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Abstract

There are many papers on linear operators that preserve commuting
pairs of matrices over Boolean matrices and fuzzy matrices. They
gave us the motivation to the research on commuting pair-preservers
of matrices over nonnegative integers. So we characterize the linear
operators that preserve commuting pairs of matrices over nonnegative
integers.
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1 Introduction

Partly because of their association with nonnegative real matrices, Boolean
matrices [(0, 1)-matrices with the usual arithmetirc. except 1 + 1 = 1] have
been the subject of research by many authors. In 1982, Kim [6] published a
compendium of results on the theory and applications of Boolean matrices.

Often. parallels are sought for results known for field-valued matrices,
see e.g. deCaen and Gregory [2], Rao and Rao [5, 7], Richman and Schneider
(11], Beasley and Pullman [9. 10].

The set of commuting pairs of matrices, C, is the set of (unordered) pairs
of matrices (X,Y) such that XY = Y X. The linear operator T is said to
strongly preserve C when T(X)T(Y)=T(Y)T(X) if and only if XY =Y X.

In 1976 Watkins [15] proved that if n > 4, M is the set of n x n matrices
over an algebraically closed field of characteristic 0, and L is a nonsingular
linear operator on M which preserves commuting pairs, then there exists
an invertible matrix S in M, a nonzero scalar ¢, and a linear functional f
such that either L(X) = ¢SXS™! + f(X)I or L(X) = ¢SX!S™! + f(X)I,
for all X in M. In 1978, Beasley (8] extended this to the case n = 3. Also
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in (8], Beasley showed that the same characterization holds if n > 3 and
L strongly preserves commuting pairs. The real symmetric and complex
Hermitian cases were first investigated by Chan and Lim [3] in 1982; the
same results were established as in the general case, with the exception that
the invertible matrix must be orthogonal or unitary. Further extensions
and generalizations to more general fields were obtained by Radjavi [4] and
Choi, Jafarian, and Radjavi {11]. Song and et al obtained characterizations
of the linear operators that preserve the commutativity of matrices over
nonnegative reals [12] and general Boolean algebras [14].

Here we investigate the set of linear operators on M,,(Z*1) which preserve
the set of pairs of commuting matrices, where Z* is the nonnegative part of
the ring of integers Z.

We obtain characterizations of linear operators that preserve commuting
pairs of nonnegative integer matrices.

2 Definitions and Preliminaries

Let B = {0,1} be the set with the two operations, addition(+) and
multiplication(-) such that

(1) 0+0=0,0-0=0.
(2)0+1=1+40=1,0-1=1-0=0.
3)1+1=1,1-1=1.

Then B is called a Boolean algebra. A matrix with entries in B is called a
Boolean matriz. We let M,, , denote the set of all m x n Boolean matrices.
The n x n identity matrix I, and the m x n zero matrix O,, ,, are defined as
for a field. The m x n matrix all of whose entries are zero except its (z,7)th,
which is 1, is denoted E; ;. We call E; ; a cell. We denote the m x n matrix
all of whose entries are 1 by Jp, ,. We omit the subscripts on I,0, and J
when they are implied by the context.

EXAMPLE. If A and B are n x n Boolean matrices, then A + I commutes
with B + I whenever A commutes with B. On the other hand, when E
does not commute with J. Therefore X — X + I preserves commuting pairs
of Boolean matrices, but not strongly.

If A and B are in M(=Mp, ), we say B dominates A(written B>A or

A< B) if b;; = 0 implies a;; = 0 for all ¢,5. This provides a reflexive,
transitive relation on M.
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Linearity of transformations is defined as for vector spaces over fields.
A linear transformation on M is completely determined by its behavior on
the set of cells. The number of nonzero entries in a matrix A is denoted |A].
A matrix S having at least one nonzero off-diagonal entry is a line matriz if
all its nonzero entries lie on a line (a row or a column); so 1< |S| < n. If the
nonzero entries in S are all in a row, we call S a row matriz and St a column
matriz. We use R; (respectively, C;) to denote the row matrix (respectively,
column matrix), respectively with all entries in the ith row (respectively,
column) equal 1. We say that cells E and F are collinear if there is a line
matrix L such that L > E + F. When X and Y are in M. we define X \
Y to be the matrix Z such that z;; = 1 if and only if z; ; = 1 and y; ; = 0.
For example, the matrix in M, , having all off-diagonal entries 1 and all
diagonal entries 0 is denoted K,. Thus, K, = J\ I. A linear operator T on
M is said to be nonsingular if T(X)=0 implies that X = O. A nonsingular
linear operator on M need not be invertible. If U is any matrix whose first
column has all entries 1, then X — XU is nonsingular but never invertible,
unless m = n = 1. Similarly, a matrix A is said to be nonsingular if Ax =0
implies that x= 0 (x a column vector). If A has a nonzero entry in each
column, then A is nonsingular. Also, when m = n, the only invertible
matrices are permutation matrices. Therefore, many nonsingular Boolean
matrices are not invertible. We let C(A) denote the commutator semigroup
of A, ie., C(A) = {Xe M| XA=AX}. Then C(J) consists of O and the
matrices X such that both X and X! are nonsingular. Let S denote the set
of all symmetric matrices in M,, ,. We define a digon matrir to be the sum
of a cell and its transpose. A star matriz is the sum of a line matrix and its
transpose. Clearly all digon matrices and all star matrices are symmetric.
Let C(J) denote the subsemigroup of C(J) which lies in S,,, that is, C(J) is
the commutator of J in S. Then C (J) is the set of all symmetric nonsingular
matrices together with O.

