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ON APPROXIMATE SOLUTION FOR
STOCHASTIC DIFFERENTIAL INCLUSION
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ABSTRACT. For the stochastic differential inclusion on infinite dimensional space
of the form dX, € o(X:)dW; + b(X)dt, where o,b are set-valued maps, W is an
infinite dimensional Hilbert space valued Q-Wiener process, we prove the existence
of solution under the assumption that ¢ and b are closed convex set-valued satisfying
the Lipschitz property using approximation.

1. INTRODUCTION

Let H and U be two separable Hilbert spaces and denote by L = L(U, H) the
set of all linear bounded operators from U into H. The set L is a linear space and,
equipped with the operator norm, becomes a Banach space. However if both spaces
are infinite dimensional, then L is not a separable space. Let Q be a symmetric
nonnegative operator in L(U) and W(t),t > 0, be a U-valued Q-Wiener process.
Let Uy = Q2U and LY = La(Up, H). Let (2,5, P) be a complete probability
space with a right-continuous increasing family (§:)¢>o0 of sub o—fields of § each
containing all P-null sets. We consider the following stochastic differential inclusion
(1.1) on infinite dimensional Hilbert space H and our aim is to show the existence

of solution.

(1.1) dX; € o(Xo)dW, + b(X,)dt,

where o : H — P(LY), b: H — P(H) are set-valued maps. For finite dimensional
case, the study of the existence and properties of solution for these stochastic dif-
ferential inclusions have been developed by many authors ([1}, [4]). Furthermore
the results for the viable solutions have been made ([2], [6], [7]). We had proved

also the existence of solution for the stochastic differential inclusion (1.1) on finite
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dimensional space under the condition that o and b satisfy the Lipschitz condition

([5])-

2. PRELIMINARIES

We prepare the definition of solution for stochastic differential inclusion and some
results for the stochastic differential equation on infinite dimensional Hilbert space.
We consider two Hilbert spaces H and U, and a symmetric nonnegative operator
Q € L(U). We consider first the case when Tr Q < +oo. Then there exists a
complete orthonormal system {ex} in U, and a bounded sequence of nonnegative
real numbers A\; such that Qex = A\gex, k=1,2,---.

Definition 2.1. An U-valued stochastic process W(t),t > 0, is called a Q-Wiener
process if

(i) W(0) =0,

(ii) W has continuous trajectories,

(iii) W has independent increments,

(iv) LW (t) — W(s)) = N(0, (t — 5)Q), the Gaussian distribution, ¢t > s > 0.

If a process W (¢),t € [0, T satisfies (i) - (iii) and (iv) for ¢, s € [0, 7], then we say
that W is a Q-Wiener process on [0, T]. Using the Kolmogorov extension theorem,
for arbitrary trace class symmetric nonnegative operator Q on a separable Hilbert
space U there exists a Q-Wiener process W(t),t > 0 ([3], Proposition 4.2) .

For an L = L(U, H)-valued elementary processes ® one defines the stochastic
integral by the formula

k-1

/t O(5)dW(s) = Z D (Weint — Weae)
0

m=0
and denote it by ® - W(t),t € {0, T).
It is useful, at this moment, to introduce the subspace Uy = Q'/2(U) of U which,
endowed with the inner product

o0
1
<YV >p= Z N <u,ex >< v, >=< Q—I/Qu’Q—lﬂv >
k=1"%
is a Hilbert space.
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In the construction of the stochastic integral for more general processes an im-
portant role will be played by the space of all Hilbert-Schmidt operators LY =
Ly (Ug, H) from Uy into H. The space LY is also a separable Hilbert space, equipped

with the norm

oC o0
Z | < ¥y, fx > |2: Z Al < We,. fi > |2

h k=1 hk=1
= [|9Q'?||* = Tr [¥Q¥”]

2
1112,

where {g;}, with g; = \/Aje;,7 = 1,2,--- ,{e;} and { f;} are complete orthonormal
bases in Up, U and H respectively. Clearly, L C L3, but not all operators from LJ
can be regarded as restrictions of operators from L. The space L§ contains genuinely
unbounded operators on U ([3]).

