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Abstract

Prefetching aims at reducing memory latency by fetching, in advance, instructions and data
that are likely to be requested by the processor in a near future. The effectiveness of prefetching
depends on how accurate the prediction on the needed instructions and data is. Most previous
studies on prefetching were limited to proposing a particular prefetch scheme and evaluating its
performance, giving little attention to its theoretical aspects. This paper focuses on the limit of
instruction prefetching. For this purpese, we propose an ideal prefetch model that makes use of a
post—mortem analysis of a program execution to derive an upper bound on prefetch accuracy.
Based on this model, we analyzed the upper bounds on prefetch accuracy (ie., theoretically
achievable prefetch accuracy) of programs from the SPEC benchmarks. The results show that
when there is no instruction cache the upper bounds are very high. However, as the size of the
instruction cache increases, the prefetch accuracy bound drops drastically. For example, in the
case of the spice benchmark, the achievable prefetch accuracy drops from 53 % to 39 % when
the cache size increases from 2 Kbytes to 16 Kbytes (assuming 16 byte block size). One
implication of this result is that when the cache size is over some threshold and the prefetch miss
penalty is high, instruction prefetching may degrade the overall performance rather than
improve it.

although growth has  been

tremendous. The resultant processor— mem-

1. Introduction density

Recent advances in electronic technology
have drastically reduced processor cycle
time. In the DRAM technology, however, the

cycle time improvement has been slow
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ory cycle time disparity necessitated the use
of high speed buffers such as instruction
and data caches. The use of caches has been
very successful in bridging the gap between
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the processor and memory cycle times
during the last decade. Today, with large
caches and careful mapping of memory
blocks to cache blocks [5, 9, 11], misses due
to limited cache sizes or set-associativities
are not very likely [2]. On the other hand,
cold start misses and misses due to context
switches are becoming the major source of
cache misses [10].

There have been a number of attempts to
reduce the adverse effects of cold start and
context—switch misses. One such attempt is
prefetch techniques such as
sequential prefetching [13, 14] or threaded
prefetching [7]. One of the
aspects of prefetching is prefetch accuracy.
Although - many
efficient prefetch schemes, none of them
studied on the '
prefetching such as an upper bound on
prefetch accuracy. Furthermore little has
been studied on the effects of prefetch time
and the presence of cache memory on the

to use

important

intrinsic limitation of

theoretically achievable prefetch accuracy.
Our work focuses on the theoretical
aspects of instruction prefetching. In
particular, we derive an upper bound on
prefetch accuracy using an ideal prefetch
model. We also investigate the effects of
prefetch time and the presence of cache
memory on the prefetch accuracy bound.
One of the advantages of these analyses is
that they reveal the intrinsic limitation of

prefetching. Another advantage is that the
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studies have proposed -

“subjects of

derived prefetch accuracy bound provides a
ground on which the effectiveness of other
prefetch schemes is evaluated.

The remainder of this paper is organized
as follows. In the next section, we survey
the related work. Section 3 describes an
ideal prefetch model from which the upper
bound on prefetch accuracy is derived. In
upper bounds on
SPEC benchmarks.
investigates how the
prefetch time and the presence of cache

Section 4, we give
prefetch accuracy of
This section also

memory affect the theoretically achievable
prefetch accuracy. Finally, -we-conclude this
paper in Section 5.

2 Related Work

Caching and prefetching have been the
intensive investigations since

" they are critical to the performance of high

performance  processors and their role is
becoming increasingly important due to the
growing gap between the processor cycle
time and the DRAM access time. Caching is
efficient since it makes effective use of
localities (both temporal and spatial) of
programs. On the other hand, prefetching
draws most of its advantages by bringing,
in advance, the memory blocks that are
likely to be requested by the processor in a
near future.

Compared

prefetching has received far less attention.

with cache mermories,
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In most previous studies on instruction
prefetching, prefetching was limited to the
block. For

example, Smith, in [14], investigated three

next sequential instruction
sequential prefetch schemes with increasing
sophistication: always prefetch, prefetch on
misses, and tagged prefetch. In the always
prefetch scheme, the
is prefetched after each

next sequential
instruction block
instruction block reference. On the other
hand, prefeich on misses prefetches the
next block only on a cache miss. Tagged
prefetch, an enhancement of prefeich on
misses, associates with each memory block
a tag bit that guides the prefetching.

This bit allows a prefetch not only on a
cache miss but also on a cache hit on a
prefetched block. Other studies on sequential
instruction prefetching include the
—buffer
sequential blocks are prefetched on a cache

Stream
approach in which several
miss to hide the ever increasing memory
latency [6]. Examples of processors that
make use of sequential instruction
prefetching are the IBM System/370 Models
145, 158, 168, 195 [12]; the CDC 6600
[12]; the Manchester University MUS
[12]; the VAX—11/780 [3]; the M68020
/68030 [4]; the Intel 8086/80286/80386
/80486 [1].

