A NOTE OF THE LIE DERIVATIVE

Yong-Goan Kim · Jin-Oh Hyun

〈國文抄錄〉

리微分에關한小考

金容寬^{*}·玄進五^{**}

본 論文에서는, 첫째로, 實數에서의 derivation을 定意하고, C[∞](a)에서 R로 가는 寫 像을 모아 놓은 集合을 D(a)라 했을 때, D(a)의 몇 가지 性質을 調査하고 D(a)가 백터공간(Vector Space)이 됨을 보였으며, 접공간(Tangent Space)에 대한 性質들을 調査하였다. 둘째로, X에 대한 Y의 리微分(Lie derivative) L_x Y가 Bracket [X, Y]와 같음을 보이고, L_x Y는 $L_{F_*(X)}F_*(Y)$ 에 F-related 됨을 보였다.

^{*} 제주대학교 교육대학원

^{**} 제주대학교 사범대학 수학교육과

I. INTRODUCTION.

The Theory of the derivative have been treated as an important problems in differential geometry.

In particular, it is a matter of interested to the study of the properties of the Lie derivative on C^{∞} -manifold.

The purpose of the present paper, we introduce some properties of the most basic tools used in the study of Lie derivative on C^{∞} -manifold and the bracket of C^{∞} -vector fields X and Y.

In chapter II, making use of the definition of derivation D(a) on $C^{\infty}(a)$ in R, if D is a derivation of D(a), then γD is also derivation of D(a). Furthermore, D_1 and D_2 are derivation of D(a) on $C^{\infty}(a)$ into R, then $D_1 + D_2$ is a derivation of D(a). Thus D(a) is a vector space.

Let M and N be a C^{∞} -manifold. If a function F is a C^{∞} -mapping of M into Nand if $F^* : C^{\infty}(F(p)) \to C^{\infty}(p)$ defined by $F^*(f) = f \circ F$ and $F_* : \mathbf{T}_p(M) \to \mathbf{T}_{F(p)}(N)$ defined by $F_*(\mathbf{X}_p)f = \mathbf{X}_p(F^*f)$, then the differential of F, F_* is homomorphism.

In chapter III, let $\theta \colon R \times M \to M$ be a C^{∞} -mapping satisfies any two conditions, then θ is C^{∞} -action (or one parameter group) of M.

For C^{∞} -vector field **X**, there is infinitesimal generator of θ such that

$$\mathbf{X}_{\mathbf{p}}f = \lim_{\Delta t \to 0} \frac{1}{\Delta \mathbf{t}} \left[f(\theta_{\Delta t}(p) - f(p)) \right]$$

Thus the map θ_{t_*} is a mapping of $\mathbf{T}(M)$ into $\mathbf{T}(M)$ defined by $\theta_{t_*}(\mathbf{X}_p) = \mathbf{X}_{\boldsymbol{\beta}(p)}$

Finally, we have proved Lie derivative of \mathbf{Y} with respect to \mathbf{X} such that

 $(L_{\mathbf{X}}\mathbf{Y})_{\mathbf{p}} = \lim_{\tau \to o} \frac{1}{t} \left[\theta_{-t_{\mathbf{X}}} \left(\mathbf{Y}_{\theta(t,P)} \right) - \mathbf{Y}_{\mathbf{p}} \right] \text{ is equal to bracket } \left[\mathbf{X}, \mathbf{Y} \right] = \mathbf{X}\mathbf{Y} - \mathbf{Y}\mathbf{X} \text{ and}$ so Lie derivative $L_{\mathbf{X}}\mathbf{Y}$ is F-related to $L_{F_{\mathbf{X}}(\mathbf{X})}F_{\mathbf{x}}(\mathbf{Y})$. Throughout the present paper, by the manifolds and vector fields we mean C_{\cdot}^{∞} -manifold and C^{∞} vector fields, respectively. The dimension of manifold M is n unless explicitly stated otherwise.

