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Integral formulas on a Riemannian foliation

Keum Ran Lee and Seoung Dal Jung

Abstract. In this paper. we study the infinitesimal automorphisms on a Rie-
mannian foliation and establish the integral formulas for them.

1 Introduction

Let (M, gar. F) be a compact Riemannian manifold of dimension p + ¢ with a
transversally oriented foliation F of codimension ¢ and a bundle-like metric gas
with respect to F. Let L be the tangent bundle of 7 and @ = TM/L the normal
bundle of F. A vector ficld Y on M is called an infinitesimal automorphism of F
if the flow generated by Y preserves the foliation, that is, maps leaves into leaves.
In other words, for any Z € T'L,[Y,Z] € T'L. There has been extensive studies
of geometric infinitesimal automorphistus of a minimal Riemannian foliation by
many differential geometers. In this paper, we extend well-known integral for-
mulas concerning infinitestmal automorphisms on a Riemannian manifold to a
foliated manifold, which F is non-minimal.

2 Preliminaries

Let (M, gps, F) be a (p+ g)-dimensional Riemannian manifold with a foliation F
of codimension ¢ and a bundle-like metric gas with respect to F. Let V¥ be the
Levi-Civita connection with respect to gas. Let TM be the tangent bundle of M
and L the integrable subbundle of TA given by F. The normal bundle @ of F
is given by Q = TM /L. Then there exists an exact sequence of vector bundles

0— L—TM_—Q—0. (2.1)
Let gg be the holonomy invariant metric on ) induced by gy, that is.

90(s,t) = gm(o(s),o(t)) Vs, telQ. (2.2)
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This means that 8(X)gg = 0 for X € I'L, where 6(X) is the transverse Lie
derivative. A transversal Levi-Civita connection V in @ is defined by ([5,11))

7([X,Ys]) vX ellL
Vxs = M N (2.3)
(V' Ys) VX elL,

where s € 'Q and Y; € 'L+ corresponding to s under the canonical isomorphism
Q = L. The curvature RV of V is defined by RV(X,Y) = [Vx, Vy| - Vixy) for
X,Y e ITM. Since 1(X)RY = 0 for any X € TL([11]), the operator RY : Q — Q
is a well-defined endomorphism. Hence the transversal Ricci curvature pV is
defined by

p¥(sz) = 3 RY(s,eq)eq, (2.4)
a=p+1

where {€;}g=p+1,.. n is an orthonormal basis of Q)z. And the transversal scalar
curvature oV is given by oV = TrpV. The foliation F is said to be (transversally)
Einsteinian if the model space N is Einsteinian, that is,

1
pV = EUV -4d (2.5)

with constant transversal scalar curvature oV. The mean curvature vector k¥ of
F is defined by

p
s =n(> VHE), (2.6)
i=1

where {E;} is a local orthonormal basis of L. The foliation F is said to be
minimal if % = 0.

For the later use, we recall the divergence theorem on a foliated Riemannian
manifold ([19]).

Theorem 2.1 Let (M, gpr, F) be a closed, oriented, connected Riemannian man-
ifold with a transversally orientable foliation F and a bundle-like metric gy with
respect to F. Then

/ divg(X) = / go(X, kM (2.7)
M M

for all X € TQ, where divg(X) denotes the transversal divergence of X with
respect to the connection V defined by (2.3).

A differential form w € Q" (M) is basic if

W X)w=0, 0(X)w=0 VXelL. (2.8)
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Let Q5 (F) be the set of all basic r-forms on M. The foliation F is said to
be isoparametric if k € QL(F), where k is a gg-dual 1-form of k*. Then it is
well-known([11,12]) that on an isoparametric Riemannian foliation 'F, the mean
curvature form k is closed, i.e., dx = 0.

The basic Laplacian acting on Q5 (F) is defined by

Ap =dgép + épdp, (2.9)

where 6p is a formal adjoint of dg = de"B(]:), which are locally given by

dp =Y EaAVE, dg=-) i(Ea)Vg, +i(x), (2.10)

a

where {E,} is a local orthonormal basic frame on Q.

3 Integral formulas

Let (M, gar, F) be be a closed, oriented, connected Riemannian manifold of di-
mension p + g with a transversally oriented foliation F of codimension ¢ and a
bundle-like metric gas with respect to F. Let V(F) be the space of all vector
fields Y on M satisfying [Y. Z] € T'L for all Z € TL. An element of V(F) is called
an infinitesimal automorphism of F. Let

V(F)={Y ==(Y) eTQ|Y € V(F)}. (3.1)
It is trivial that an element s of V(F) satisfics Vx5 = 0 for all X € T'L([6,11]).

