ON SOME SPACES OF NONLINEAR MAPS

YOUNGOH YANG.

1. Introduction.

In [3] Furi and Vignoli introduced a class of all quasi-bounded (nonlinear) maps on a Banach space X and defined a spectrum for this class. They gave some of the basic properties for such spectrum, and extended surjectivity results previously obtained by Granas and Kranosel'skij.

Canavati defined a numerical range for a broader class of all numerically bounded maps on a Banach space X and studied it in a more systematic way [2]. Kim and Yang defined a new class of all numerically bounded maps on a Hilbert C^* -module and studied their properties [5].

In this paper, we shall define some classes of n-tuples of continuous maps on a Banach space X and show that these are Banach spaces. For reasons that are going to be apparent in later sections, we found more convenient to deal with maps of the form $F: X \times X^* \to X$, instead of maps $f: X \to X$, the later being a particular case of the former. Here X^* denotes the dual space of X. In particular if n = 1, our spaces coincide with those of Canavati. That is, our concepts generalize those of Canavati.

Thoughout this paper, let X be a Banach space over $\mathbf{K}(\mathbf{R} \text{ or } \mathbf{C}), X^*$ its dual space, and denote by $\langle x, x^* \rangle$ $(x \in X, x^* \in X^*)$ the duality map between X and X^* . If $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbf{K}^n$, we set $|\lambda| = \left(\sum_{i=1}^n |\lambda_i|^2\right)^{\frac{1}{2}}$. For an n-tuple $\mathbf{F} = (F_1, \dots, F_n)$ of maps and $x \in X$, $\mathbf{F}(x)$ means $\mathbf{F}(x) = (F_1(x), \dots, F_n(x))$, and $\langle \mathbf{F}(x), x^* \rangle$ denotes $(\langle F_1(x), x^* \rangle, \dots, \langle F_n(x), x^* \rangle)$.

2. Some Spaces of n-tuples of Nonlinear Maps.

DEFINITION 2.1. Let X be a Banach space over the field K. (a) $\mathbf{B}^n(X)$ is the vector space of all n-tuples $\mathbf{f} = (f_1, \dots, f_n)$ of continuous maps $f_i : X \to X$ such that

$$\|\mathbf{f}(x)\| = \left(\sum_{j=1}^{n} \|f_j(x)\|^2\right)^{\frac{1}{2}} \le M\|x\|$$

for some $M \ge 0$ and all $x \in X$. We define the joint norm $||\mathbf{f}||$ of $\mathbf{f} = (f_1, \dots, f_n)$ as the smallest $M \ge 0$ such that this inequality holds for all $x \in X$. An element of $\mathbf{B}^n(X)$ is called a jointly bounded n-tuple on X. (b) $\mathbf{Q}^n(X)$ is the vector space of all jointly quasibounded n-tuples on X. That is, the space of all n-tuples $\mathbf{f} = (f_1, \dots, f_n)$ of continuous maps $f_i : X \to X$ such that there exist $A, B \ge 0$ satisfying

$$\|\mathbf{f}(x)\| = \left(\sum_{j=1}^{n} \|f_j(x)\|^2\right)^{\frac{1}{2}} \le A + B\|x\|, \ x \in X.$$
(1)

Denote $|\mathbf{f}|$ the joint quasinorm of $\mathbf{f} = (f_1, \dots, f_n)$ to be the infimum of all $B \ge 0$ for which (1) holds for some $A \ge 0$, i.e.,

$$|\mathbf{f}| = \limsup_{\|x\| \to \infty} \frac{\|\mathbf{f}(x)\|}{\|x\|}$$

In particular, if n = 1, then $\mathbf{B}^n(X)$ is the vector space of all bounded maps on X and $\mathbf{Q}^n(X)$ is the vector space of all quasibounded maps on X. Notice that $\|\cdot\|$ is a norm on $\mathbf{B}^n(X)$ and $|\cdot|$ is a semi-norm on $\mathbf{Q}^n(X)$.

The norm \times weak^{*} topology in $X \times X^*$, is the topology in $X \times X^*$ given by the norm topology on X and the weak^{*} topology on $X^*[1,2]$.

