spectral densities in Eq.(12) can then be
approximated as T, , /(A ®,) 2. To express the nonlinear dc magnetoconductivity
of Eq.(11) in simpler forms, we assume that the £ s in Eq.(11) are replaced by the
Boltzmann  distribution  function  for nondegenerate  semiconductor, ie,
RED=7n k)~ exp[B 3= E%,. )1, where B,=1/k,T, with %, being
Boltzmann's constant, T, the hot-electron temperature and ¢ the Fermi energy.

Then, we can further perform the sum over N (if N is large) by writing
ZNexp(—a]\/)=—a;a(1 2 exp(—aN) and summing the geometric series, and carrying
out the one summation with respect to %, in NE in terms of the following

N

relation [8] :

L./2% T*'—eEf Ko,

2L /2m) [ dk () (13)

-L.J2% Ta'—eE/hm,

since the upper and lower limits are obtained from the facts that electrons should be
within the crystal dimensions in the x direction, ie., —L,/2<x<L /2 and

that functions ¢ \(x—x,) are centered at T, =— 51;2(ky+eE/hwc). Thus, we obtain

eNY AT L. _ e
T VS T Tt 351, Fe i T (® a0
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where erflz]l=(2/ V1) foz exp[ —t?]dt indicates the error function. To

derive Eq.(14) we utilized the  electron density[6] given  as
NP=y mL?/8xh B ,ZexplB (E r—¢ (2)}/sinh (B .i ® ./2). According to

Vasilopoulos et al. [6], the upper (lower) bound of Eq.(13) is given by the positive
(negative) infinity. In that case, the error function should be replaced by 1. It should be

noted that T, , p is refered to as the relaxation rate associated with the states A +1
and lambda since the field-dependent relaxation (or collision) time w(E) can be
estimated from t(E)= /T (E), and also it depends on the confinement frequency
(Q), the wire width(L ), and the strength of the applied electric and magnetic fields
since these effects are included in the eigenstate energy E .. As seen from Eq.(14), the
field-dependent transverse magnetoconductivity 0 <(E) is closely related to the
relaxation rate T' x4 p(E). Thus, the electronic transport properties (e.g. electronic
relaxation processes, ICFE, ordinary and hot-electron magnetophonon resonances, etc.)
in the QID quantum structures can be studied by examining the behavior of T(E) as
a function of relevant physical parameters introduced in the theory. The general form

of the field-dependent relaxation rate T' is given in Ref.10, which is obtained for both
the weak-coupling and the strong-coupling  cases with respect to the

electron-background (phonon and/or impurity) interaction. In this paper, we will use the
general form of the field-dependent relaxation rate T for the weak-coupling case since
that for the strong—coupling case is so complicated that we cannot evaluate the
relaxation rate analytically. However, any problem such as the delta-function

singularities in T', appearing when the general relaxation rate T for the weak-coupling

The general form of the field-dependent T (E) for an electron-phonon system is
given by Eq.(4.39) of Ref.10. Using the representation given by Eq.(2), the QID version
of this quantity associated with the electronic transition between the state [A+1> and
IA> can be evaluated as
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Tarn@® =223 5 0@ U (] 2IF, (g ) 2
{(N‘,;"' DS[E N+ln(k y)—ENn'(ky_q y)_ ho ‘5]
tNBIE yy (k)= E y (b, +g,)+ R0 il

+ Izazy (N’.n’)§N+l,n)lC(q)' ZIINN+1(u)I ZIF n'n(q z)| 2
N+ DSLE (b ,—q,) - E (k) +ho ]
+NBLE vk, +a,)— E k)~ ho=]) .

where N and »° indicate the intermediate localized Landau and subband level
indices, respectively and N ~ Is the equilibrium distribution function for a phonon with
momentum # ¢ and energy hwi: N;=lexp(fhw;)—1]"!. Here p= 1/& g T with
T being the (lattice) temperature. It should be noted that Eq.(15) is valid irrespective
of both the strength of the electric fields and the magnitude of the confinement
frequency included in the eigenstate energies E, of the Hamiltonian %, . The §
functions in Eq.(15) express the law of energy conservation in one-phonon collision
(absorption and emission) processes, where the effect of the electric field (ICFE) is
entered exactly through the exact eigenstate energy E') of an electron [cf. Eq.(3)]. The
strict energy-conserving § functions in Eq.(15) imply that when the electron undergoes a
collision by absorbing the energy from the field This in fact leads to
electric-field-induced resonance effects due to the Landau levels or the subband levels,
This EFIMPR effect for nonpolar phonon scattering will be shown explicitly in SeclV. If
we neglect the electric field effect in Eq.(15), ie, £— 0, this reduces to the usual case
[6,9] where collisions are instantaneous and the result exhibits the usual phonon emission

andabsomtionmmses,givingrisetoﬂleonﬁnaryMPRonquumtlmstmcnnefor
the Ohmic (weak-field) case seen in Refs.6 and 9, where the ICFE is not effective,