Let ®(t),t € [0,T], be a measurable L3-valued process; we define the norms

|l = {E /0 19(5)] 2 gds} /2

- (E /0 Tr (B(s)Q2)(()QV/2) ds} /2, ¢ € 0.T).

Proposition 2.2. ([3], Proposition 4.5) If a process ® is elementary and |||®]||; <

oo then the process ® - W is a continuous, square integrable H-valued martingale
on [0,7T] and

Elo-W@E)>= |||}, 0<t<T.

Let us consider the stochastic differential inclusion on infinite dimensional space

(1.1) dX, € o(X,)dW, + b(X,)dt,

with initial value Xo = z, where ¢ : H — P(L3), b: H — P(H) are set-valued

maps and z is an H-valued Fp-measurable random variable.

Definition 2.3. A stochastic process X = {X;, t € [0,T}]} € LP(Q — C([0,T) —
H)),p > 2, is said to be a solution of (1.1) on [0, 7] with the initial condition Xy = r
if there are predictable random processes f : Q@ x [0,7) = LY, ¢: Q x [0.T] - H
such that f(t) € o(X;). g(t) € b(X,) for every ¢ € [0,7] almost surely and
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Xt::x+/0 f(s) dWs+/tg(s) ds,
0

where

LP(Q — C([0,T] — H))

= {X | X is predictable, continuous, and E[ sup |Xs|’,’,] < oo}

0<s<T

For the stochastic differential equation

(2.1) { dX = f(t, X)dW, + g(t, X )dt,

X(0) ==z,

where f: [0,T) x H — LY, g : [0,7] x H — H are B([0,T]) ® B(H)-measurable
and r is H-valued Fo-measurable, a predictable H-valued process X (t),t € [0, 7],
is said to be a solution of (2.1) if, for arbitrary t € [0, T],

t t
X(t) ==z +/ f(s, X (s))dW; +/ 9(s,X(s))ds, P —as.
0 0
The following theorem is well known.

Theorem 2.4. ([3], Theorem 7.4) Assume that there exists a constant C > 0 such
that:

(@) 11t 2) — f(t.y)lleg + 19t 2) = g(t, Y| < Clz —yl, z,y € H, t € [0,T].

(i) [1£(t, 217 + lg(t, 2)I* < C2(1 + |2?), z,y € H, t € [0,T].

Then we have:

(1) There exists a mild solution X to (2.1) unique, up to equivalence, among the

P(/OT |X(s)|2ds) < +00.

Moreover it has a continuous modification.

processes satisfying

(ii) For any p > 2 there exists a constant Cp, 7 > 0 such that

sup E[|X(8)[P] < Cpr(1 + |zf?).
te(o,T)
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(iii) For any p > 2 there exists a constant CA',,,T > 0 such that

E

sup |X(t>|"] < Epr(1+]al?).
tE[O,T]

3. MAIN RESuLT

For a Banach space X with the norm || - || and for non-empty sets A, A’ in X.
we denote ||A|| = sup{||a|] | a € A}, d(a, A’) = inf{d(a,a’) | a’ € A}, d(A, A') =
sup{d(a, A’) | a € A} and dy (A, A’) = max{d(A, A’),d(A’, A)}, a Hausdorff metric.
We can prove the existence of solution for stochastic differential inclusion (1.1)

under Lipschitz condition using approximation.

Theorem 3.1. Assume that ¢ : H — P(L3), b: H — P(H) are closed convex

set-valued which are Lipschitz, i.e., there exists constants L > 0 and K > 0 such
that

{ dy(o(z),0(y)) < Llz — yl, du(b(x),b(y)) < Lz - y|
llo(x)|l < K(1+|z]), |lb(z)]] < K(1 + |z]).

Then there exists a solution X € AP = LP(2 — C([0,T] — H)) for the stochastic

differential inclusion (1.1).