II. DERIVATION ON C[∞]-MAP

Let $\mathbf{a} = (a^1, a^2, \dots, a^n)$ be any point of \mathbf{R}^n .

We define $\mathbf{T}_{a}(\mathbf{R}^{n})$, the tangent space attached to **a**, as follows. It consist of all pairs of $(a, x) = \overrightarrow{\mathbf{a}x}$ and if such a pair denoted by \mathbf{X}_{a} , there exists the mapping φ_{a} : $\mathbf{T}_{a}(\mathbf{R}^{n}) \rightarrow V^{n}$ is defined by $\varphi_{a}(\mathbf{X}^{a}) = (x^{1} - a^{1}, x^{2} - a^{2}, \dots, x^{n} - a^{n})$ also have the following properties:

(1)
$$\mathbf{X}_{a} + \mathbf{Y}_{a} = \varphi_{a}^{-1}(\varphi_{a}(\mathbf{X}_{a}) + \varphi_{a}(\mathbf{Y}_{a}))$$

(2) $\alpha \mathbf{X}_{a} = \varphi_{a}^{-1}(\alpha \varphi_{a}(\mathbf{X}_{a}))$

for X_a , $Y_a \in T_a(\mathbb{R}^n)$ and $\alpha \in \mathbb{R}$

If \mathbf{e}^1 , \mathbf{e}^2 , \dots , \mathbf{e}^n be the natural basis of V^n and E_{1a} , E_{2a} , \dots , E_{na} be the natural basis of $\mathbf{T}_a(\mathbf{R}^n)$, then $E_{1a} = \varphi_a^{-1}(\mathbf{e}^1)$, $E_{2a} = \varphi^{-1}_a(\mathbf{e}^2)$, \dots , $E_{na} = \varphi_a^{-1}(\mathbf{e}^n)$

Definition 2.1 Let $\mathbf{X}_a = \sum_{i=1}^n \alpha^i E_{ia}$ be the expression for a vector of $\mathbf{T}_a(\mathbf{R}^n)$. For the differential map f defined on open subset of \mathbf{R}^n , the *directional derivative* Δf of f at a in the "direction of \mathbf{X}_a " defined by

$$\Delta f = \sum_{i=1}^{n} \alpha^{i} \frac{\partial f}{\partial x^{i}}.$$

Since Δf depend on f, \mathbf{a} and \mathbf{X}_a , we shall write it as $\mathbf{X}_a^* f$ Thus $\mathbf{X}_a^* f = \sum_{i=1}^n \alpha^i \left(\frac{\partial f}{\partial x^i}\right)_a$. We may take any C^{∞} -function defined in a neighborhood of \mathbf{a} . Then for

each $f \in C^{\infty}(a)$, we have $\mathbf{X}_a^* : C^{\infty}(a) \to \mathbf{R}$ is defined by $\mathbf{X}_a^* = \sum_{i=1}^n a^i \left(\frac{\partial}{\partial x^i}\right)$.

Property 2.2 If α , $\beta \in \mathbf{R}$ and $f, g \in C^{\infty}(a)$, then we have two fundamental properties of derivatives followings;

(1)
$$\mathbf{X}_{a}^{*}(af + \beta g) = \alpha(\mathbf{X}_{a}^{*}f) + \beta(\mathbf{X}_{a}^{*}g) - (\text{linearity})$$

(2) $\mathbf{X}_{a}^{*}(fg) = (\mathbf{X}_{a}^{*}f)g(a) + f(a)(\mathbf{X}_{a}^{*}g) - (\text{Leibniz rule})$

Let D(a) denote all mappings of $C^{\infty}(a)$ to **R** with linearity and Leibniz rule. Then the elements of D(a) is called *derivations* on $C^{\infty}(a)$ into **R**.

