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Development of a New Anisotropic Eddy
Viscosity Model for the Analysis on Rod
Bundle Flow Fields
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ABSTRACT

A computer code using the finite element method is developed to analyze the flow
field in the rod bundle geometry, which are commonly met in nuclear reactors. In
this code, a new model of anisotropic eddy viscosity is adopted. The representative
value of the anisotropic factor is determined from the scale relation which is derived
through the scale analysis methodology considering the flow pulsation phenomena.
The spatial distribution is deduced qualitatively in the basis of the experimental
data. The flow fields calculated by this code are compared with the experimental

data and show good agreements.

Key words : Rod bundle, Flow pulsation, Anisotropic eddy viscosity

I . Introduction

Fluid flow and heat transfer processes
in rod bundles of nuclear reactors are very
complicated, and basic understanding
of such processes is essential to conduct
fuel performance during normal operating

*AFAYR2 AT
Dep. of Nuclear and Energy Eng., Cheju Nat'l Univ.

conditions and ensure structural
integrity during abnormal operations.
Especially, the ultimate purpose in the
design and safety analysis of nuclear
DNBR
(Departure from Nucleate Boiling Ratio)
satisfies the safety criteria. Hence, it
requires that the temperature field in

fuel assemblies should be precisely

reactors is to verify that

analyzed and the knowledge on flow
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fields is indispensible to such an
analysis.

In rod bundle geometry, the approach
employed in simple flow analyses is
often inappropriate since there are
secondary flows and strong anisotropy of
turbulence intensity which are not
observed in simple flow through tube or
parallel plates'.

Recently, from the measurement of
energy spectra, it is shown that a
periodic macroscopic flow process exists
between subchannels in rod bundles.
Thus, such cyclic and almost periodic
flow pulsations are suggested to a main
process of the mixing, and some
experiments were conducted to investigate
the flow 23

According to the experimental results,

pulsation phenomena
the principal frequency is known to
depend on Reynolds number and the
relative gap size( g/D). Assuming that
this phenomenon affects the anisotropic
feature of turbulent diffusion as well as
the turbulent mixing between subchannels,
Kim-Park” derived the scale relation of
anisotropic factor through scale analysis
methodology.

In this study, a computer code using
the finite elements method is developed
to analyze the turbulent flow field in
rod bundles with a new anisotropic eddy
viscosity model. Lam-Bremhorst low-
Reynolds number k—e& model® is
used as a mathematical turbulent
model. Anisotropy of turbulent diffusion
is assumed to reflect flow pulsation
which seems to be responsible for the
turbulent mixing. The representative
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value of the anisotropic factor is
computed from the scale relation derived
by Kim-Park. and the spatial distribution

is presumed from the
6.7

well-known
experimental data

Steady state and axially fully
developed incompressible single-phase
flow fields in infinite bare rod bundles
are analyzed. And this code is verified
successfully by comparing the calculated
flow fields with the analytic solutions

and the experimental data.

1. Review of turbulence models

2.1 Anisotropic turbulent diffusion

The experimental results of eddy
viscosities in rod bundle geometry show
the consistency. The normal eddy
viscosity is similar to that of the
circular tube near the wall and is twice

1® . However. the

far from the wal
parallel one is quite different from the
normal one as well as that of the
tube'®”

Rowe et al.®

carried out an experiment
on the turbulent mixing phenomena
between subchannels of rod bundles,
and found the macroscopic flow near the
gap, which they interpreted as the
cause of the anisotropy.

Bartzis-Todreas"'” experimented on and
numerically investigated the turbulent
flow field in, triangular-arrayed rod
bundles with P/D = 1.124. They
adopted the 2-equation model with
anisotropy and secondary flow models,
and developed a simple anisotropic
model for length scales. Their results
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showed that the effect of the anisotropy
was greater than that of the secondary
flow.

From experiments and numerical
analysis, Seale'" concluded that the
secondary flow hardly contributed to the
velocity and temperature profiles and
the high mixing rate at the gap was
caused by the anisotropy. In the gap

Stanton number, Sf;, the isotropic model

with secondary flow produced about 13%
higher mixing rates than without.
However the discrepancy with the
measured data was still wide. Hence, he
insisted to include the anisotropic
model. He assumed that the anisotropic
factor, n, was a function of wall distance
because 7 had the maximum near the
wall and rapidly decreased to about 1,

and chose the following distribution
function after testing various functions:

n = 50exp{—(3%/3)} + 2, (n

where ¥ is normal distance from the

wall and y is profile length denoting
normal distance from the wall to the
maximum velocity line. The calculated
St, with that function agreed with the

experimental results within a 50% error.

a2 1-equation

Slagter proposed a
model excluding the wall function and
analyzed the turbulent flow in rod
bundles neglecting the secondary flow.
In this model, the anisotropic length
scales with damping, which was
originated from the Carajilescov-Todreas

13)
1,

mode reflected the anisotropic eddy

diffusion.