IV. Electric-field-induced magnetophonon resonances

For the evaluation of the field-dependent relaxation rate I~’H1 » for a specific

electron-phonon interaction, we need the Fourier component of interaction potential
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C(g) . To make the practical calculation easier, we will take the Frohlich interaction
potential given by [12] |Clg)l? = A/ Vg* with A = dnahhw,o)?/@m)? and «
being the dimensionless electron-phonon  (polaron) coupling constant, where the
assumption that the phonons are dispersionless (e, fiw; = hwyo ~ constant, where
wro 1s the polar-LO-phonon frequency) and bulk (ie, three-dimensional) was made.
We also need the following matrix element (8] :

C e |F e )P
Inn'(q’.L)___f —_-(_q._)—dQ:

X
146, 1
=xl, 1__S'nn'
" '[[(n—n'2w2+q'2_LL3] [(n+n'21r2+tI’2¢Lf]]( : (16)
and
s . = g L 11Fexp(—q L )|
w = T ntn i+ g L LA (et a2+ ALY an

y 32,[ ZnZn'Z
{[(n—nin 2r g L LA+ (146 (et win2+q % L%

where ¢ , =V g%+ ¢ . The upper sign in Eq.(17) should be taken if » and #’
are both even or odd, and the lower sign if n is odd and n' is even or vice versa. For
the case that the electric field is applied in the x direction, Eq.(16) can be approximated

[38] as

1,(¢ Jx—5 L.2+6,,) (18)
q 1

for ¢ ,> g, since we can expect the largest contribution to the current comes
from the processes involving large momentum transfer in the z direction, ie, those
processes with larger ¢ and consequently large ¢ . and small ¢, Therefore,
Eq.(18), rather than Eq.(16), will be utilized in the practical calculation.

Let us now calculate the field-dependent relaxation rate T 1+ n of QIDEG for the
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polar-LO-phonon scattering. Transforming the sum over ; in Eq.(15) into the integral
fom in a usual way and considering Egs.(3), and (18), the QID version of the

relaxation rates T, | » for LO-phonon scattering can be written as

Taoon = B [oda. [ da T ks I eta?
{(No+DS[(N-N+1DH & cte +ho,, —Hh sz,,qy— ho ;o)

tNBI(N-N+DA & .~e*+ ho, + & ¥ Va,+ho )

+ (;:3 8 2, E'fmdq‘fmdqylm‘(‘f _L)I]Nn(u)l 2

AN+ DN =N+ DA & ,—¢ " —ho , + K 3’Vg,+ho )

TNSN-N+DKE B et —ho, =k B Ve,~ kool (o

where o .. =(n’-w2)e/f, N, is the polar-LO-phonon  distribution function
given by N7 with w;=wo, and € = (h/2mia,)(¢’  2k,q,) It should be noted that
the above equation is valid for the narrow and wide confinement frequency. The
evaluation of T in Eq.(19) involves further integrations with respect to % s @, and
g , in the Cartesian coordinates. The integral is very difficult to evaluate analytically.
To simplify the calculations, we shall restrict ourselves to the case of the narrow
confining frequencies such that 2 << &, Then, an approximation can be made as
follows: First, if the confining frequencies become narrower, the renormalized mass 7

will be larger. As a result, we can expect that the €* terms is smaller than other
terms within the delta function, Hence, in the following we will consider the case that

the ¢ * terms in Eq.(19) can be neglected as Vasilopoulos et al.[6] did. Secondly, the
integrand over ¢, and ¢ » 1S combersome due to the factor I(g’ ) and the matrix