Lemma 2.3 If *D* is a derivation of D(a), then γD is also derivation of D(a) **Proof.** Let $D \in D(a)$, $\alpha, \beta, \gamma \in \mathbf{R}$ and $f, g \in C^{\infty}(a)$. To show the map $\gamma D : C^{\infty}(a) \to \mathbf{R}$ is linear. Using(1) of property 2.2

$$(\gamma D)(\alpha f + \beta g) = \gamma [D(\alpha f + \beta g)]$$

= $\gamma [(\alpha (Df) + \beta (Dg)]$
= $\gamma \alpha (Df) + \gamma \beta (Dg)$
= $\alpha (\gamma D)f + \beta (\gamma D)g$

By means of the property 2.2

$$(\gamma D)(fg) = \gamma [D(fg)]$$

= $\gamma [(Df)g(a) + f(a)(Dg)]$
= $\gamma [(Df)g(a) + f(a)\gamma(Dg)]$
= $((\gamma D)f)g(a) + f(a)((\gamma D)g)$

Lemma 2.4. If D_1 , D_2 are derivation of D(a), then $D_1 + D_2$ is a derivation of D(a).

Proof. Let α , β be a real numbers and let f, g be $a \subset {}^{\infty}$ -function.

Then

$$(D_1 + D_2)(\alpha f + \beta g) = D_1(\alpha f + \beta g) + D_2(\alpha f + \beta g)$$

= $[\alpha (D_1 f) + \beta (D_1 g)] + [\alpha (D_2 f) + \beta (D_2 g)]$
= $\alpha [(D_1 f) + (D_2 f)] + \beta [(D_1 g) + (D_2 g)]$
= $\alpha (D_1 + D_2)f + \beta (D_1 + D_2)g$

It follows that the map $D_1 + D_2 : C^{\infty}(a) \to \mathbf{R}$ is linear

$$(D_1 + D_2)(fg) = D_1(fg) + D_2(fg)$$

= $[(D_1f)g(a) + f(a)(D_1g)] + [(D_2f)g(a) + f(a)(D_2g)]$
= $[(D_1f)g(a) + (D_2f)g(a)] + [f(a)(D_1g) + f(a)(D_2g)]$
= $[(D_1f) + (D_2f)]g(a) + f(a)[(D_1g) + (D_2g)]$
= $[(D_1 + D_2)f]g(a) + f(a)[(D_1 + D_2)g]$

Thus $D_1 + D_2$ satisfies the Leibniz rule for differentiation of products.

Therorm 2.5 D(a) is a vector space.

Proof. By Lemma 2.3, 2.4, we have the result.

Let U is an open set of manifold M. Then for any $p \in U$, $\varphi : U \to \mathbb{R}^n$ defined by $\varphi(p) = (x^1, x^2, \dots, x^n)$ is a homeomorphism on U and the pair (U, φ) is called a *coordinate neighborhood*

Definition 2.6. Let f be a real-valued function on an open set U of a n-dimensional manifold M. Then $f: U \to \mathbb{R}$ is a C^{∞} -function if each $p \in U$ lies in a coordinate neighborhood (U, φ) such that $f \circ \varphi(x^1, x^2, \dots, x^n)$ is a C^{∞} on $\varphi(U)$.

Definition 2.7. Let M and N be a C^{∞} -manifolds. A function F is a C^{∞} -mapping of M into N, if for every $p \in M$, there exist (U, φ) of p and (V, Ψ) of F(p) with $F(U) \subset V$ such that

6 科學教育(1991.12.)

$$\Psi \circ F \circ \varphi^{-1}(U) : \varphi(U) \to \Psi(V)$$

is the C^{∞} -function in Euclidean Sense.

Furthermore, we call F homeomorphism if $\Psi \circ F \circ \varphi^{-1}$ is homeomorphism.

A C^{∞} -mapping $F: M \to N$ between C^{∞} -manifolds is called a diffeomorphism if it is a homeomorphism and F and F^{-1} are C^{∞} -mappings.