The above prefetch schemes are limited to
the prefetching of sequential blocks and,
therefore, share the same problem caused by
taken branches. To rectify this problem,

Kim et al proposed a scheme -called
threaded prefetching [7]. In this scheme,
each instruction block has an instruction
block pointer called thread. The thread
indicates the block to be
prefetched when the block containing it is
accessed by the processor. This
operates in two different modes: real—time

instruction

scheme

and non real-time modes. In the non real
—time mode, the thread
updated during program execution so that it
indicates the instruction block that is most
likely to be accessed next. By the principles
of locality, the block that is most likely to
be accessed next is the block that was
previously accessed after the present block.

i1s “dynamically

Therefore, the thread is made to point to
such a block in the non real—time mode. In
the real—time mode where the worst case
performance is of utmost importance, the
prefetching of instruction blocks is made in
the direction that improves the worst case
execution time. For this purpose, the thread
is generated by the éompiler through an
analysis on the worst case execution path
[8].

In a prefetch scheme, if the time to
execute an instruction block is shorter than
the time needed to prefetch a block, the
processor has to stall even on a prefetch
hit. This stall time can be reduced by
prefetching a block that is two blocks ahead
of the current block rather than just one
block [7]. When this lookahead technique is
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used in sequential prefetching, prefetch is
made for the block physically situated next
to the next block of the current block. On
the other hand, if this technique is applied to
the threaded prefetching, the thread will
point to the block that is two blocks ahead
of the current block in the most likely
execution path This lookahead threaded
prefetching can easily be done by
providing a buffer that contains the address
of the previous instruction block and
updating the thread of the this instruction
block based upon the instruction block
accessed after the current block. A more
aggressive approach is to use a queue,
rather than a buffer, that contains the
addresses of the previously accessed
instruction blocks and to update the thread
of the instruction block at the front of the
queue based upon the instruction block
accessed after the current block [7]. In this
case, the capacity of the queue determines
the degree of lookahead.

3 Ideal prefetch model

In this section, we describe an ideal
prefetch model
deriving

and give methods for
an upper bound on prefetch
accuracy using the ideal model. The ideal
prefetch model is based on a post—mortem
analysis of program execution. To see the
motivation behind our ideal prefetch model,
consider the example given in Figure 1.
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block b : b, —— b —— b—— b

block b, : by —— b —— b —— bio
blockbs: bi —— b —— bn —— b
block by : bs —— by —— bw —— b;

block b : by —— bis —— bs —— bs
Figure 1: Block behavior table

Figure 1 shows, for each instruction block,
the instruction blocks that were accessed
immediately after the block during program

execution. We call this table a block
behavior table. In the example block
behavior table, the program always

accessed the next sequential block (i.e., b:)
after b. On the other hand, both the
sequential and non—sequential blocks were
accessed after b, —— bs. In the case of b,
more than one non—sequential block were
accessed. This could be because b; has
more than one branch instruction or it has
an indirect branch instruction. The above
instruction reference behavior is typical of
program execution.

In the prefetch model, the
instruction reference behavior of a block is
first transformed
reference paitern. In the reference pattern,

ideal
into what we call a
instruction block is represented by a

the first distinct
the pattern is

each
letter. For example,
instruction block in
represented by a and the second distinct
instruction block is represented by b and so
on. The reference pattern for by constructed

in this way is a——a——a— —a. Likewise,
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b, s reference pattern is a——b——a——h
Figure 2 shows the reference patterns for
other instruction blocks.

blockb,: a ——~a——a——a
blockb,: a ——b——a—--1»
blockb:: a ——b——b——a
blockbs: a ——b——b——a
blockb;: a —— b ~—~c ——a

Figure 2: Symbolic block behavior table

prefix reference letter

a|lblcfd]e
a 1[4 1-1—-|—
a—-a 1 -1-1-
a—b 112(1(—-|-
a—a-—a O Bl Bl Bl
a—a—b ol el Bl B e
a—b—a -1y —-1—-1-
a—b—b 1j—-1-|-1-
a—b—c 11— —-|—-1-

Table 1 : Frequencies of reference patterns

From this symbolic block behavior table;
another table is constructed that lists, for
each possible prefix of reference patterns,
the frequencies of letters that appear after
the prefix. For example, there are three
possible reference patterns of length 3 that
have a——b as their prefixx a——b——a,
a——b—~—-b. and a——b——c. Since a—
-b—~-—a, a——b—~-b, and a—--b-—-—c
appeared once (in block b:), twice (in blocks

b» and W) and once (in block bs),
the table has an entry for
prefix a——b that has frequencies of 1, 2,

respectively,

and 1 for a, b, and c respectively. Table 1
shows the entries for other prefixes for the
previous example.

