J. of Basic Sciences, Cheju Nat. Univ. J|Znigtod 2 M| FCHEtD
9(1), 245~257, 1996 9(1), 245~257, 1996

A Quasi-Sure Flow Property and the Equivalence
of Capacities for Differential Equations
on the Wiener Space

YONG SIK YUN

Department of Malhematics, Faculty of Science, Kyoto University, Kyoto 606-01, Japan

Received September 1994

We consider a differential equation on the Wiener space. We show that the solutions
for the differential equation satisly the [low property quasi everywhere and we obtain the
equivalence of capacities under the transformations of the Wiener space induced by the
solutions by using the quasi {low property. © 1996 Academic Press, Inc.

1. INTRODUCTION

Let (X, H, ) be an abstract Wiener space and A be a vector field on X which is, by
definition, a mapping from X into H smooth in the sense of Malliavin. We consider the
following differential equation (1.1) on X:

S = AU,
Up(z) = z.

(1.1)

The problem was first treated by Cruzeiro [2, 3] and she established for a class of vector
fields the existence and the uniqueness of solutions Uy(z) for p-almost every (p-ae.) z
which satisfy the alinost everywhere flow property: for every t € R, (U). st is absolutely
continuous with respect to y and satisfies

U¢OU,(:E)=U,+,(1:), (12)

for yi-a.e. x, for every t and s.

In the previous paper [14], the author constructed a solution Uy(z) which satisfies (1.1)
quasi everywhere (q.e.), 1.e., for all 2 except in a slim set, that is, a set of (r, p)-capacity 0,
for all » > 0 and p > 1. llere the capacities are associated with the Ornstein-Uhlenbeck
operator on the Wiener space (cf. [9], [5], [10]). By the way of its construction, we see
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that this Ui(z) is a quasi coutinuous modification of the unique solution of Cruzeiro
[2], [3] in the sense of almost everywhere.

In the present paper, we obtain further refinements of this solution. We prove that
we can choose its quasi continuous modification Uy(z) so that the mapping z — Uy(z)
preserves the class of sl sets for every { and the flow property (1.2) holds q.e. for every
t and s.

The organization of this paper is as follows. In Section 2, we modify the solution U (z)
constructed in [14] so that it is defined for every t and z and show that this modification
satisfies the flow property (1.2) q.e. in z for every t and s. In Section 3, we prove an
equivalence of capacities in the sense of Theorem 3.5 under the transformations of the
Wiener space induced by the above modification so that we can conclude that the class
of slim sets is preserved under the transformations.

Acknowledgement : The author expresses his gratitude to Professors 1. Shigekawa and
S. Watanabe for helpful discussions and encouragerment.

2. A QUASI SURE FLOW PROPERTY

Let (X, If, ;) be an abstract Wiener space introduced by Gross [6] where

(i) X is a real, separable Banach space with the norm || - ||,

(i1) H is a real, separable Hilbert space densely and continuously imbedded in X with
the inner product {x, y},

(iii) g is the standard (Gaussian measure, i.e., the Borel probability measure on X such
that

/. exp{i(h, z)}p(dz) = exp(—%(h, hYue)
A

where h € X* C H* and (, ) is a natural pairing of X* and X.
We denote the Borel o-field on X by B(X) and define a system of transition proba-
bilities Py(z,:),t > 0,2 € X, by
Pz, () = / lgle 'z + V1 —e~2y)u(dy), G € B(X).
¥

Then the Ornstein-Uhlenbeck semigroup {73} is defined by

Tou(z) = A w(y)Pi(z,dy), u € By(X),

where B,(.\') is the space of bounded B(.\')-measurable real functions on X.
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Let E be a real separable Banach space. We denote by LP(X,u; E) the space of all
E-valued p-nieasurable functions u satisfying

= { [ Wtentae) ) < eo

As usual, we identify two functions which are equal to each other p-almost everywhere
(p-a.e.). For u € LP(X,u; ), we set

T,u(ar):/ u(y) Pe(z,dy).
X

Here the integral in the right hand side is a Bochner integral. Then Tyu(z) can be defined
for p-a.e. 2 and {T;} is a strongly continuous contraction semigroup on L?(X,u; E).

Let us denote the generator by L. For r > 0, we define (1 — L)~"/2 by the following
gamma transformation:

1 00
_ -r/2 — tr/2—l -1 .
(1-1) —-——[‘(1-/2)/0 e 'Tia

(1—-L)~"/%is a contraction operator on L?( X, si; E) since {T}} is a contraction semigroup.
We set

WP(X; E) := (1 = L)~"%(LP(X, u; E)).