Evidently, the following operations strongly preserve the set of commut-
ing pairs of matrices;

(a) transposition (X — X1);

(b) similarity (X — SXS~! for some fixed invertible matrix S).
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3 Linear operators that preserve commuting pairs
of nonnegative integer matrices.

In this section, we characterize the linear operators that preserve commut-

ing pairs of nonnegative integer matrices. We let M,,(Z*) denote the set of
n X n matrices over Z%.
A mapping T: Mp(Z*) — My (Z7) is called a linear operator if T(aA +
BB)= a T(A)+ 8 T(B) for all A,B € M,(Z*) and for all a,8 € Z*.
For A = [a;;] and B = [b;;] in M,(Z"), we recall that A dominates B,
denoted by A > B, if b; ; # 0 implies a; ; # 0. Let T be a linear operator on
Mn(Z*). If A and B are matrices in M, (Z*) with A < B, we can easily
show that T(A) < T(B). Let A, = {(3,7)|1 < 4,5 < n}. Then for any
(i,7) € Ay, we recall that E; ; denotes the n x n matrix whose (i, j)th entry
is 1 and other entries are all 0. We call E; ; a cell.

LEMMA 3.1. Let T: Mn(Z*) — Mn(Z") be a linear operator on My (Z")
. Then the following are equivalent :

1. T is bijective.
2. T is surjective.

3. There exists a permutation o on A, such that T(E; ;) = E,

9(i.5)

Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now
show that 2) implies 3). We assume that T is surjective. Then, for any
pair (%, 7) € Ay, there exists a matrix X € My(Z*) such that T(X) = E; ;.
Clearly X # O by the linearity of T. Thus there is (r,s) € A, such that
X = z;5E, s + X' where (r,s) entry of X’ is zero and the following two
conditions are satisfied: z,s # 0 and T(E;, ;) # O. Since Z* has no zero
divisors it follows that

T(xr,sEr,s) < T(xr,sEr,s)+T(X \ (xr,sEr,s)) =T(X) = Ei,js

equivalently,

T(xr,sEr,s) =1'r,sT(Er,s) < E‘i,j)
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and so T(Er,s) < Ei,j-

It follows from z, s # 0 that T(E, ;) = b, ;E; ; for some nonzero scalar b, ,.
Let P,',j = {E«,-’s | T(Er,s) S Ei,j}- By the above Pi,]' ;é ¢ for all (1,]) € An.
By its definition, P, ;N P, , = ¢ whenever (3,7) # (u,v). That is, {P; ;} is the
set of n2 nonempty sets which partition the set of cells. By the pigeonhole
principle, we must have that | P;; |= 1 for all (i,j) € Ap. Necessarily, for
each pair (r,s) there is the unique pair (%, j) such that T(E,s) = b, E; ;.
Thus, there is some permutation o on {(4,5) | ¢,7 = 1,2,...,n} such that
T(E; ;) = b; jE, (i), for scalars b; ;. We now only need to show that b; ; = 1,
for all ¢, j. Since T is surjective and T(E; s) £ Ey(, ;) for (r,s) # (i, j), there
is some o such that T(aE; ;) = Ey(; ;- Since T is linear,

Eo(i,j) =T(aE1-,j) =« T(Ei,]‘) = ab,-,an(,-,j).

That is, ab;; = 1, or b;; is unit. Since 1 is the only unit element in zZt,
bij =1 for all (i,5) € Ap [ ]

We denotes C,(Z") as the set of commuting pairs of matrices over Z*;
that is, C,(Z*) ={(A4,B) € M*(Z*) | AB = BA} .