The ideal prefetch model uses this table
to make the prefetch decision. For example,
if the processor is about to initiate a new
prefetch and the
associated with the current instruction block
is a——Db, then the ideal prefetch algorithm
will  prefetch the block
corresponding to letter b. This decision is
dictated by the fact that among the three
possible reference patterns that have a——b

reference  pattern

instruction

as their prefix (ie, a——b——a, a——b—

—b and a—-b——c¢), a——b——-b has
the highest frequency. Likewise, the ideal
prefetch model can determine which

instruction block to prefetch for all possible
reference pattern prefixes. Table 2 shows
the instruction block that will be prefetched
by the ideal model for each possible prefix
of reference patterns for the program
execution described in Figure 1.

To vprefetch the instruction block
corresponding to a letter in a reference
the ideal prefetch model should
have address information associated with
For this purpose, the model
each

pattern,

each letter.
maintains, for instruction  block,

address information for each letter in its
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reference pattern. For example, the address

information associated with block b: has an
entry for a —> b. This indicates that the
letter a in its reference pattern corresponds
to block b, Likewise ©b's
information has entries fora —> byand b
—> b Table 3 shows the address
information maintained for each instruction

address

block for the example given in Figure 1.

prefix Prefetch letter ]

.
|
P TR

|
[
P oD oW
I

WNSDBFNNNN
O‘O"ﬁl’ﬁ’c‘m

I
o
|
» T

Table 2 : Prefetch decision for each prefix

block | reference letter
o _ alblcfd]e
block b, b2 - | | |~
block bz bs |bwo| — | — | —
block b3 by |bo| — | — | —
block by bs|bw| — | — | —
block bs bsibis|bzs| — | —

Table3 : Block address information for each
letter in reference patterns

block b; : bAno prefetch)—bxb, prefetched:hit)—b;

(b2 prefetched:hit}—bz(b, prefetched:hit)

block bz : bsno prefetch)—bio(b; prefetched:miss)~
by(by prefetched:miss)—bjo(b prefetched:hit)

196 / 38§

block bz : byno prefetch)—bxlby prefetched:miss)
—bxylbxy prefetched:hit)—sbe(b,s prefetched-hit)

block bs : bs(no prefetch)—bx(bs prefetched:miss)
—bz(by prefetched:hit)—bs(bs prefetched:hit)

block bs : bg{no prefetch)—bss(bs prefetched:miss)
—bx(bys  prefetched:miss)—bg(bs prefetched:hit)

Figure 3: Prefetch hits and misses as

determined by the ideal prefetch
algorithm

Figure 3 shows the prefetch hits and misses
as determined by the
algorithm for our example. One case to note

ideal prefetch
is when an instruction block is executed for
the first time. In this case, the current
and Dblock address
information needed to make a prefetch

reference  pattern

decision are not available and, therefore, no
prefetch request is made.

of the
prefetch algorithm is calculated by dividing
the number of prefetch hits by the total
number of prefetch requests:

The prefetch accuracy 1deal

Prefetch accuracy =

no. of prefetch hits
total no. of prefetch requests

L = 06

15

Let B, = {b;, bz, ... bigs} be the set of instruction
blocks used in program P.
Let L, be the list of blocks referenced immediately

after b (i.e, block behavior table entry for b).

foreach b € B,
L’y symbolize(Ls)
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for each prefix p that appears in the symbolic lists
L'y, L', ... L'nigp

Let A = {a;, az, ... ax} be the set of letters that
appear in p.

for each @ in A
compute the frequency of plla in the prefixes of

L%, L',
where || is the concatenation operation.

Let aymu be the letter in A that has the highest
frequency.

. Lbigp

s < 0
Nmisses < O
for each b € B,
while (L’ is not empty)
! + null
actual « delete_first(L’s)

// delete first(L) deletes the first letter in L and
// returns the deleted letter

prediction = aimax

if actual = prediction then npes <+ Ny + 1
else  Mmisses  Nmisses * 1

! — 1 || actual

achievable_prefetch_accuracy_bound + nupAnus +
nmissts)

Figure 4 : Algorithm for calculating the
prefetch accuracy bound

The prefetch accuracy calculated in this
way represents an upper bound on prefetch
accuracy that can be achieved by any
prefetch algorithm. The wvalidity of this
upper bound depends only on the following
two assumptions:

1. The prefetch algorithm is deterministic.

2. The algorithm does not differentiate
instruction blocks for prefetching purposes.
These assumptions hold for all the prefetch

algorithms described
therefore, their

in Section 2 and,
prefetch accuracies are
subject to the upper bound derived from the
model. Figure 4 describes, procedurally, the
steps taken in the ideal prefetch algorithm.