We define the following subsets of $X \times X^*$,

$$\Pi_{r} = \{ (x, x^{*}) \in X \times X^{*} : ||x|| = ||x^{*}|| \ge r, |x||^{2} = \langle x, x^{*} \rangle \}$$

for r > 0, and

$$\Pi_0 = \bigcup_{r>0} \Pi_r.$$

LEMMA 2.2[2]. Let π denote the natural projection of $X \times X^*$ onto X, and let E be a subset of Π_r that is relatively closed in Π_r with respect to the norm \times weak^{*} topology. Then $\pi(E)$ is a (norm) closed subset of X.

LEMMA 2.3[2]. Each $\Pi_r(r > 0)$ and Π_0 are connected subsets of $X \times X^*$ with the norm \times weak^{*} topology, unless X has dimension one over **R**.

From now on we shall assume that Π_0 has the norm \times weak^{*} topology induced as a subset of $X \times X^*$. Also we shall assume that X does not have dimension one over **R**.

DEFINITION 2.4. Let $\mathbf{F} = (F_1, \dots, F_n)$ be an n-tuple of continuous maps from Π_0 into X. We say that \mathbf{F} is jointly *-bounded if.

$$\|\mathbf{F}\|_* = \sup_{\Pi_{\sigma}} \frac{\|\mathbf{F}(x, x^*)\|}{\|x\|} < \infty$$

We denote by $\mathbf{B}^n_*(X)$ the vector space of all jointly *-bounded n-tuples.

Notice that $\|\cdot\|_*$ is a norm on $\mathbf{B}^n_*(X)$. We can consider the vector space $\mathbf{B}^n(X)$ of all n-tuples of bounded maps as a vector subspace of $\mathbf{B}^n_*(X)$ in a natural way, namely ; if $\mathbf{f} = (f_1, \dots, f_n) \in \mathbf{B}^n(X)$, the mapping $\mathbf{F}(x, x^*) = \mathbf{f}(x) = (f_1(x), \dots, f_n(x))$ belongs to $\mathbf{B}^n_*(X)$ and $\|\mathbf{f}\| = \|\mathbf{F}\|_*$.

THEOREM 2.5. $B^n_*(X)$ is a Banach space.

Proof. This is a standard argument, and so it will be omitted.

DEFINITION 2.6. Let $\mathbf{F} = (F_1, \dots, F_n)$ be an n-tuple of continuous maps from Π_0 into X. We say that \mathbf{F} is jointly *-quasibounded if

$$|\mathbf{F}|_{\star} = \limsup_{r \to \infty} \sup_{\Pi_r} \frac{\|\mathbf{F}(x, x^{\star})\|}{\|x\|} < +\infty.$$

We denote by $\mathbf{Q}^n_*(X)$, the vector space of all jointly *-quasibounded n-tuples.

Notice that $|\cdot|_*$ is a seminorm on $\mathbf{Q}^n_*(X)$. Obiously one has $\mathbf{B}^n_*(X) \subseteq \mathbf{Q}^n_*(X)$ and

 $\|\mathbf{F}\|_{*} \leq \|\mathbf{F}\|_{*}.$

We can consider the vector space $\mathbf{Q}^n(X)$ as a vector space $\mathbf{Q}^n_*(X)$ in a natural way, namely; if $\mathbf{f} \in \mathbf{Q}^n(X)$, then the mapping $\mathbf{F}(x, x^*) = \mathbf{f}(x)$ belongs to $\mathbf{Q}^n_*(X)$ and $|\mathbf{f}| = |\mathbf{F}|_*$. LEMMA 2.7. For any $\mathbf{F} \in \mathbf{Q}^n_*(X)$, there exists a sequence $\langle \mathbf{F}_m \rangle$ in $\mathbf{B}^n_*(X)$ such that $|\mathbf{F}_m - \mathbf{F}|_* = 0$ $(m = 1, 2, 3, \cdots)$ and

 $\|\mathbf{F}_m\|_* \longrightarrow |\mathbf{F}|_*$ as $m \to \infty$.