(14)

Yang-Chieng recommended the

following anisotropic factor which had

U after they

been tested by Seale
computed the flow and temperature field
with various type of functions neglecting

secondary flow:
n= exp{—By/¥)} + 1. (2)

Wu"® analyzed the turbulent flow in
a trapezoidal duct with a single rod.
and adopted ahisotropy and secondary
flow model simultaneously. The Launder-

1 .
06 was used as an algebraic

Ying model
stress model and the anisotropic factor
was developed from the experimental
data.

Recently. Kim-Park® performed scale
analysis on the flow pulsation phenomena
between rod bundle subchannels. They
derived a scale relation of anisotropic
factor assuming that this phenomenon
plays an important role in the turbulent
structure of rod bundle flow fields. In
this study, this scale relation is used in
developing a new anisotropic eddy
viscosity model.

2.2 Low-Reynolds number model

Most of the turbulence models are
devised for high Reynolds number and
fully turbulent flows far from the wall.
Thus the success of the prediction of
wall-bounded shear flows depends, to a
large extent, on the wuse of the
appropriate wall functions that relate
surface boundary conditions imposed on
points in the fluid away from the
thereby avoid the
problem of modeling the direct influence

boundaries and
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of viscosity. However, in some cases
such as subchannel analysis where the
ultimate purpose is to find the rod
surface temperature and information on
the flow field in the immediate vicinity
of the wall is essential, the
low-Reynolds number model is required.

Many low-Reynolds number models
combined with widely used £— & model
were proposed’”: Lam-Bremhorst model
and Launder-Sharma model are the
most successful in using this approach.
Especially, the Lam-Bremhorst model
has the advantage in that it does not
require additional terms to the standard

k— & model.

1ll. Modelling of anisotropic eddy
viscosity

Kim-Park's
anisotropic factor

representative value of
@ s expressed in terms
of geometric factors and Strouhal number

of flow pulsation in rod bundles:

B 1+ 2a,b—(z”g;)éa/w Str
n= 1 + 2a,(zrp/D) Str

(3)

In this, D, 6 and g are rod diameter,
centroid-to-centroid distance and gap size
respectively. The =zgp is the path length
of hypothetical flow which is assumed to
represent the flow pulsation phenomenon
and is approximated as

e (o2 4 (). @
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The shape factor, b. is introduced to
reflect the effect of obstacles which may
be located in the front of the flow
pulsation. For an open path such as in
the square-arrayed rod bundle and the
rod-wall gap of a wall-bounded
subchannel, 4 = 1.0. And & = 2/3 is
recommended for a blocked path such as
in the triangular-arrayed rod bundle and
in the rod-rod gap of a wall- bounded

subchannel. Velocity coefficients a, and

a,. which are functions of geometric

factors only, are approximated as

a, = 1.0 — 0.15(%) : o

a, = 036(‘%) .

And they recommended that Wu-Trupp's
Strouhal number correlation'® should be
used in conjunction with the scale
relation. The correlation is

Sl = 0.822(%) + 0.144 . (6)

Before the above scale relation of the
anisotropic factor derived by Kim-Park
is used to reflect the anisotropy of
turbulent diffusion in numerical analysis,
should
because the anisotropic factor is not a

some modification precede

constant over the flow field. Actually it
depends on the location®”, so that the

representative value, 7. of the factor

should be modified. The spatial
distribution is assumed as
In(n(r,0)) = f6) In(f(r)) (7)
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because Rehme’s experimental data shows
that the parallel component of the eddy
viscosity decreases exponentially as the
angle from the gap. The profiles for each
direction should be modelled.

Rehme’s data also shows that the
variation of normal components as wall
distance is similar to that of the error

function:

flr) = Anexp(—ay’) + 1, (8

where a is a constant to be determined

and A is the normalization constant

. — 1
which makes n average value. Seale'?