Proof. For arbitrary ¢ and 7, define (X7*), (), and (n*) as the following by

induction.

t t
X' =z +/ £rdW, +/ nyds,
0 0

P = Poxpy& mit! = Pyxpynts

where P4z is the nearest point of A from z for closed convex set A, i.e., |t —Pax| =

d(z,A) = inf{|z—y| : y € A}. We claim that (X[*) converges and the limit becomes

a solution. Since

NPTt = €2l < dulo(X]),a(X]7H)
< LIXP - X7

t t
/ (€7 — €1 1)dW, + / (7 — i Y)ds
0 0

<L

N
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we have

. 1/p
E[ sup |lllert —s:nugnp]
0<s<t

SLE[SUD ]/ (€ -
0<s<t

<LOE [/HES-S" {2gds}” 2]1/p+LE[ ([ - ‘lds)p]l/p

(by Burkholder’s inequality)
/ I — = ds
P

¢ 1/2
/ e =€~ lgas] |
0
¢ 1/2
<za [ ||||f:—s;'-lnig||p/zds} N / 2 = 2=l ds

+L
t 1/2 t
=Lcl{ /0 ||||e:—5:-1||Lgnf,ds} vL /0 I = 72" lpds.

1/p s p 1/p
] | LE[ sup | [0 - w2~y ]

0<s<t

SLcll

By the same way, we have also that

1/p
E[ sup. Inpt! - n?l”]

0<s<
t 1/2 t
:Lcl{ / ||||e;'—e:-1uLgn?,ds} i L / 7 = o pds,

since |t — 0P| < dy(b(X]), b(X™1)). Take M > 0 be such that
:

2LC’1 2L Mt Mt
1, 2L < d 20t <
M+l a1 S b LGvViseM, an €

Then, by the induction, we have that

@1 || sl - el
<s<t P
eMt 1 40 1 0
< G {2om et = Mgty + sup Ik~ 2l ),
0<s<t 0<s<t
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(3.2) sup |nf+! —nf|
0<s<t p
< eMt sup |||l€! - 0 1_ .0
= T9n P ”€s £s||L8||P+ sup ”ns nsHP .
2" lo<s<t 0<s<t

Indeed, in case of n =1,

sup 1€ — €2l SLQVTNPWQ-QMﬂﬁ+Ust¢—£m
0<s<t p 0<s<t 0<s<t

Mt
€
< S { s et = luglly + sup lind =l
0<s<t 0<s<t

oMt oMt
LOWt < TR Lt < =

For 1, we can prove similarly. Assume that the above inequalities hold for n — 1.
Then

sup ||63+" — €71l

0<s<t P

t, oMs |2 1/2 t oMs
< LC,{/O (57) ¢(t)2ds} +L/O — ds

PPSPVSIL I (RS ST/ SN G TS S R YT
=T a1 I A1 /

eMt 2LC, 2L
< —o(t
= T ¢(){2M+1+M+1}

eM

t

where ¢(t) = subp<a<; 1€} — €%112gllp + supossst lIn} = 71, For m, we can prove

similarly. Thus the above inequalities (3.1) and (3.2) hold for every n =1,2,--- .

Since

oo

Dol sup 11E7 = €211po|| < o0,
n=0 s<t p

oo

> || sup 2t —n2|| < oo,
—ilo<s<t »
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(&') and (ny*) are converge in LP. Denoting the limits by (¢;) and (1;), respectively,
we have that

lim || sup 117 = &lls|| = 0.
n—ooflo<s<t p
lim || sup |7 - nal|| =0,
n—oo||g<s<t »
Putting
t t
X¢:z+/ {des+/ Ns ds,
0 0
we have
t 1/2 t
sup X7 — X| scl{/ nnf:-esuLgnf,ds} + [t = el as.
0<s<t » 0 0

Letting n — oo, the right hand side tends to 0. Thus (X7) converges to (X5) in
LP. Furthermore, we have

d(€s,0(Xs)) < |16 — &Iy + (€7, 0 (X))
< 1és = €811y +d(o(XJ71), 0(X5))
< NEs = &8Mleg + LIXT ™ = X,
and thus

sup d({s, (X))
0<s<t

p

< sup IX;'_I—Xsl

0<s<t

p

sup ||€s — & llg|| + L
0<s<t p
Since the right hand side converges to 0, &, € o(X,), a.e. Similarly, we can prove
that n; € b(X;), a.e. Hence (X,) is a solution. O
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