Proof. Let $\rho^2 = ||x||^2 + ||x^*||^2$, and define

$$\mathbf{F}_{m}(x, x^{*}) = \begin{cases} \mathbf{F}(x, x^{*}) & \text{if } \rho \geq m, \\ \frac{\rho}{m} \mathbf{F}(\frac{m}{\rho} x, \frac{m}{\rho} x^{*}) & \text{if } 0 < \rho < m \end{cases}$$

We have

$$\|\mathbf{F}_{m}\|_{*} = \sup_{\Pi_{o}} \frac{\|\mathbf{F}_{m}(x, x^{*})\|}{\|x\|} = \sup_{\Pi_{m}/\sqrt{2}} \frac{\|\mathbf{F}(x, x^{*})\|}{\|x\|}$$

Therefore $\mathbf{F}_m \in \mathbf{B}^n_*(X)$ for all m large enough and

 $\|\mathbf{F}_m\|_* \to |\mathbf{F}|_*$ as $m \to \infty$.

DEFINITION 2.8. (a) Let $\mathbf{F}, \mathbf{G} \in \mathbf{Q}_{*}^{n}(X)$. The n-tuple \mathbf{F} is said to be jointly *-asymptotically equivalent to \mathbf{G} (j.*- a.e) if $|\mathbf{F} - \mathbf{G}|_{*} = 0$. It is easy to see that this is an equivalence relation. (b) $\widetilde{\mathbf{Q}}_{*}^{n}(X)$ is the normed space of all equivalence class of jointly *-quasibounded n-tuples, i.e. $\widetilde{\mathbf{Q}}_{*}^{n}(X) =$ $\mathbf{Q}_{*}^{n}(X)/N^{n}(|\cdot|_{*})$, where $\mathbf{F} \in N^{n}(|\cdot|_{*})$ iff $|\mathbf{F}|_{*} = 0$. The norm on $\widetilde{\mathbf{Q}}_{*}^{n}(X)$ is the one induced by $|\cdot|_{*}$ and will be denoted in the same way.

From Lemma 2.7, we see that the mapping $\mathbf{B}^n_*(X) \to \widetilde{\mathbf{Q}}^n_*(X)$, $\mathbf{F} \to \widetilde{\mathbf{F}}$ is onto.

Furthermore we have:

THEOREM 2.9. $\widetilde{\mathbf{Q}}_{*}^{n}(X)$ is a Banach space.

Proof. Let $\{\widetilde{\mathbf{F}}_m = \langle \widetilde{F}_m^{(1)}, \cdots, \widetilde{F}_m^{(n)} \rangle\}$ be any sequence in $\widetilde{\mathbf{Q}}_*^n(X)$ such that $\sum |\widetilde{\mathbf{F}}_m|_*$ converges. We have to show that $\sum \widetilde{\mathbf{F}}_m = (\sum \widetilde{F}_m^{(1)}, \cdots, \sum \widetilde{F}_m^{(n)})$ converges. i.e. $\sum \widetilde{F}_m^{(j)}$ converges for each $j = 1, \cdots, n$. By Lemma 2.7, for any positive integer m, we can choose $\mathbf{G}_m \in \mathbf{B}_*^n(X)$ such that

$$\widetilde{\mathbf{G}}_m = \widetilde{\mathbf{F}}_m \text{ and } \|\mathbf{G}_m\|_* \leq |\mathbf{F}_m|_* + 2^{-m}.$$

Since $\mathbf{B}_{*}^{n}(X)$ is a Banach space, $\sum \mathbf{G}_{m}$ converges to an element $\mathbf{G} \in \mathbf{B}_{*}^{n}(X)$. From the continuity of the linear projection $B_{*}^{n}(X) \to \widetilde{\mathbf{Q}}_{*}^{n}(X)$, we obtain $\sum \widetilde{\mathbf{G}}_{m} = \sum \widetilde{\mathbf{F}}_{m} = \widetilde{\mathbf{G}}$.

DEFINITION 2.10. Let $\mathbf{F} = (F_1, \dots, F_n)$ be an n-tuple of continuous maps from Π_0 into X. We say that \mathbf{F} is jointly *-numerically bounded if

$$\omega_*(\mathbf{F}) = \limsup_{r \to \infty} \sup_{\Pi_r} \frac{|\langle \mathbf{F}(x, x^*), x^* \rangle|}{||x|| ||x^*||} < +\infty.$$

We denote by $\mathbf{W}^{n}_{*}(X)$, the vector space of all jointly *-numerically bounded n-tuples.