) proposed that the

and Yang-Chieng'"*
error function type profile of the
anisotropic factor is appropriate after
testing various types of profile
functions. And. it is assumed that the
anisotropy disappears at the maximum

angle from the gap, @ = 8, . Then,

O = 1- 7‘9— . (9)

Thus, in this work, the final form of
the spatial-dependent anisotropic factor
is given as,

n(r, 6 =
- (1 - 6/6na)
[% exp{—(-%v—)z} + l] ,
p s H
(10)
where 6/Vr is the normalization

constant stated above.
Comparing the newly-developed

anisotropic factor and those of Seale

and Yang-Chieng, there are some
different points. At first, the magnitude
of anisotropy is obtained from the
interpretation on the flow pulsation,
which depends on the geometry.
Actually the parallel eddy viscosity is
closely related to g/D"®. And damping
of the factor in the azimuthal direction
is considered. Experiments show that
the factor decreases as the angle from
©7 " Finally, the

normal distance was normalized not by

the gap increases

the profile length, y. but by hydraulic
radius, Dy/2., which is a typical length

scale of non-circular duct. Although
Seale and Yang-Chieng regarded the
anisotropic factor as a constant on the
maximum velocity line, there is no
evidence that the anisotropy disappears
or has a constant magnitude there's”.
It is more reasonable to presume that
near the gap the anisotropy exists even

on the maximum velocity line.

IV. Numerical analysis

4.1 Mathematical models

The velocity distributions are predicted
through the numerical analysis on the
flow field in rod bundles. As a turbulence
model, Lam-Bremhorst low-Reynolds

1(5)

number k—é& mode is used. No slip

wall boundary condition is adopted in
place of the wall function because the
ultimate purpose of the thermal
hydraulic analysis on the nuclear rod
bundles is to find the wall temperature.

Also, the

diffusion model developed in this study

anisotropic turbulent
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is included in order to investigate the
flow field realistically. The flow is
assumed to be steady state and axially
fully developed. And the secondary flow
is neglected because it has only a
marginal effect on the flow field as
mentioned above.

4.1.1 Governing Equaticns

The governing equations for the
analysis of the flow field in subchannels
are established as follows and, for
simplicity, the Cartesian tensor
notations are used: the subscripts i and
j denote lateral coordinates 1{(normal to
the wall) and 2(parallel to the wall),
respectively.

- Axial momentum equation

- 'a—((u&-+ vi) 8U3)
dxi\\TTE T ET oz (11
= 1 _é»
e 9x;

- Turbulent kinetic energy equation

( £ equation)

_ _3_((,,&,.+ V“jlak)%)

0x; j (12)
= Pk - €&,
aU. al.
Py = - ulu3W: uzua_aﬁ .
(13)
where o, = 1.0

- Turbulent kinetic energy dissipation

rate equation ( € equation)

0 de
- axi((yaﬁ-*-yij/as)axj) (14)

2
Celfel%Pk - Cafd% ,
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where o, =1.3.

Cq=144 and

- Anisotropic eddy viscosity model

Uus = Vv aU3
—uy = vy
v 9% (15)
(fori+j, vy=10)
v = Cyfy% f
(16)
Vp = ny,

where C, = 0.09

Lam-Bremhorst damping model

f. = (1 — exp(—B,R))?

b (17)
4
(1 + R,) ,
A,
fel = 1 + (f_l)3 3
s (18)
fo = 1— exp(— R%)
R _ kllle
2” (19)
R = £
3%

where B, = 0.0165, D, = 20.5
and A, = 0.05

4.1.2 Boundary Conditions

The boundaries of the subject domain
consist of rod surface and symmetry
boundary as shown in Fig. 1. Thus, two
types of boundary conditions are
needed: no-slip condition on the rod
surface and symmetry condition on the

symmetry boundary.
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(a) Square array (b) Triangular array

Fig. 1 Schematic of rod bundle
geometries

On the rod surface, all components of
the velocities and turbulent Kkinetic
energy are zero from the no-slip
condition. However, for dissipation rate
of turbulent kinetic energy. the
boundary condition is neither exact nor
simple. Furthermore. some of them,
even used commonly, are likely to cause
the divergence of solutions especially at
high Reynolds number®. Thus, in this
study., a new type of wall condition of
third order®™ is adopted. with the
Taylor expansion and the near wall
turbulence under the

assumption that the length of the first

behavior of

and the second grid are equal, as
follows:

3kw+1

Ruoiz = ki Cot1 - (20)

Ey =

On the symmetry boundaries, the
normal gradients of axial velocity,
energy and its

turbulent  Kkinetic

dissipation rate are set to zero.

4.2 Numerical Scheme
The governing equations are formulated
numerically by the Galerkin weighted

residual finite element method using
bilinear and linear cardinal Dbases
satisfying the C° continuity. The two
dimensional calculation . domain is
discretized into square and triangular
finite elements.

In general., numerical analyses on
turbulent flows suffer from severe
non-linearity and numerical instability.
Thus, the initial guesses of dependent
variables, mesh spacing and iteration
scheme must be determined carefully.
Initial profiles of the axial velocity,
turbulent energy and its
obtained by

The universal

kinetic
dissipation rate are

. (21-23)
universal profiles .
velocity profile is also used to determine
the mesh

oscillatory

spacing. To filter the
behavior of  numerical
solutions, the guessed values for the
next iteration are obtained by using the
geometric mean of the value of the
previous iteration step and the
calculated value with an under-
relaxation factor.