Then WP(X; £) becoimes a Banach space with a norm

Wl = lluller for £ = (1= L)%, e LP(X,p; E),

We call WP (.\'; L) the Sobolev space with the differentiability index » and the integra-
bility index p. We denote the space N, WP(X; E) by WZ (X;E) for p € [1,00) and
WZ(X; E) = N, WL (X, E). If Eis aseparable Ililbert space, we can define the gradi-
ent operator V : W!I' (X, E) — WP(X; E & H) and its dual, the divergence operator,
6: W] (N, Ec H) — WP(E) as usual.

Next let us recall the notion of (r,p)-capacity ([5] and [8] for details). The (r,p)-
capacity C; , is defined as follows: for an open set O C X,

Crp(0) = nf{lIfII2,; fE€WI(X;R), f>1 ae. on O}
and for an arbitrary set B C X,
Crp(B) = inf{C, ,(G); G isopen and G D B}.
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Now we turn to the differential equation (1.1) on the Wiener space. We set U(z) =
Vi(z) + z. Then (1.1) is equivalent to the following differential equation:

S0A(E)) = A=) + ),

V()(.L) =0.

(2.1)

Theorem 2.1. (Yun[l4], Theorem 5.5) Assume that
(i) A€ WZ(X; H) and [ exp(A||A(2)]])dp(z) < oo, for every A > 0,
(i) [ exp(AlIV™ A(2)]])dp(x) < oo, for every A >0 and m = 1,2, -,
(ii7) [, exp(A|8A(z)|)dp(x) < oo, for every A > 0.

Then, we can choose a quasi continuous modification A(z) of A(z) defined everywhere
on X and we can construct Ug(z), { € R, x € X, such that Uy(z) € WZ(X,;C([-T,T] —
X)), XN 3z— Ugfa) € C([-T,T) — X) is quasi continuous for every T > 0 and satisfies

t
Ulz) = = +/ A(U.(2))ds for quasi every (q.e.) z € X, (1.1y
0

forallte R.

lere, a property is said to hold q.e. z if it holds for every z except in a slim set, i.e., a
set of (r,p)-capacity 0 for every » > 0 and p > 1. _

The solution U;(x) constructed in Theorem 2.1 is a quasi continuous modification of
the unique solution established by Cruzeiro [2], [3] in the sense of almost everywhere
with respect to pr. This fact can be seen by the way of our construction in [14]: to be
precise, we took a sequence {A, } converging to A such that A, depends only on finite
number of coordinates and takes values in a finite dimensional subspace of H for using
the results in the finite dimensional case. Denoting the solution for A, by V,("), we
showed that for some subsequence {n;}, {V,("')} converges quasi everywhere to Vi(z)
and Uy(z) = ¢ + Vi(a) satisfies (1.1) in which A(z) is defined by

. litn, oo An(2), if it converges,
Alz) = :
0, otherwise.

Here we have to notice that Ul(")(m) =2+ V,(")(:r) is a homeomorphism on X in the
finite dimensional case.

Now we show that we can modify the solution Ui(z) so that it is defined for every
teRand r €N, satisfies (1.1} for q.e. 2 € X for all t € R and also
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has the quasi sure flow property, i.e., satisfies (1.2) for qe.z € X, forall {,s € R.
]
Lemma 2.2. Forallr > 0and p> 1,
Wi ou, - vim, Ullrp — 0 as n,m — co.

Proof. \We write V("’(V (2) + x) instead of V(")(U (x)). Since V,( depends on finite

number of coordinates, we have
LV (Vi(2) + 2)) (2.2)
= LV (V@) + 2) + WV (Vi(z) + 2) - LV, ()
+ Z RV UV, (2) +2) - 8,Vi - 0,V (=)

+ zZo VI(Vi(z) + 2) - Vi (2).

Thus we have
IV Vatz) + 2) = V™ (Val2) + )]
= E[L(V(Vi(z) + 2)) = LA™ (Vi(2) + 2)) 7] /e
< ENLVIVi(z) + 2) = LV (Vi (2) + 2)P) 7
+ E(LV, )" [VV (Vi) + 2) = VYV, (2) + 2)P) 1P
+ E[(IVVi(2)]? + 219V (2)))" - V2V (Vi(2) + 2)
- VM (V@) + 2) )/
=B+ E," + E}/".
We set (d(U,)op/dp)(x) = ko(2). Then supocs<i llksllz < oo (see [2]). By Hélder’s

inequality, we have
= EQLV™ () = LV @) - k()]
< kllz 1LV ~ LV
= E[ILVi()]" - |9V (2) = VYV @) - ky(2))
sllk..ll ALVAl, IV — oy
and
= E((IVVa(2)l* + 219V @) - V2V () - V2V ()P - ky(2)]
< lkallz - E[(VVi(@)[ + 219V () )] /4 |92 — w2y
ksl - OV llap + 129Vl - 192V = w20