EXAMPLE 3.2 Let A be given in M, (Z"). Define an operator T on M, (Z")
by

n
T(X) = (Z xm) A
i,j=1
for all X=[z, ;] € Mp(Z*). Then we can easily show that T is a linear op-
erator that preserve commuting pairs of matrices, while it does not preserve

non-commuting pairs of matrices. [ ]

Thus, we are interested in linear operators that
(T(A), T(B)) € Ch(Z*) if and only if (A, B) € Co(Z7).
For a matrix A € M,(Z1), A is called invertible in M, (Z%) if there exists
a matrix B € M, (Z*) such that AB = BA = I,,. It is well known [2] that
all permutation matrices are only invertible matrices in M, (B). Using this

fact, we can easily show that all permutation matrices are only invertible
matrices in My, (Z1).

THEOREM 3.3. Let T be a linear operator on My(Z*). Then T is a sur-
jective linear operator which preserves pairs of commuting matrices if and
only if there exists an invertible matriz U € M,(Z") such that either
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(1) T(X) =UXU"® for all X € M,(Z%), or
(2) T(X) =UX'U* for all X € M,(Z").

Proof. Let T be a surjective linear operator on M,,(Z*) that preserves
pairs of commuting matrices. By Lemma 3.1, T is bijective and there exists
a permutation o on A, such that T(E; ;) = E,(; ;). Note that if AX = XA
for all X € M,(Z%), then we have A = al, for some o € Z+. Thus we
have T(I,) = BI, for some 3 € Z* because T is bijective. Since T maps
a cell onto a cell, T(I,) = I,. It follows that there is a permutation -~
of {1,...,n} such that T(E:;) = E,(;y) for each i = 1,...,n. Define
L: My (Z*) —» M,(Z7) by L(X) = PT(X)P?, where P is the permutation
matrix corresponding to y so that L(E;;) = E;; foreachi = 1,...,n. Then
we can easily show that L is a bijective linear operator on M, (Z*) which
preserves pairs of commuting matrices. By Lemma 3.1, L maps a cell onto
a cell. Therefore, there exists (p,q) € A, such that L(E, ;) = E,, for any
(r,s) € A,.

Suppose that 7 # s. Since L is bijective, we have p # ¢ because L(E;;) =
E;; foreach ¢ =1,...,n. Assume that p # r and p # s. Then

Er,s(Er,r + Es,s + Ep,p) - (Er,r + Es,s + Ep,p)Er,s
so that
L(Er,s)L(Er,r + Es,s + Ep,p) :L(E'r,r + Es,s + Ep,p)L(Er,s)a

equivalently,
Ep,q(Er,T + Es s + Ep,p) = (Er,r + Ess + Ep,p)Ep,q-

It follows that ¢ = r or ¢ = 5. Since E, s(Ey, + Ess) = (Ery+ Es5)Ey s, we
have

L(Er,s)L(Er,r + Es,s) = L(Er,r + Es,s)L(ET,S)’

equivalently,
EP’Q(ET,T + Es,s) = (Er,’r + Es,s)Ep,q-

Since ¢ = r or ¢ = s, we have Ep o(Er, + Fss) = Ep, or E,s, but (B, +
Ess)Epq = 0, a contradiction. Hence we have p = r or p = s. Similarly we
obtain ¢ = r or ¢ = s. Therefore we have L(E;s) = E, s or L(Ey ;) = E; , for
each (r,s) € Ap. Suppose that L(E; ;) = Ey s with r # s and L(E,;) = E¢r
for some t # r,s. Then we have L(E;; + Ey5) = Es¢ + Ers. Let A =
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E.r+Es1+ Eis so that L(A) = Er, + Es; + Ers. Then (Er s+ Er)A =
A(E, s + E,;), and hence

L(Eps + Ere)L(4) = L(A)L(Eys + Ey).

But
L(Er,s + Er,t)L(A) = Er,t + Et,r’

while
L(A)L(Ers + Er,t) - Er,s + Es,r-

Thus we have t = s, a contradiction. It follows that if L(E;;) = E;;
for some pair (i,j) € A, with ¢ # j, then L(E,;) = E,; for all pairs
(r,s) € A,. Similarly, if L(E; ;) = E;; for some pair (i.j) € A, with i # j,
then L(E, ;) = E,, for all pairs (r,s) € A,. We have established that
either L{X) = X for all X € M,(Z") or L(X) = X! for all X € M,(Z").
Therefore T(X) = P'XP or T(X) = P!X'P for all X € M,(Z"). If U =
P!, then we have T(X) = UXU*! or T(X) = UX'U! for all X € M,,(Z*).
The converse is immediate. [ |

Thus we have characterized the linear operators that preserve commuting
pairs of matrices over nonnegative integers.
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