Since the information needed by the ideal
prefetch model is available only after the
program execution is completed, the ideal
prefetch algorithm is not implementable.
Nevertheless this ideal prefetch algorithm is
important not only in studying the intrinsic
limitation of prefetching but also in evalua-
ting the effectiveness of existing and/or
newly proposed prefetch schemes (ie, to
see how close their prefetch accuracies are

to the limit).

Extensions

® When there is an instruction cache :
So far we have not considered the effects
that the presence of instruction cache
memory has on the achievable prefetch
instruction cache is
performed

between the cache and main memory, the

accuracy. When an
present and prefetching is
decision on which instruction block to
prefetch is generally made based on the
instruction references that missed in the

cache. This is especially true when the
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instruction cache is placed on—chip while
the prefetcher is located off—chip. The
prefetch accuracy bound in this case can be
derived by constructing the block behavior
table based on the instruction references
that missed in the cache.

® When lookahead prefetching is used :
As we explained earlier, when lookahead
prefetching with degree K is used, the block
prefetched during the execution of an
instruction block is the one that is K blocks
ahead of the current block in the predicted
execution path. In this case, the block
behavior table entry for an instruction block
can be constructed based on the instruction
blocks that were accessed K blocks later.

4 Analysis results

In this section, we give prefetch accuracy
bounds for six programs from the SPEC
benchmark suite [16] using the ideal
prefetch model described in the previous
section. The six SPEC benchmark programs
are gcc, xlisp, espresso, doduc, spice, and
fpppp. For each benchmark, 100 million
memory references were gathered to extract
the information needed by the ideal prefetch
model. The gathering of
references was performed on a MIPS RS

the memory

—-2030 workstation using the pixie [15]
utility.

Figure 5 shows the effects of cache size,
block size, and the degree of lookahead on

198 / &5

the prefetch accuracy bound. When cache
memory is not used, the upper bounds are
over 99 % for all the six programs
regardless of the degree of lookahead and
the block size. However, when cache memory
is used, the achievable prefetch accuracy
decreases drastically. For example, the
achievable prefetch accuracy is below 50 %
for espresso and spice when an instruction
cache of only 2 Kbytes is used. This can be
explained by the fact that cache memory
filters out most of the memory reference
localities exhibited by the program. This
randomization by the cache memory
limits the achievable
accuracy when the prefetch decision has to

severely prefetch
be made based on the memory references
that are missed in the cache. As the size of
the instruction cache increases, the prefetch
accuracy drops further. For example, in the
case of the spice benchmark, the achievable
prefetch accuracy drops from 53 % to 39 %
when the cache size increases from 2 Kbytes
to 16 Kbytes (assuming 16 byte block size).
The results also show that when cache
memory is used, the achievable prefetch
accuracy decreases as the block size and the
degree of lookahead increase. In one
cache size = 16
Kbytes, block size = 32 bytes, degree of
lookahead = 4), the achievable prefetch
accuracy is below 3 %. One implication of

extreme case (spice:

these results is that the use of prefetching

between the cache and main memory may
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Figure 5: Prefetch accuracy bounds of SPEC benchmarks
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actually degrade the overall performance
rather than improve it when the size of the
instruction cache and the penalty for a
prefetch miss are over some thresholds.

Unlike the other four programs, the
prefetch accuracy bounds of fpppp and
doduc are relatively high even when cache
memory is used. This can be explained by
their sequential behavior. For fpppp, more
than 99 % of instruction blocks that are
referenced after an instruction block are
sequential blocks. Most of these sequential
references result in prefetch hits in the ideal
prefetch model and this makes the prefetch
accuracy bound of fpppp largely insensitive
to the presence and/or the size of the
instruction cache.

5 Conclusions

This paper has proposed an ideal prefetch
model to derive an upper bound on prefetch
accuracy. The proposed model makes use of
a post—mortem analysis based on complete
instruction reference history to derive the
upper bound. Using this model, we analyzed
the prefetch accuracy bounds of programs
from the SPEC benchmark suite. The results
show that the prefetch accuracy bound is
very dependent on the presence of
instruction cache memory. The results also
show that as the size of the instruction
cache increases, the theoretically achievable
prefetch accuracy decreases drastically. One

200 / &%

implication of this result is that when the
cache size is over some threshold and the
prefetch miss penalty is high, instruction
prefetching may degrade the overall

performance rather than improve it.
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