4p
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Here we denote the L'-norm by || - ||,. We have proved in the proof of Theorem 2.1
in [14] that the right hand sides of the above estimates for Ey, i=1, 2, 3 tend to 0 as

n,m — oo and V; € W(X; H). The convergence of Vt(") o U, in (2,p)-norm is proved.
To prove the convergence of Vt(") o U, in (2k,p)-norm, we apply the operator L suc-
cessively to (2.2). We can rewrite the formula (2.2) as follows:

LV (Vi) + 2)) = TV (V) + 2) - LY () + FHLVD, w2, wv,)

for some polynomial /', Note in general the following chain rule

m

LF(uy, - ,up) = Z((’)jF)(ul,'-- yUm) - Ly;

j=1

m n
+ Z(f)jﬁkF)(ul, C o U) (Z diuj - diuy)
.k i=1

m

- Z(('?J- F)(uy, - ,m) - Lu;
i=1

m

+ 3 (00 F)u, - tum) - (Vug, V),
ik

for a polynomial F' and u; = uj(zy, - ,2n), j = 1,--+ ,m. Then we have
L2y = gy L2y, (2.3)
+ F"'(L'“’V,("), L(Vzl/,(")),L(VV,(")), LV,("),
VA Vt(n)’ v3 V,("), Vzl/,("), VV,("),
L(VV,),LV,,V?V,, V),
for some polynomial F*. In fact, since
LV = OV LV, + LN LV, vV, v V,)
= (V™) Ly, + vV LY,

3
+ Z((')jl"' )(ay, uz, ug) - (Luj)
i=1

3 n
+ 3 (@06 F ), uz,ug) - (Y Qi - diwg)
i=1

Jk=1
(where u, = L‘/!(’l)‘tlg = v"’v,"",u;, =VV,),
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LV LV, = DUV (Vi(@) + 2) - (8iVa(3) + )’

+ V2V (Vi (2) + 2) - (8:0:Va ()
+ (V@) + 2) - (BVi(e) + ) -] - LVa(a)

(where {¢;} is ONB in H chosen in

the finite dimensional approximation)

= [V (V(e) +2) - (Vi(2) + )’

+ V2NV (2) + 2) - V()
+ 3 VI Va(a) + 2) e - 7] - LVi(=)

= FIQ(L(VV‘(H)), Va‘/t(n)!v2‘/t(")v L‘/." VZVHV‘/J),

(@ FY) (e, wz,u) - (LLV™M))

= FA(L2V, v v, vLv), Lv,, V2V, v V,),
(027" ) (w1, wz ug) - (L(V2V™))

= F(L(VV™M), v v, vV, Ly, vy, vY,),
(I3 F " )(ur, wz, uz) - (L(VVL))

= FA(L(VVA)),

and

3
z (i),-i)kFl My, ua,ug) - (Vuj, V)
j.k=1

N IO ARS WA AR vE A vEI AL vel VAR vATA
i

for some polynomials F2,-- -, F2, the formula (2.3) holds by setting
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Note that
LTV (Vi(a) + 2)) = LV V() + 2)) - VVi(2) + LTV (Vi (2) + 2))
+ VIV (@) + 2) - L(TVa(2))
= V" (Vi(z) + 2) - L(TVi(2))
+ E'"'(L(Vl/,(")),v:’\/,("),VQV,("),VV,),
where E'! is some polynomial which can be calculated by the same method as F2.
Since it is of the same type as in the previous case for LVt("), we can prove the LP

convergence of L(VV!(")(V,(J:) + 2)). And noting the fomula (2.3), the L”-convergence

of L"’V,(")(\",(J:) + z) can be also proved by the same reason. For the general case
L'V™V(z) (1=0,1,-- k, m=0,1,--- 2k, 20+ m < 2k, k =2,3,-- ), the equation
can be calculated by

L'O™ (VD (Va(e) + 2) (2.4)
= YV (Vi(z) + 2) - L'V V()
+ EMLIV, LI,
i=0,1,---,m, 37=0,1,---,
i =0,1,---,m=-1, j=01,---,
24 <2m4n, 2 +3 <2>m-1)+n),
=0,1,---k, m=0,1,---,2k, 24+m <2k,
k=23,
for some polynomial £H™.
Repeating the saime argument as above, we can prove the convergence of V,(") ol, in

(2k, p)-norm. §

Theorem 2.3. We can redefine Uy (z) as U,(2) so that it is defined for every { € R and
z € X and satisfies (1.1) and (1.2) q.e. 2 forall {,s € R.