element |7 yp(2)| 2 . Therefore, another approximation is to replace ¢ L(=\/_q_iTq2y)
appearing in the factor Kq' ,) by q ,(=y q¢%+ b%q%) since B2=1—¢  with
€2/0) << 1 isnw1yequa]tolforﬂ1enarmwoonﬁningﬁ‘equmci&e Furthermore, we
replace i B”V g, in the argument of the & functions by the effective potential-energy
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diffeax:eeEAEacmssthesmﬁalextmtAEofalandaustate,MﬂeAE is a
constant of the order of the magnetic length 75 . With these approximations and Eq.(13)
we can do the integral over k., ¢, and q,..Esmcially,theintegralovertheEsmce
can be reduced to the integrals with respect to theta and ¢, f(or u) in the cylindrical
coordinates, where the 6 integration gives o1 . To get the fiedd-dependent relaxation rate
giveninasinplefoxmweassme[S] that N is very large, we can, then, approximate
N:1~N. Seiting N —N=— P in the emission term and N — N= P in the absorption
term, and noting (38) that [ 1/ (a0l *u ~'du=1/P, P=1,2.3,, we obtain for
the narrow confining frequencies as

Na(B) = 3A;(2N0+1)6[P—w20/u~.vc]/P

n(=n) P

+ Nyb[P— (wpo +wyn)/ 0N} /P (20)

where A=AL L p%/(4xL m"5°*) and wio=wyo+eBAz/h . Furthermore,
we see that the above equation gives rise to the oscillatory behavior by applying
Poisson’s summation formula “{13} for the sum z :

(2—N0—+—1-)—[1 +2 i cos (2msz)l]

A (B) = 34]
T s=1

+24 Y, [%g——i%[l +2§:cos (2rsz(1—y))
a=1

n(#n)

Ny ad
+ 20+ 1 +2sz=31cos (2rsz(1+y)i] 1)

where x=0%,/ ®, and y=o yy/o"'“ Note that the electric-field-dependent

transverse magnetoconductivity Eq.(14) associated with the relaxation rate shows the

resonant behaviors: electric-field-induced magnetophonon resonances a Po =o'
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and at Pw.=wio* wyy (P is an integer). The above conditions for the EFIMPR
give the resonance magnetic fields (ie, the EFIMPR peak positions at) at B » B“;,
and B :

B, = \/|By+(m’ AZ/K)EV /0" — (m $2]¢)? (22a)

Bf = By +(m’ Az/R) B+ (mwpy /) PP~ (m'2/e) (0 n) (22b)

where B,(=m"o ;/e) is the fundamental field for the MPR. The origin of the
appearance of the subsidiary peaks in the QID quantum structure is mainly due to the
interelectric subband scattering (i.e, interelectric nonresonant virtual subband transitions)
as in the case of Q2D quantum structure[8]. We can also see that the contribution to
the MPR peak positions of the wire width( L 2) depends on the type of the interelectric
virtual subband transitions. Eqgs.(22a) and (22b) are in agreement with the result of
Suzukil8] obtained in the Q2D quantum structure if the confining frequencies 2
approach zero. Furthermore, if the strength of electric field E and ® py terms are
neglected, Eqs.(22a) and (22b) are identical with the result of Vasilopoulos et al.[6]
predicted in the linear regime of the Q1D quantum structure. It should be noted that
the relaxation rate for polar-LO-phonon  scattering diverges whenever the above
conditions are satisfied. These divergences may be removed by including higher-order
electron-phonon  scattering terms or by inclusion of the fluctuation effects of the
center-of-mass[14]. The simplest way to avoid the divergences is the each delta
function in Eq.(20) is approximated by Lorentzians of width and shift zero by
introducing a width parameter 7. Employing this collision-broadening model [3538],
applying Poisson’s summation formula [13] for the Zﬁ: in Eq.(20), and taking into

account the following property(8,15] :

V(g b)=1+2 SZ"I e ~¥*¥cos (2nsh) = cosh (25:;1;‘1})1 (_2’::‘(1))5 @xb) * (a>0) (23)

we then obtain
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| vetcton maelopenn e B B

24!

r (E ~ 3A(2N, +1)——’x’:"!p(—7',a:)
s (B) 0T 4 (yy/hw)t e

sy (s
Al ¥ l)ngn[ 21— y) +(ya/hw.)’ 4 n&c’x(l )

ponn, 3 2L
24N X L30Ty P + (e /ho.! (ast ) o)