Definition 2.8. We define the tangent space $\mathbf{T}_{p}(M)$ to M at p to be the set of all mapping \mathbf{X}_{p} : $C^{\infty}(p) \to \mathbf{R}$ satisfying all $\alpha, \beta \in \mathbf{R}$ and $f, g \in C^{\infty}(p)$ the two conditions;

(1)
$$\mathbf{X}_{p}(\alpha f + \beta g) = \alpha (\mathbf{X}_{p}f) + \beta (\mathbf{X}_{p}g)$$

(2) $\mathbf{X}_{p}(fg) = (\mathbf{X}_{p}f)g(p) + f(p)(\mathbf{X}_{p}g)$

with the vector space operations in $T_p(M)$ definde by

$$(\mathbf{X}_{p} + \mathbf{Y}_{p})f = \mathbf{X}_{p}f + \mathbf{Y}_{p}f, \ (a\mathbf{X}_{p})f = a(\mathbf{X}_{p}f)$$

Any $X_{p} \in T_{p}(M)$ is called a tangent vector to M at p.

Let $F : M \to N$ be a C^{∞} -map of manifolds. Then for $p \in M$, the map $F^* : C^{\infty}(F(p)) \to C^{\infty}(p)$ defined by $F^*(f) = f \circ F$ and $F_* : \mathbf{T}_p(M) \to \mathbf{T}_{F(p)}(N)$ defined by $F_*(\mathbf{X}_p)f = \mathbf{X}_p(F^*f)$ which gives $F_*(\mathbf{X}_p)$ as a map of $C^{\infty}(F(p))$ to **R**. We have

Theorem 2.9. F_* is a homomorphism.

.

Proof. Let $\mathbf{X}_{p} \in \mathbf{T}_{p}(M)$ and $f, g \in C^{\infty}(F(p))$. We must prove that the map $F_{*}(\mathbf{X}_{p}) : C^{\infty}(F(p)) \to \mathbf{R}$ is a vector at F(p), that is, a linear map

satisfying the Leibniz rule, we have

$$F_*(\mathbf{X}_p)(fg) = \mathbf{X}_p F^*(fg)$$

= $\mathbf{X}_p[(f \circ F)(g \circ F)]$
= $\mathbf{X}_p(f \circ F) g(F(p)) + f(F(p))\mathbf{X}_p(g \circ F)$
= $\mathbf{X}_p(F^*(f)) g(F(p)) + f(F(p))\mathbf{X}_p(F^*(g))$
= $(F_*(\mathbf{X}_p)f) g(F(p)) + f(F(p))(F_*(\mathbf{X}_p)g)$

Thus F_* : $\mathbf{T}_{\rho}(M) \to \mathbf{T}_{F(\rho)}(M)$.

Further F_* is a homomorphism.

$$F_*(\alpha \mathbf{X}_p + \beta \mathbf{Y}_p)f = (\alpha \mathbf{X}_p + \beta \mathbf{Y}_p)(F \circ f)$$
$$= \alpha \mathbf{X}_p(F \circ f) + \beta \mathbf{Y}_p(F \circ f)$$
$$= \alpha F_*(\mathbf{X}_p)f + \beta F_*(\mathbf{Y}_p)f$$
$$= [\alpha F_*(\mathbf{X}_p) + \beta F_*(\mathbf{Y}_p)]f$$

Remark. The homomorphism F_* : $\mathbf{T}_p(M) \to \mathbf{T}_{F(p)}(N)$ is called the *differential* of F.

III. SOME PROPERTIES OF THE LIE DERIVATIVE OF Y

Definition 3.1. Let M be a C^{∞} -manifold and let θ : $R \times M \to M$ be a C^{∞} -mapping which satisfies the two conditions;

(1) $\theta(0,p) = p$ for every $p \in M$ (2) $\theta_t \circ \theta_s(p) = \theta_{t+s}(p) = \theta_s \circ \theta_t(p)$ for every $s, t \in R$ and $p \in M$ where $\theta_t(p) = \theta(t, p)$

8 科學教育(1991.12.)

Then θ is called a C^{∞} -action or one parameter group of M.