Proof. The solution U/;(x) in Theorein 2.1 was constructed as a quasi everywhere limit
of U™ (x) for some subsequence {n;}. We define V;(z) for every t € R and z € X by
i (2) it — oo V() if V(")(2) converges,

l 0, if V,("')(:L') does not converge.

Then, U,(2) = Vi(x) + 2 is quasi continuous and Uy(z) = U,(ar) q.e. By the almost sure
flow property of {/i(x), we have UpolUz) = UpoUs(z) = Urgs(a) = (7,+,(a:) aa. z(p).
But Uiy (2) is quasi continuous and hence, if we can show that U, o U,(z) has a quasi
continuous modification, we have
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U, o 17,(1:) = (7,+,(1:) q.e. x.
By Lemina 2.2, we showed that V,(") o U/, is Cauchy in WI'(X; H) and therefore, we can
take a subsequence {7} from {n;} such that for any € > 0, there exists a closed set Y

with Cr ,(N\Y) < € and V,(ﬁj)o(],(a:) converges to V; o U,(z) uniformly in z € Y. Hence
we can deduce that U, o U, (2) is quasi continuous. I

3. AN EQUIVALENCES OF CAPACITY

Let U (x) be the solution constructed in Theorem 2.3. In this section, we prove
the equivalence of capacities between a set B in X and U(B) in the sense given in
Theorem 3.5 which refines to the property of mutual absolute continuity for (Uy).p and

.

Lemma 3.1. Forany | < p < pyand» > 0,if g € WP (X;R), then the family {_qu‘(")}
forms a bounded set in WI'(X;R). To be more precise, there exists a constant C such

that |lgo US|, < € - lgllz,, for all n and g € W (X R).

rp =
Proof. We prove only the case »r = 2. The general case can be proved similarly. Note
that

HL(VE @) + 2l < 1LYV () + )1,
+ V)V )+ 2) - LV @),
+1 (V2 (V) + 2) - V™ - o),

+ 1123 @)V (@) + 2) - VU,

=L+ E,+ E3+ Ey.

If we put k™) = (d(U{™)apt/dp)(z), then for all p > 1, sup"{llksn)llp +ILVEN
< oo, and sup,, ||VV{™)||, < co ([14]). By Ilélder’s inequality, the above L” norms can
be estimated as follows:

Ey = |(La)(@) - k™ @)l < K17 1 Ll
Ey = 1LV (x) - (Fg)(@) - k" @)lp < N0 - 1LV laper - Vg1,
Es = || 3 (V) () - VM @) - iV () - KM @)y

< "2 - NPV Lz - 11V 29l
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Eq =123 _(aVy)(x) - &V (@) - k™ ()l
< M2y 1129V gy - 1192,
forall p’ > 1 and ¢’ > 1 with 1/p’ + 1/¢' = 1. By Meyer’s equivalence,

ST E < C - llLallp,

lgo UHG, < C - lallh ,, -

for some constant (. Thus we have < 2.p1°

To show the equivalence, we need the tightness of capacity.

Definition 3.2. An increasing sequence {F,,} of closed sets is called a nest with respect
to the capacity iIf

him Cop(N\F,) =0, forall »>0 and p> 1.

Further we say that the capacity is tight ([11]) if a nest {F,} exists such that F, is
compact for all n.

It is known ([13]) that the capacity is tight in our case of an abstract Wiener space.
Using the tightness, we liave

Lemma 3.3. There exists a compact nest {F,,} such that U], , the restriction of U; to
F,, is a homeomorphisin.

Proof. Since Uy is quasi continuous, for all € > 0, there exists a closed set F such that
Crp(F°) < € and Uy is continuous on F where F° denotes the complement of F. Since
{U:} is a quasi flow by Theorein 2.3, we see that U_, o Uy is the identity mapping on
Fy for somne closed set Iy with C,,(Ff) < €. Let {F,} be a compact nest. Then
Fu = Ol F) becomes also a compact nest. For xz,y € F,, if Ui(z) = Ui(y), then
r = U_(U2)) = U_(U(y)) = y since U_y o Uy is the identity on F,,. Thus Uy is
continuous and one-to-one on F,.

