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ABSTRACT. We consider a differential equation on Wiener space. The known solutions
are considered as a transformations on Wiener space. We show that the solutions can
be constructed as the same limit on a product Wiener space. The solutions are also the
quasi-sure limits of finite dimensional solutions on the product Wiener space.

1. INTRODUCTION

Let (X, H,u) be an abstract Wiener space and A be a vector field on X which is,
by definition, a mapping from X into H smooth in the sense of Malliavin (cf. [5]). We
proved that

Theorem 1.1. (Yun [8), Theorem 5.5) If A is a vector field on X satisfying the
followings

(i) Ae W2(X; H) and YA > 0, [ exp(M||A(z)l])du(z) < +oo,

(") VA>0,Vn=1,2,---, fx exp(/\||V"A(z)||)dp(:c) < +00,

(iii) YA > 0, [, exp(A|6A(z)|)du(z) < +00,
then Vi(z) exists for all t € R, q.e.z satisfying the following differential equation

(1.1) { (dVy/dt)(z) = A(Vi(z) + z),

Vo(.’lﬁ) =0.

The author constructed a solution Uy(z) which satisfies (1.1) quasi everywhere
(q.e.) (cf. [8]), i.e., for all z except in a slim set, that is, a set of (r,p)-capacity 0, for
all » > 0 and p > 1. Here the capacities are associated with the Ornstein-Uhlenbeck
operator on the Wiener space (cf. [5], [6]). By the way of its construction, we see that
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this U,(z) is a quasi continuous modification of the unique solution of Cruzeiro [1], in
the sense of almost everywhere.

In the previous paper [9], we obtain further refinements of this solution. We chose
a quasi continuous modification A(z) of A(z) defined everywhere on X and we con-
structed U;(z) = Vi(z)+z,t € R,z € X, such that Uy(z) € WX(X;C([-T,T] = X)),
X 3z Uyz) € C([-T,T] — X) is quasi continuous for every T > 0 and satisfies

t
(r.1y Uz)=z+ / A(U,(z))ds for quasi every (q.e.) z € X,
0

for all t € R. Furthermore, we proved that we can choose its quasi continuous modifi-
cation Uy(z) so that the mapping z — U,(z) preserves the class of slim sets for every
t and the flow property

(1.2) | UioUs(z) = Upys(z),

holds q.e. for every t and s.

In the present paper, we prove the existence of solutions of (1.1) quasi surely as a
mapping on the product Wiener space [-M, M] x X. For the proof of the quasi-sure
existence of solutions, we consider only the last quasi continuous modification U(z)
in all of this paper so that we can use the previous results.

2. PropucT WIENER SPACE AND EXISTENCE OF SOLUTIONS

Let (X, H,u) be an abstract Wiener space introduced by Gross. Let E be a real
separable Banach space. We set

WP(X;E):= (1 - L)"*(LP(X,1; E))

for the generator L (cf. [8]). Then WP(X; E) becomes a Banach space and we can de-
fine the Sobolev space WP(X; F) with the differentiability index r and the integrability
index p with a norm

W fllep = llulles for f=(1-L)""u, ue LP(X,uE).

We denote the space N.WP(X; E) by W2 (X; E) for p € [1,00) and
W2(X;E) = n,W2% (X;E). If Eis a separable Hilbert space, we can define the
gradient operator V : W}, (X;E) - WP?(X;E ® H) and its dual, the divergence
operator, § : WY, (X; E® H) — WP(E) as usual (cf. [1]).

Next let us recall the notion of (r,p)-capacity. The (r,p)-capacity C,p is defined
as follows: for an open set O C X,

Crp(O) =inf{||fII?, : feWFI(X;R), f>1 ae. on O}
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and for an arbitrary set B C X,

C,p(B) = inf{Cr,(G) : G is open and G D B}.

We say that a property holds quasi-everywhere (q.e. in abbreviation) if it holds
except on a set of capacity 0 for all r,p. We note that the following property holds for
Sobolev spaces on an abstract Wiener space.

WP(B)N Cy(X — B) is dense in WF(B) and 1 € W] (B).

Then it has been proved by I. Shigekawa that any v € WP(B) admits a quasi-
continuous modification and denoting it by @, it holds that

Crp(ll¥llB) < 1I0lIF,,
and the Chebyshev type inequality holds

- 1
Crp(ll8l] 2 A) < :\?”"”’r’,p-

Furthermore, in [9], we showed that we can modify the solution U,(z) so that it is
defined for every t € R and z € X, satisfies (1.1)" for q.e. z € X for all ¢ € R and also
has the quasi sure flow property, i.e., satisfies (1.2) for q.e. z € X, for all t,s € R.