The convergence criteria used is that
the maximum individual relative error
should be below 102 All of the
governing equations are not solved

simultaneously, but segregatedly.

V. Results and discussion

The calculations of the flow field in
the domains shown in Fig. 1 are
implemented using the turbulent model
described above. In order to validate the
code, the predicted distributions of axial
velocities under various geometrical and
hydraulic conditions are compared with
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Fig. 2 Predicted and exact velocity
contours for laminar flow in a
triangular array( P/D = 1.20 )

Anisotriopic R Experiment (13)

085 1.00 0.85 0.85
U/ Upe

Fig. 3 Axial velocity contour in a

triangular array ( P/D =
1.123, Re = 27.000)

100

Tw / Twave

analytic solution or well-known experimental
data.
Sparrow-Loeffler
solution of axial velocity for the fully
developed laminar flow through the rod
bundles. Fig. 2 shows an excellent

29 found the exact

agreement between the prediction in
this study and the exact solution.

Fig. 3 shows the comparison of the
computed axial velocity contours with
the experimental results on a triangular
array™ of P/D = 1.123 and Re =
27.000. The anisotropy makes flow
fields uniform. The predictions with the
anisotropy of eddy viscosity reproduce
the experimental results sufficiently

well.

09 — - -

0.8 —

07 T l T ' T
Angle (deg)
Fig. 4 Wall shear stress variation in a

triangular array ( P/D = 1.20,
Re = 49,000 )

To verify the predictability of wall
shear stress, the experimental result of
Trupp-Azad® is compared in Fig. 4.
Analogously to the axial velocity profile
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without the
model, the prediction fails to predict the

prediction, anisotropic

experimental results.

11,/ 1
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Fig. 5 Axial velocity contour in a
square array ( P/D = 1.25,
Re = 100,000 )

The comparison with the experimental

25) .
25 in square arrayed rod

data of Rowe
bundles is shown in Fig. 5 and it is less
satisfactory than that in the triangular
array. However, taking into account the
experimental error of * 3.2%. the

relative error of 5% is reasonable.

Vi, Conclusion

A flow field analysis code is developed
using the finite element method to
investigate turbulent flow field in rod
bundles. Lam-Bremhorst low-Reynolds

number k—e model® is adopted as a

turbulent model and a newly-developed
anisotropic eddy viscosity model is
included to reflect the
diffusion characteristics of the turbulent
flow field in rod bundles. The
representative value of the anisotropic

anisotropic

factor is determined from Kim-Park's

“ based on the interpretation

scale relation
on flow pulsation phenomena and the
distribution function is constructed on
the basis of the qualitative behavior of
eddy viscosities shown in Rehme’s
experimental data‘®”.

Comparisons of numerical results and
experimental data establish the usefulness
of the newly-developed anisotropic eddy
viscosity model. And numerical analyses
without consideration of anisotropy of
turbulent diffusion fail to reproduce the

experiments.

i, 2

a2 £33 A He il ¥z
Ao RFFE AH37 A FPa2Ye
AHEE M4 R=E g o] Rzde
A& vedyd SFPAs Y =UHA
o} Y5 Azl dE e REAFTHY
W 23E B Ax Y Az JAYes
2E d9len, F EXE @27 Jd¥AaRA
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NOMENCLATURE
ay, a, velocity coefficients
Ag turbulent model
constant
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b
B, Cy,Cq, C,

D
Dy

D,

fr-fo

fslrfﬂ'fll

BT X > KN

LY

ZFp
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shape factor

turbulent model
constants

rod diameter

hydraulic diameter
turbulent model
constants

spatial distribution
function of anisotropic
factor for » and @
direction

damping factors used in
Lam-Bremhorst
low-Reynolds number
k— €& model

gap size

turbulent kinetic energy
anisotropic factor
pressure

turbulent kinetic energy
production rate

radial coordinate
Reynolds number based
on hydraulic diameter
gap Stanton number
Strouhal number

mean velocity of 1
direction

Reynolds stress
coordinate of i direction

normal distance from
the wall
profile length

hypothetical path length

of flow pulsation

Greek

centroid-to-centroid distance
o Kronecker delta
€ dissipation rate of turbulent

kinetic energy

6 azimuthal coordinate

v molecular kinematic viscosity

Vi anisotropic eddy viscosity

o density

O, 0, Prandt]l number for turbulent
kinetic energy and its
dissipation rate

Tw wall shear stress

Subscript

1,7 Cartesian index (1 for normal
to the wall, 2 for parallel to the
wall, 3 for axial direction)

Symbol

overbar representative value
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