Notice that w_* is a seminorm on $\mathbf{W}^n_*(X)$. If $\mathbf{F} \in \mathbf{W}^n_*(X)$, then we let

$$\alpha_*(\mathbf{F}) = \liminf_{r \to \infty \Pi_r} \frac{|<\mathbf{F}(x, x^*), x^* > |}{\|x\| \|x^*\|}.$$

Obviously one has $\mathbf{Q}_*^n(X) \subseteq \mathbf{W}_*^n(X)$ and $w_*(\mathbf{F}) \leq |\mathbf{F}|_*$.

DEFINITION 2.11. Let $\mathbf{F} = (F_1, \dots, F_n) \in W^n_*(X)$ and for $j = 1, \dots, n$, consider the maps

$$F_j^{
u}: \Pi_0 \to X \text{ and } F_j^{\tau}: \Pi_0 \to X$$

given by

$$F_j^{\nu}(x, x^*) = \frac{\langle F_j(x, x^*), x^* \rangle}{\|x\| \|x^*\|} x$$

and

$$F_j^{\tau}(x,x^*) = F_j(x,x^*) - F_j^{\nu}(x,x^*).$$

Then $\mathbf{F} = \mathbf{F}^{\nu} + \mathbf{F}^{\tau}$ (i.e., $F_j = F_j^{\nu} + F_j^{\tau}$ for $j = 1, \dots, n$.) The n-tuples $\mathbf{F}^{\nu} = (F_1^{\nu}, \dots, F_n^{\nu})$ and $\mathbf{F}^{\tau} = (F_1^{\tau}, \dots, F_n^{\tau})$ are called the jointly normal and jointly tangent components of \mathbf{F} respectively.

The following Lemma follows immediately from the definitions.

LEMMA 2.12. Let $\mathbf{F} = (F_1, \dots, F_n) \in \mathbf{W}^n_*(X)$. Then (a) $< \mathbf{F}^{\nu}(x, x^*), x^* > = < \mathbf{F}(x, x^*), x^* >, \quad (x, x^*) \in \Pi_0.$ (b) $< \mathbf{F}^{\tau}(x, x^*), x^* > = 0, \quad (x, x^*) \in \Pi_0.$ (c) $\mathbf{F}^{\nu} \in \mathbf{Q}^n_*(X)$ and $|\mathbf{F}^{\nu}|_* = \omega_*(\mathbf{F}).$

The following result is also obvious.

THEOREM 2.13. Let $\mathbf{F} = (F_1, \dots, F_n)$ be an n-tuple of continuous maps from Π_0 into X. Then $\mathbf{F} \in \mathbf{W}^n_*(X)$ if and only if there exists n-tuples \mathbf{G}, \mathbf{H} of continuous maps from Π_0 into X with $\mathbf{G} \in \mathbf{Q}^n_*(X)$ and \mathbf{H} satisfying $< \mathbf{H}(x, x^*), x^* >= 0$ $((x, x^*) \in \Pi_0)$, such that $\mathbf{F} = \mathbf{G} + \mathbf{H}$. Such an n-tuple \mathbf{H} is said to be a jointly *-orthogonal n-tuple.

DEFINITION 2.14. (a) Let $\mathbf{F}, \mathbf{G} \in \mathbf{W}^n_*(X)$. The n-tuple \mathbf{F} is said to be jointly *-asymptotically numerically equivalent (i.e.j. *-a.n.e) to \mathbf{G} if $\omega_*(\mathbf{F} - \mathbf{G}) = 0$.

It is easy to see that there is an equivalence relation.

(b) $\widehat{\mathbf{W}}_{*}^{n}(X)$ is the normed space of all equivalence classes of jointly *numerically bounded n-tuples, i.e., $\widehat{\mathbf{W}}_{*}^{n}(X) = \mathbf{W}_{*}^{n}(X)/\mathbf{N}^{n}(\omega_{*})$, where $\mathbf{F} \in N^{n}(\omega_{*})$ iff $\omega_{*}(\mathbf{F}) = 0$. The norm on $\widehat{\mathbf{W}}_{*}^{n}(X)$ is the one induced by ω_{*} , and it will be denoted in the same way.