For each one parameter group θ : $R \times M \to M$, there exists a unique C^{∞} -vector field X, which is called the *infinitesimal generatr* of θ such that

$$\mathbf{X}_{\mathbf{p}} f = \lim_{\Delta t \to 0} 1 \Delta t [f(\theta_{\Delta t}(p) - f(p))]$$

Threm 3.2. Let θ_{t_*} is a map $\mathbf{T}(M)$ to $\mathbf{T}(M)$. If $\theta \colon \mathbb{R} \times M \to M$ is a \mathbb{C}^{∞} -action of \mathbb{R} . Then $\theta_{t_*}(\mathbf{X}_p) = \mathbf{X}_{\theta \notin (p)}$.

Proof. Let $f \in C^{\infty}(\theta_t(p))$ for some $(t,p) \in R \times M$. $\theta_{t_*}(\mathbf{X}_p) f = \mathbf{X}_p(f \circ \theta_t)$

$$= \lim_{\Delta t \to 0} 1 \Delta t [(f \circ \theta_t) (\theta_{\Delta t}(p)) - f \circ \theta_t(p)]$$

Since $\theta_t \circ \theta_{\Delta t} = \theta_{t+\Delta t} = \theta_{\Delta t} \circ \theta_t$

$$\theta_{t_{*}}(\mathbf{X}_{p})f = \lim_{\Delta t \to 0} \frac{1}{\Delta t} [(f \circ \theta_{\Delta t})(\theta_{t}(p)) - f(\theta_{t}(p))]$$
$$= \mathbf{X}_{\theta_{t}(p)}f$$

Remark. For all $f \in R$, $\theta_t \colon M \to M$ and θ_{t_*} is a map of $\mathbf{T}(M)$ to $\mathbf{T}(M)$, then we have the following diagram which commutes

where π : $\mathbf{T}(M) \to M$ is the tangent vector bunble of M.

Definition 3.3. If X and Y are C^{∞} -vector fields, then the product of X and Y defined by [X, Y] = XY - YX is called the bracket of X and Y, where XY is an operator on C^{∞} -function on M.

Definition 3.4. The vector field $L_X Y$, called the Lie derivative of Y with respect to X is defined at each $p \in M$ by either of the following limits.

$$(\mathbf{L}_{\mathbf{X}}\mathbf{Y})_{\mathbf{p}} = \lim_{t \to 0} \frac{1}{t} [\theta_{-t_{\mathbf{x}}}(\mathbf{Y}_{\theta(t,p)}) - \mathbf{Y}_{p}]$$
$$= \lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{p} - \theta_{t_{\mathbf{x}}}\mathbf{Y}_{\theta(-t,p)}]$$

where

$$\theta_{t_{\star}} : \mathbf{T}_{\theta(t,p)}(M) \to \mathbf{T}_{p}(M)$$

Remark. Let f be a C^{∞} -function on any open set U containing p on M, and let V be a neighborhood of p in U. Then we can take a function g(q,t) defined on a $V \times I_{\delta}$ such that

$$f(heta_t(q)) = f(q) + tg(q,t)$$
 and $\mathbf{X}_p f = g(q,0)$ for $q \in V$

Theorem 3.5. If X and Y are C^{∞} -vector fields on *M*. Then $L_X Y = [X, Y]$.

Proof. By definition of Lie derivative.

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = (\lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{p} - \theta_{t_{*}}(\mathbf{Y}_{\theta_{-t}(p)})])f$$

This differential quotient and that of the following expression, whoes limit is the derivaive of a C^{∞} -function of t, are equal for all $t \to 0$;

10 科學教育(1991.12.)