For the proof of Theorem 1.1, we first consider (1.1) in finite dimensional case. In
[8], we proved the following theorem for finite dimensional case.

Theorem 2.1. (Yun [8], Theorem 3.5) Suppose that B € C* and
(i) Ym = 0,1,2,--- ,¥A > 0, 3. exp(A-|[V™B(z)||)du(z) < +oo,
(i) VA > 0. fy. exp(AI8, B(z)|)du(z) < +oo.

Then a solution of the following system of differential equations

[L™V"V(z): m =0,1,--- ,N, n=0,1,---,2N, 2m +n < 2N]:

d
EL"‘V"V, =VB L™V

+ E™M(L'VIB,L'VV, i = 0,1, ,m,
j=0’13"',n7 1:0,1,"',77l—1,
r=0,1,---,n, 214+3<2m+n,

204 r <2(m-1)+n),
L™V*Vy(z) =0, m=0,1,---,k, n=0,1,---,2k,
2m+n<2%k, k=23,--,N,
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exists also for all t € R starting for all z € R", where E™™ is some polynomial which
can be obtained successively (cf. (5.9) below, (8]).

We show that for any k € N, (L¥V;) exists for all t € R,p-a.e.z and thereby (V;)
admits a quasi-continuous modification as a C([0,T] — X)-valued function for any
T > 0. In finite dimensional case, one point has a positive (r, p)-capacity for sufficiently
large r and p. Therefore we can show that a solution to (1.1) exists for every initial
value z € X. To deal with (LV;), for example, we have to consider some system of
differential equation ([8]). To proceed to infinite dimensional case, we adopt a finite
dimensional approximation. To be precise, we take a sequence {A,} converging to A
such that A, depends only on finite number of coordinates and takes values in finite
dimensional subspace of H. Denoting a solution for A, by (Vt(")), we show that (Vt("))
converges quasi-everywhere and the limit satisfies (1.1).

For the existence of solutions, consider another Sobolev space as followings. For
fixed M > 0, define the norm ||(t,z)||*> = |t|*> + ||z||* and measure dt/2M Q du on the
space [-M, M] x X. For a Banach space E, the Sobolev space Wf on [-M,M] x X
is defined by

WP = {¢ :[~M,M]xX — E | ¢ € LP(dt/2M ® dp) and

/—): /X (”%H; t ”V"’”s(H.E))p/zdu% < +oo}

with the norm

“¢”1»P = ”¢”W1” =“¢“L’(¢“/2M®dp)
! adli 2\P/2, dt v
¥ </_M/X(H79?|| +HIvoll?) d“m) .

We can define the capacities on ([-M, M] x X,dt/2M @ dp) in the same way. Then
we have

1
Crpl{llull > 1) < Flullyy

if u € WP(X) for all 7 ([3]). Let @y, = {x € X : |Uyz)| £ 1}. Then by the above
inequality,

1

CralRp,) <

U3y -
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Lemma 2.2. Forallp> 1,

i t dt
lim / / / |A(")(V’(ﬂ)(z) +z)- A(m)(vs(n)(z) + z)|Pdsdp—— = 0.
-MJX JO oM

n,m-—00

Proof. Note that

M t dt
[ [ [P @) +2) - AV @) + 2)Pdsdunyg
-MmJx Jo 2M

M M it
< / / / IA(n)(Vs(n)(x) +z)- A(m)(V,(")(z) + z)|Pdsdp—.
-MJxJo 2M

Since for all M > 0,

M
“,En/ / AP (VP () + 2) — AM(Vi(=) + =)||dps(z)dt = 0
-MJX

and A(")(V,(")(z) + 1) — A(Vi(z) + 2) — 0 in the space L}([-M,M] x X; H) (Lemma
5.2, [8)]),

/ sup (V"™ (2) - Vi (2)ldu(=)
X |tIKM

- / sup || t(A‘""’"’(V,‘"*'"’(z) +z) — ANV (2) + 2))ds|ldu(z)
X

ltism Jo

t
S/ sup / |AC+™Y (VY +m) () 4 2) — AV (2) + z)||dsdp(z)
X t|sM Jo

M

< /0 /X ||A(n+m)(V,(ﬂ+m)(z) +z) - A(")(V_,(")(z) + 2)||du(z)ds
M

S/o /X [JAH™) (V™) (2) 4 2) — A(Vi(z) + z)||dp(z)ds

M
4 / / AP (V@) + 7) — A(Vi(2) + 2)|dp(z)ds
0 X
— 0 asn,m— oo.