Therefore, {/; is a homecomorphism from I, to U (F,). |

Lemma 3.4. Forany | <p<pandr»r>0,ifg € WP (X;R), then goU; € WP(X;R);
more precisely, there exists a constant C such that |[g o Ufllr, < C - |lg]%,, for all
g€ WI (X R).
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Proof. By Lemuna 3.1, ||go (./,(")HZ.’J, < C-lglly ,,, for some constant C. Thus the proof

is complete il we prove that go Ut(") converges to ¢ o Uy in WP(X; R).
Since

Lig(V" (@) + 2)) = LV (@) + 2) + VgV ™ (@) + ) - LV ()
+ 5 V2V (@) + 2) - V(@) - iV (=)

+23°aVg(V(@) + ) - AV (),
i
we can prove that

|lg o Ut(") —goUlrp — 0 as n— oo,
by the same method as in the proof of Lemina 2.2. 1

Theorem 3.5. For | < pa < p < p; and r > 0, there exist constants Cy,C> > 0 such
that

o (Crpa(B)'7® < Cop(Ud(B)) S C1 - (Crpy (B)P™, YBCX.  (3.1)

Proof. By Lennna 3.3, there exists a compact nest {F,} such that Uy|r, is a homeomor-
phism. Let O be an open set in .X. Then O N F, is open in F,, and U (O N F,,) is open
in Ug(Fn). Thus there exists an open set O’ in X such that Uy(O N F,) = O' N U(Fy).
Since U (0) C [O' A U(F,)) U U(FE), we have

Crp(U(O))
< Crp([O"NU(F)VU(FY))
inf{|[f1l\,,; FEWI(X,R), f>1 ae on [0'NU(F.))UU(F;))
nf{|[F1I7,; SEWI(X;R), foU >1 ae on OUF;)
inf{llgo U_¢|IV . golU_r € WI(X;R), g>1 ae. on OUF}.

By Lemia 3.4, we Lave

IN

Crp(U(0)) < Cy-inf{llallt,,, 9 € WP'(X;R), g > 1 ae. on OUFy}
= - (Crp (OU p’f))r/m
< G (Cop (OPIT 4 Cp (I

- ("’I ) ((.V:r,ln (()))I‘/”l ’ as n — o0.
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Therefore, for an open set O in X, C,,(U(0)) < Cy - (Crp,(0))?/P* for sorne constant
C.
For an arbitrary set B C X', we take an open set ¢ O B. Then

Crp(Ui(B) < Crp(U(G)) < Cr - (Crp (G171

Taking infimmum lor all open sets (¢ D B, we have

Crp(U(B)) <Cy - ((,',’,,I(B))P/m.

For the first inequality of (3.1), we have to note that for an arbitrary set B, C, p,(B) =
Crp(U—t o U(B)) by Theorem 2.3. Thus we have

Crp,(B) = Cyp, (U~ o U(B)) < Cy - (Crp(U(B)))P2IP,
by the second inequality of (3.1). Ience
Co- (Crpa (BT < Crp(U(BY),
for some constant C. The proof is complete. 1

Corollary 3.6. The flow Ui(2) constructed in Theorein 2.3 preserves the class of slim
sets, that is, if B C X is slim in the sense that C,,(B) = 0 for every r > 0 and
1 < p < oo, then U (B) is also slun for every t € R.

Finally, we give a typical application. Let F : W — R? be a d-dimensional Wiener
mapping satisfying ' € W2 (\;RY) and (det(VF|VF))™' € Nicpcanl?. By taking
a suitable modification, if necessary, we may assume that F is quasi continuous. Let
A€ WZ(N,H) be a vector field which satisfies the conditions (i), (i) and (iii) of
Theorem 2.1. Assuine further that

< A(2),VF(@)>y = 0, a.a. z(p).

For a € RY let S, = {x|F(x) = a} and v, = det < VF|VF >~1Y2 (2)6,(F) be the
area measure on S, induced from g (cf. Airault-Malliavin [1], Sugita [13]). Assume that
va # 0. Since every slim set is a v-null set (cf. [1], [13]), the flow U (z) is a well-defined
random element on the measure space (Sq,v:). Now we can conclude that, for a.a. z
(va), Ui(£) has the following property:

(i) U(z) € S, for all t € IR,
(it) Uigs(2) = Up o Uy(z) for all t,s € R,
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that is, U, () defines a flow on S,. For the proof, we first note that F is quasi continuous
and by Theorem 3.5 we can deduce easily that F o U () is quasi continuous. Since

!
(([—t(FoU,(Jr)) = < VFolUlz), AUz) >y = 0, p—ae.z,

we can conclude that F o U(z) = F(z), a.a z(s). Hence by the quasi continuity, we
deduce that
FoUy(z) = F(x), quasieverywhere.

In particular, F o U(x) = F(x), v.-a.e. Hence (i) is proved. Also (ii) holds v,-a.e.
because it holds quasi everywhere by Theorem 2.3.
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