Definition 3.1 For any vector field Y € V(F), we define an operator Ay :
' - rQ as
Ays =6(Y)s — Vys. (3.2)

Remark. Let Yy € I'TM with n(Ys;) = s. Then it is trivial that for any
Y e V(F)
Ays - "VYS‘IT(Y). (33)

So Ay depends only on s = 7(Y) and is a linear operator. Moreover, Ay extends
in an obvious way to tensors of any type on @ (see [6] for details). In particular,
for any basic 1-form ¢ € Q5 (F), the operator Ay is given by

(Ayo)(X) = —o(Ay X) VX eTQ. (3.4)

- 157 -



Keum Ran Lee and Seoung Dal Jung

Now, we introduce the operator V;, Vi : Qp(F) — QF(F) as

ViVud=-> Vi po+ Vo, (3.5)

where V% y = VxVy — Vyuy for any X, Y € TM. Then we have the following.

Theorem 3.2 On the Riemannian foliation F on M, we have
App =V Virp+ Aud + F(d) (3-6)

for ¢ € QB(F), where F(¢) = 3_,, E° ANi(Ey)RY (Ey, Eg)é. In particular, if ¢ is
a basic 1-form, then F(¢)! = p¥ (¢%).

Proof. Fix z € M and let {E;} be an orthonormal basis for @ with (VE,), = 0.
Then from (2.10) we have

dpdpd = -  E*Ni(Ey)VE V¢ + dpi(k')$
a,b

and

Spdpd =Y -V, Veo+ Y E*Ni(E)VE Vi, +i(xH)dpe.
a ab

Summing up the above two equations, we have

App = dpi(k)o +i(k)dpd — Y Ve, Ve,o+ Y E*Ni(Ey)RY (Ey Ed)o
a ab

= (k)¢ — Z Ve Ve ®+ Z E®* Ni(Ep)RY (Ey, Eq)o
a a,b

= ViVio+ F(o) + Aud.

On the other hand, let ¢ be a basic 1-form and ¢! its gq-dual vector field. Then

9o(F(#), E) =Y _ 9o(E® Ni(Ey)RY (Ey, Ea)¢, E°)
ab
=Y i(E)R(Ey. E)o = Y _ 9(RY (Ev, Ec)¢*, Ey)
b b
=" 9o(RY(¢*, By By, Ec) = gq(p" (¢*), Ev).
b

This yields that for any basic 1-form ¢, F(¢)! = p¥V(¢"). O
From (3.4) and (3.6), we have the following corollary.
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Coro}lary 3.3 On the Riemannian foliation F on M, we have that for any
X e V(F)
ApX =V, VX +pY(X) - AL, X ' (3.7)

Proposition 3.4 For any basic function f on M, it holds that

Agf =0. (3.8)
M

Proof. From (2.9), we have

Apf=06pdpf=—) i(Es)Vg,dpf +i(k)dpf = —dive(dpf) + i(x")dp .

a

Then the divergence theorem (2.7) implies

| o=~ [ divolaas) + [ so(daf) =0, o

Note that on M, the direct calculation gives

1

5885% = (80)f = [V fI2 (3.9

which yields
A {8aNf - VifP} =0, (3.10)

Hence we have the following proposition.

Proposition 3.5 On the Riemannian foliation F on M, if a basic function f
satisfies Agf > 0 (orApf <0), then f is constant on M.

Proof. By Proposition 3.4, if Agf > 0, then Agf = 0. So f is constant from
(3.10). O

Proposition 3.6 For any basic function f and a constant A on M, if Agf = Af,
then A s positive.

Proof. From (3.10), if Agf = Af, then we have

[ 1001 - 190iPy =0,
M

which implies A > 0. O
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I"roposition 3.8 On the Riemannian foliation F on M, any vector field X €
V(F) satisfies

~divy (Ax X) — divy(divg (X) X)
= 90(s” (X), X) + 516(X)gal? ~ [V X|? ~ (67X
= 50(6% (X), X) = Zldpt]? + Ve X[ — (67X)7.
Proof. By a direct calculation with (3.3), it holds that for any X € V(F)
divg(AxX) = - qu(VEuVXX, E,),
dive (dive (X)X) :Xdz':;v(X) + (dive (X))
Since Xdive(X) = Xgo(VEe, X, Eo) = 90(VxVE,, E,), we have

divy (divy (X)X) + divg(Ax X)
= 90(VxVE,X - Vg, VxX, E,) + (divg (X))?