Equation (24) gives a general description of high-field magnetophonon oscillations in
the Q1D quantum structure with the narrow confining frequencies. We can see that if
the confining frequencies have been neglected, Eq.(24) reduces to the result of Suzukil8]
obtained for the Q2D quantum structure. Therefore, as in the case of the Q2D quantum
structurel8), we can obtain the field-dependent relaxation rate for the narrow and wide

wire width as

- 0%l ®, Y
T0A+1A(E)~3A(2N0+1)/(wlo/ _(_!_) )Lg_‘_(ylh ‘(B )2 qj[—ﬁ‘x‘({)—_’ '(I)LO] (25)
x~ _’/_m:_LE)—C————— oy
T‘A-i-l)(E) ~3A(2N0+1) (a)'LO/ _a) )L20+(¥/ﬁ H)c)z qj[——hj—_a)——, ‘("I)LO
0% ©, X 0]
B e e TR S P
N AL EREA R P

where m’1=w'w+(1:t2n)8 o/ i and m’2=m20—(1t2n)£ of i it should be noted

that Eq.(25) is valid for the narrow confining frequencies and the narrow wire width.
In this case, Eq.(25) shows that those subsidiary EFIMPR peaks (due to the
interelectric subband transitions) do not appedr, and the period of the oscillation is

given under the condition of © %o/ ® =P and is determined by the strength of
magnetic and electric fields, as well as the confining frequencies. We see that the
subsidiary (EFIMPR) peaks appear at Po =0} G= 1and2) and that the position
of these subsidiary peaks and the period of additional  oscillations in Eq.(26) are
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sensitive to the wire width. For P g ¢=®ro , the factors cos() in Eq.(26) become
cos (2m5e BAT /hw,) for the first term, which is identica] result with Eq.(25), and
cos 21ts[eEA;+(l 2n)e 1/ k ®, and cos2rsle EAz—~ (1:i:2n)60}/ﬁu~)c for the
second and the third terms, respectively, Hence, by varying the electric field at the
Same magnetic field, the ordinary MPR maxima (at wyp= Po, ) in the conductivity
can evolve to minima and vice versa. We can also see that the exponential factors play
a role of the effect of field-induced-collision damping due to the combined effect of
scatterings (or collisions) and electric fields (ICFE) since the 7's in Egs.(25) and (26)

are generally dependent on the field strength E , and that these parameters such as
strong electric and magnetic fields, and the wire width as well as the confinement
frequency give an direct influence on the effect of field-induced-collision damping. For
vanishingly small electric field (ie, £— 0), Eq.(25) leads to the ordinary MPR of the
QID quantum structure at Wio = Pw,, and is similar to the result of Vasilopoulos et

mainly due to the approximation of 7 (4’ 1) in Eq.(19).

V. Concluding remarks

Egs.(14) and (24) that the relaxation rates T° r+n (B) is inversely proportional to the
wire width( L ,) and hence that 0 x(E) has a 1/L2 dependence. These results are
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EFIMPR at Po =07 ad who £ wyy - Bere P is an integer. Therefore, the

EFIMPR peak positions are closely related to the confinement frequency (& ) and the
strength of the electric field( E ), as well as the wire width( L ). The effect of electric

fields in the scattering processes of the Q1D quantum structure is to shift the MPR
peak positions t0 higher magnetic fields, while the effect of confinement due to the
confinement frequency in the z direction is t0 change the MPR peak positions to lower
magnetic field. It is noted that our result for the relaxation rate and the field-dependent
transverse magnetoconductivity is valid for the narrow confinement frequency and 1S
far from being rigorous for the wide confinement frequency since our result is tied to

the approximations: the ¢* terms of Eq.(19) have been neglected for the narrow
confinement  frequency and another approximation has been made by replacing
¢ (=V g%+ d%) appearing «n the factor (g )b¥d L=V it B%4%) in order
to get tractable expressions within the integration OVer a of Eq.(19). Furthermore, we
have not taken into acoount any modification of the electron-phonon interaction brought
about by the confinement of phonons[we used the interaction for bulk phonons] and
any influence that surface roughness might have on the effect as some author did.
However, we can expect that our result makes it possible to understand: qualitatively
the physical characteristics on the EFIMPR effect of the QID quantum structure.
Unfortunately, we arc not aware of any relevant experimental work to compare our
theory with. Therefore, to test the validity of this prediction, new experiments are
needed.
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