Thus we have

n,m—00

M t

lim / / / IA(n)(V_,(n)(z) +z)- A("‘)(V_,(")(z') + z)l"dsdpi = 0.
-MmJx Jo oM
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By Theorem 2.1, the field A, has the flow U which can be defined for all t € R
starting for all z € R™. Further we have, by the formula of change of variables,

d(U¢ ")~u

(2.1) (z)=exp / 6A, UA (z))d€) = ki (z), =z €R™

This flow is a transformation of R*. We must modify the transformation on X and
at the same time it does not change the formula (2.1).
We can set, for z € X,

zr=y+2z, z€H,.

If U2 is the flow for A, defined on R™, set

VtA"(z) = UtA"(z) +y—z= UtA"(z) —z.

Then

Vi (2)

pr A (VA (z)+2) and Vii~(z)=0.

If ¢ is a function defined on H,, then we have ¢(V;A*(z) + z) = H(US"(z)).
On the other hand, the measure yu can be decomposed as p = pu,, ® v, with v,
defined on H*. Then we have

/ W@V () + )olz) = / ( / BVA (g + 2) + 3+ 2)dua(2))dvn(y)
X
/ $(z) exp( / 6 An(U2 (2))dE)dp(z).

Thus we have the following

A, . . t
o) LEEDEDRG) - ey [ oan (VA (0) + 2)E) = ko)

We consider VA" (z) = Uf*(z) — 2 € H and have to show the convergence of these
functions. For this, we prepare the estimation of the norm of (U")'(z).
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Lemma 2.3. (Yun [8], Lemma 4.6) Suppose that A € W2 (X; H) and
[« exp(A||VA(2)||)dp(z) < +00, VA > 0. For all t € R, the matrix (Uf")'(z) is in the
space LP(X;End H) for all 1 < p < 400 and if |t| < M, we have

/X (U Y(@)Pdu(z) < C(M),

where C'(M) does not depend on n.
Using the above formula (2.2) and Lemma 2.3, we can prove the following lemma.

Lemma 2.4. For all M > 0, we have

fm [ sup / APV (2)) - AV (2))]du(z)] =

Theorem 2.5. Forevery ¢ > 0, there exists F' C [-M, M]x X such that C, ,(F°) < ¢
for every r,p and V,(")(z) — Vi(z) uniformly on F.

Proof. By Lemma 2.2,

IV = V| Lot j2mean
M ‘ P dt l/P
- (/ / | / AMVI(2) + 2) = AUVI™(2) + 2)ds d,,_)

(/ / / AV (z) + 2) — AV (2) + z)|pdsdu2(jc!>

(/ / / [AM(V{M (2) + z) - AL V(m)(z)-l-:c)l”dsdﬂgtj\tfl)

— 0 as n,m — oo.
Note that

av{™
at

VVt(")(z) — / (VAVM(2) 4 2) - WV (2) + VAN (VN () 4 2)ds
0

= AMWM(2) +2),

and
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2 »/2 dt 1/p
(n)y2
HITVIR) )

2/? 2/p\ 1/2
(n)
Vi P .
au ) / [viira i) ™)

(L, L0155
<(([, L%

Since, by Lemma 2.2,

SN - 2

= B[lAT(V{"(2) +2) - AV (2) + 2)17]
< (BUADV )+ 2) - APV (@) + 275

+ EAM(V (=) + 2) - ANV () + r)ipl‘/”)p

— 0 as =n,m— oo uniformly

and

/X vV — V| Pdy

t
=/ / VAPV (2) 4 2) - YV (2) + VAP (V) () + 2)
X Jo

- VAMVIM(2) + 2) - YV () = VA (VI (2) + 2)|Pdsdp

— 0 as n,m — oo uniformly (by Lemma 2.4),
we have

||V(")—V(m)||wlv—+0 as nm,m — oo.

For the proof of
IV — VM| pe -0 as n,m — oo,
we have to consider the following system of differential equations
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%L’"V"V,(") = vA®™ . ryny

+ Emn(LPAM  LAM | LV AM), 92 A,
VZA("),VA("),L"‘(Vt(")),V“‘lA("),
L“‘(Vj“Vt(")),V2"2K("),V2'“3V,(") .
i=1,--,m-1, j=1,---,2n-2,

I=2,---,m, 21’+.7S2(m'—1)+n)1

for some polynomial E™" which can be calculated successively (see (5.9) below, [8]),
where 3t +n > [’5'1-1—1.

Adopting a finite dimensional approximation used in the proof of Theorem 5.5 ([8]),
we can prove the existence of F. ad

(1]
(2)
(3]
(4]
(5]

(6]
(7]

(8]
(9]
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