=" 90(RY(X,E)X + Vix,£,) X, Ea) + (dive(X))?
= —9(pY(X), X) = D 9Q(Ax Ax Ea, Eu) + (divy (X)),

From Lemma 3.7, the proof is completed. O

Corollary 3.9 On the Riemannian foliation F on M, any vector field X € V(F)
satisfies

| 18067 (). 3) + 516(X)g0l" - [V XP - 6r XY (319

+ / [dive (Ax X) + divy (divg(X)X)] =0
M

or
/M[QQ(PV(X),X) - %Idaéﬁ + (Ve X|* — (0rX)? (3.16)
+ / [divg (Ax X) + divy(divey(X) X)] = 0.
M

From (3.7), (3.15) and (3.16), we have the following corollary.
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Lemma 3.7 For any vector field X € V(F) on M, it holds that
TrAxAx = —%ldgsf + Ve X2
= 510(X)g0l? = Vi XP2
where § is gg-dual I-form of X.
Proof. For any basic 1-form ¢, it is well-known that
(dpo)(Y.Z) =Y (Z) - Zo(Y) - ¢([Y, Z]), VXY eTQ.

Since [Eq, Ep) = 0, we have that at t € M

dB€)* =) {(dB&)(Eq, Eb)}?

ab
=Y {Eab(Ey) — By(Ea)} = > {90(VE X, Eb) — 90(VE, X, Ea)}?
a.b a,b
=2|VX|* -2>  90(VE. X, Eb)go(VE,X. Ed). (3.11)
ab

On the other hand, from (3.2) it is trivial that

TrAxAx =Y 90(VEe X, E)go(VEe,X. Ea). (3.12)
ab

Hence the first equation in Lemma 3.7 is proved from (3.11) and (3.12). Next, it
is well-known that

1
TrAxAx = — TrA% Ax + STr(Ax + A%)?
1
=~ |V, X|* + 5Tr(Ax + A4)2. (3.13)

Moreover, since (8(X)go)(Y,Z) = 9o(Vy X, Z) + go(VzX,Y) for any XY, Z €
I'Q, we have

0(X)g01* = {90(VE. X, Ey) + 90(VE, X, Ea)}?
a,b

=Y 90((Ax + A%)Ea, Ep)? = Tr(Ax + A%)%. (3.14)
a,b

From (3.13) and (3.14), the second equation is proved. O
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Corollary 3.10 On the Riemannian foliation F on M, any vector field X €
V(F) satisfies

| 19(85X. ) 200(" (0).X0) - JI6(X)g0 + (6r X%} (17

+/M{9Q(A,<:X, X) — divv(AxX) - divv(divv(X)X)} =0,

or
, 1
| {90(88X.2) - Jldag - 6rX)?} (3.18)
+ {gQ(A,{:X, X) + divv(AxX) + divv(divv()()X)} =0.
M

Lemma 3.11 On the Riemannian foliation F on M, any vector field X € V(F)
satisfies

16(X) g0 + g(w)r? — 10(X)ggl® - g(mﬁ.

Proof. A direct calculation gives

P(X)ag + (6 X) =I6(X)ggl? + 267X )" + 2 (5X) Y (0(X)g0) (Eu: Eu)
~10(X)aql* + = (67X )* = (6r0)?
~16(X)gql* - 2 (67X ). ©

From Corollary 3.10 and Lemma 3.11, we have the following.

gorollary 3.12 On the Riemannian foliation F on M. any vector field X €
V(F) satisfies

| {00(85, X) - 20007 (X), X) = 510(X)aq + Z(rX) + T2 (5r)?)
+/ {gQ(A,{r.X, X) - divv(AxX) - divv(di'vv(X)X)} =0. (3.19)
M

Lemma 3.13 On the Riemannian foliation F on M, any vector field X € V(F)
satisfies

/{gQ(AnﬂX»X)*'diUV(AXX)}:—/ Xgo(K', X), (3.20)
M M

divy (divg (X)X) = — / (67 X)go(X, &) (3.21)
M M

- 162 -



Integral formulas on a Riemannian foliation

Proof. Equation (3.21) is followed from the divergence theorem. From (3.3) and
the divergence theorem, (3.20) is proved. O
Now we denote VK L(F) by

VK (F) = {X € V(F)|ga(X,&") = 0}. (3.22)
Then we have the following theorem.

Theorem 3.14 Let (M. gar. F) be a compact Riemannian manifold with a fo-
liation F and a bundle-like metric gar. For any vector field X € VK=(F) we
have

/| {ngBX.X)—2gQ(pV(X),X>—§w<X>gQ+§<6TX>|2} (3.23)

{

Proof. From Corollary 3.12 and Lemma 3.13, it is trivial. O

2(57X)%) + 20q(A X, X)) = 0.
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