Now let $\sim: \mathbf{Q}^n_*(X) \to \widetilde{\mathbf{Q}}_*(X)$ and $\wedge: \mathbf{W}^n_*(X) \to \widehat{\mathbf{W}}^n_*(X)$ be natural linear projections. Then we have the following commutative diagram of continous linear maps

where j is the inclusion map of $\mathbf{Q}_{*}^{n}(X)$ into $\mathbf{W}_{*}^{n}(X)$, $q(\mathbf{F}) = \widehat{\mathbf{F}}$ and $r(\widetilde{\mathbf{F}}) = \widehat{\mathbf{F}}$.

Note that the map r is well-defined, because if $\mathbf{F}, \mathbf{G} \in \mathbf{Q}_{*}^{n}(X)$ are such that $\widetilde{\mathbf{F}} = \widetilde{\mathbf{G}}$, then $\omega_{*}(\mathbf{F} - \mathbf{G}) \leq |\mathbf{F} - \mathbf{G}|_{*} = 0$, and hence $\widehat{\mathbf{F}} = \widehat{\mathbf{G}}$.

THEOREM 2.15. $\widehat{\mathbf{W}}^n_*(X)$ is a Banach space.

Proof. Let $\{\widehat{\mathbf{F}}_m\}$ be a sequence in $\widehat{\mathbf{W}}^n_*(X)$ such that $\sum \omega_*(\widehat{\mathbf{F}}_m) < \infty$. We have to show that $\sum \widehat{\mathbf{F}}_m = (\sum \widetilde{F}^{(1)}_m, \cdots, \widetilde{F}^{(n)}_m)$ converges.

Since $\omega_*(\widehat{\mathbf{F}}) = \omega_*(\mathbf{F}) = |\mathbf{F}^{\nu}|_* = |\widetilde{\mathbf{F}}^{\nu}|_* (\mathbf{F} \in \mathbf{W}^n_*(X))$, where $\mathbf{F}^{\nu} \in \mathbf{Q}^n_*(X)$ (Lemma 2.12) is the jointly normal component of \mathbf{F} , we have

$$\sum |\widetilde{\mathbf{F}}_{m}^{\nu}|_{*} = \sum \omega_{*}(\widehat{\mathbf{F}}_{m}) < \infty.$$
(1)

But $\{\widetilde{\mathbf{F}}_m^{\nu}\}\$ is a sequence in the Banach space $\widetilde{\mathbf{Q}}_*^n(X)$, and it follows from (1) and Theorem 2.9 that the series $\sum \widetilde{\mathbf{F}}_m^{\nu}$ converges to an element $\widetilde{\mathbf{F}} \in \widetilde{\mathbf{Q}}_*^n(X)$. Since the mapping $r: \widetilde{\mathbf{Q}}_*^n(X) \to \widehat{\mathbf{W}}_*^n(X)$ is linear and continuous, we must have

$$\sum \widehat{\mathbf{F}}_{m}^{\nu} = \sum r(\widetilde{\mathbf{F}}_{m}^{\nu}) = r(\widetilde{\mathbf{F}}) = \widehat{\mathbf{F}}.$$
 (2)

But $\widehat{\mathbf{F}} = \widehat{\mathbf{F}}^{\nu}$ for $\mathbf{F} \in \mathbf{W}^{n}_{*}(X)$. Hence from (2) we obtain $\sum \widehat{\mathbf{F}}_{m} = \widehat{\mathbf{F}}$.

Acknowledgement. The author would like to thank the KOSEF for his partially financial support, 1991.

References

- F.F. Bonsall & J. Duncan, "Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras", Cambridge University Press, London / NY, 1971
- 2. J.A. Canavati, A theory of numerical range for nonlinear operators, J. Functional Analysis 33 (1979), 231-258
- 3. M. Furi & A. Vignoli, A nonlinear spectral approach to surjectivity in Banach spaces, J. Functional Analysis 20, (1975), 304-318
- K. Georg & M. Martelli, On spectral theory for nonlinear operators, J. Functional Analysis 24 (1977), 140-147
- K. S. Kim & Y. Yang, On the numerical range for nonlinear operators, Bull. Korean Math. Soc. 21(2), (1984), 119-126

Department of Mathematics College of Natural Sciences Cheju National University Cheju do, 690-756, KOREA.