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = \lim_{\mathbf{t}\to\mathbf{0}}\frac{1}{\mathbf{t}}[\mathbf{Y}_{p}f - \mathbf{Y}_{\boldsymbol{\theta}_{-\mathbf{t}}(\boldsymbol{p})}(f\circ\boldsymbol{\theta}_{t})]$$

Make use of the function $f(\theta_t(p)) = f(p) + tg(p, t)$ and g(p, t) by $g_{t'}$

$$(L_{\mathbf{X}}\mathbf{Y})_{\mathbf{p}}f = \lim_{\mathbf{t}\to 0} \frac{1}{\mathbf{t}} [\mathbf{Y}_{\mathbf{p}}f - \mathbf{Y}_{\boldsymbol{\theta}_{-\mathbf{t}}(\mathbf{p})}(f + tg_t)]$$

Replace t by -t

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = \lim_{t \to 0} -\frac{1}{t} [\mathbf{Y}_{p}f - \mathbf{Y}_{\theta_{t}(p)}(f - tg_{t})]$$

$$= \lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{\theta_{t}(p)}f - \mathbf{Y}_{p}f] - \lim_{t \to 0} \mathbf{Y}_{\theta_{t}(p)}g(t)$$

$$= \lim_{t \to 0} \frac{1}{t} [(\mathbf{Y}f)(\theta_{t}(p)) - (\mathbf{Y}f)(p)] - \lim_{t \to 0} \mathbf{Y}_{\theta_{t}(p)}g(t)$$

Using the formula $g_0 = g(p, 0) = \mathbf{X}f(p)$ and the definition of the infinitesimal generator of θ

$$(I_{\mathcal{X}}\mathbf{Y})_{\rho}f = \mathbf{X}_{\rho}(\mathbf{X}f) - \mathbf{Y}_{\rho}(\mathbf{X}f)$$
$$= [\mathbf{X}, \mathbf{Y}]_{\rho}f$$

Corollary 3.6. If X and Y are C^{∞} -vector fields, then $L_X Y = -L_Y X$, $L_X X = 0$

Proof. Since $L_X Y = [X, Y]$ and [X, Y] = -[Y, X], $L_X Y = [X, Y] = -[Y, X] = -L_Y X$

therefore

$$L_{\mathbf{X}}\mathbf{Y} = - L_{\mathbf{Y}}\mathbf{X}$$

Since [X, X] = -[X, X]. [X, X] = 0

therefore

$$L_{\mathbf{X}}\mathbf{X} = [\mathbf{X}, \mathbf{X}] = \mathbf{0}$$

리 微分에 關한 小考11

Let $F: M \to N$ be a C^{∞} -mapping and suppose that $\mathbf{X}_1 \cdot \mathbf{X}_2$ and \mathbf{Y}_1 , \mathbf{Y}_2 are vector fields om M, N, respectively. If for i = 1, 2 $F_*(\mathbf{X}_i) = \mathbf{Y}_i$, then $[\mathbf{X}_1, \mathbf{X}_2]$ and $[\mathbf{Y}_1, \mathbf{Y}_2]$ is called F-related.

Theorem 3.7. If $[X_1, X_2]$ and $[Y_1, Y_2]$ is *F*-related, then L_XY is *F*-related to $L_{F_*(X)}F_*(Y)$.

Proof. Using the porperties of *F*-related, that is, $F_*[X_1, X_2] = [F_*(X_1)F_*(X_2)]$ By the theorem 3.5,

$$F_*(L_X \mathbf{Y}) = F_*[\mathbf{X}, \mathbf{Y}]$$
$$= [F_*(\mathbf{X}), F_*(\mathbf{Y})]$$
$$= L_{F_*(\mathbf{X})}F_*(\mathbf{Y})$$

12 科學教育 8券(1991. 12.)

REFERENCE

- D.R.Boo ; Some vector fields on a C[∞]-manifold, Master Thesis in Mathematic Education, Cheju National University, Cheju city (1990).
- 2. F.W.Warner ; Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and company (1971).
- 3. J.O.Hyun; Remarks on the components of the Riemannian Metric, Bull. Honam Math Soc. Vol.2. (1985).
- R.L.Bishop & R.J. Crittenden ; Geometry of Manifolds, Academic Press, Inc (1964).
- 5. W.Klingenbeg ; Riemannian Geometry, walter de Gruyter. (1982).
- 6. W.M.Booth by ; An introduction to differentiable Manifolds and Riemannian Geometry, Academic Press, New York (1975).