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ON THE CONJUGATE GRADIENT METHOD FOR CONSTRAINED
SINGULAR LINEAR OPERATOR EQUATIONS

Do-Hyun Kim

1. Introuduction

In this paper we introduce the weighted generalized inverse of a linear operator in a
general Hilbert space, and we establish the convergence of the conjugate gradient method
to the least squares solution of minimal norm.

Throughout this paper, we shall let X, Y, and Z be (real or complex) Hibert spaces, and

let A be a bounded linear operator on X into Y. The linear equation

(1) Ax =y for ye Y
may or may not have a solution depending on whether or not v is in R(A), the range
of A, and even if ye R(A) the solution of (1) need not be unique. In either case, one can
seek a least squares solution i. e., a solution which minimizes the quadratic functional f
(x) = | Ax-y |l 2. Such a solution exists for all ye R(A) @ R{A)*, We shall also be
interested in the least squares solution of minimial norm.

We consider the conjugate gradient method that minimizes f(x) at each step. That

is, choose an initial vector x,€ X, then compute r, = P, = A*(Axo-y), where A* is
the adjoint of A. If po#0, compute X; = Xo~@ oPo where @ o = 1o 12/ Il Apo Il 2. Fori =
1, 2, compute

(2) r, = A‘(Axi—y) =T, —a i_xA‘Api—h
where

{Tn-1, Pn-1?

3 = = ——_9

@) @™ T ap,, ]2
and if r;# 0, then compute

(4) p;=T1,+8 - 1Pi-1. Where B 1= — %,

-1 ]

and set

(5) Xis1— X;—a& ;P
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2. Least squares solutions and weighted generalized inverse

For any subspace S, we denote the orthogonal complement of S by St and the closure
of S by s Let D(A), R(A), and N(A) denote, respectively, the domain, the range and
the null space of a linear operator A. The restriction of A to a set K is denoted by LIK.
It is well Known (1)

X =N(AYPN(A)*
Y = N(A*)BN (A4
{R(T)j*= N(A*), R(A*) =N(A)*, R(A)=N(A*)",

For a given ye Y, an element ue X is called a least squares solution of the linear
opeator equation Ax=y if | Au—y | < | Ax-y | for all xe X. Among least squares
solutions an element v of minimal norm is called a best approximate solution of (1),
For each ye R(A)®R(A):, the set of all least squares solutions of (1) is a nonempty
closed convex subset of X and hence has a unique element v of minimal norm. The
generalized inverse A* of A is the operator whose domatin is DiA*)=R(A) ® R(A)Land
A*y=v, where v is the unique best approximate solution of the equation (1), If R(A)
is not closed, then A* is only densely defined and unbounded. If u is a least squares solution
of (1}, then u=A*y+(1-A*A)x, for some Xo& X.

Let L be a bounded linear operator from X into Z. We assume that the range R(L)
of L is closed in Z, but the range R(A}  of A is not necessarily closed in Y. For a
given y in D(A*), let

6) Sy={ue X: I Au-y | y=inf | Ax—y ||, xe X}.

Then the problem is to find we S, such that

(M) W Lwlz=inf{ | Lullz: ue Sy}.

The problem (6)-(7) has a solution for every ye D(A*) if and only if N(A)+N(L) is
closed, and the solution is unique if and only if N(A)NN(L)=/0}, Throughout this
paper, we assume that N(A)NIN(L) =0} and N(A) +N (L) is closed.

We define a new inner product in X :

(u, vJ]=<Au, Av>,+<Lu, Lv>, for u, ve X.
We denote the space X with the inner product [-, -] by X,.

THEOREM 1. An element we X is a solution to the problem (6)-(7) if and only if
A*Aw=A*y and L*Lwe N(A) .

Proof. Refer to Nashed[2].

The solution w is the least squares solution of X, -minimal norm of the equation (1),

Let A*; denote the map induced by y — w and call it the weighted generalized inverse of
A.

3. Regularization and some observations on the conjugate gradient method
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When the range of A is closed, the problem (6)-17) is well-posed. Hence our
interest is in the case that the range of A is not closed and hence the problem is ill-posed.
Instead of solving this ill-posed problem directly, we will regularize it by a family of
stable minimization problems.

Let W be the product space of Y and Z with the usual inner product :

W=Y X2,
Ay zi)y (Y2, Z2)>w = Niyedy + <21, 2202
for y,.y.e Y and z,,2,¢ Z.

For a >0, let Ca be a linear operator from X into W defined by Ca x = (AX, Y
Lx) for xe X. We denote by U. the unique best approximate solution of the equation
C.x = y for each x>0 where y = (y, 0) in W. That is, U. = C*y. Let us write J_{x} =
Il Ax-yi? +a I Lxi?

THEOREM 2. Let @ >0, An element X; in X minimizes the quadratic functional
J.(x) if and only if C% C.x = C%y.

Proof. It is easy and omitted.

I X | and | X Il . are equivalent if AN(L) 1is closed. Throughout this paper we
assume that AN (L} is closed.

THEOREM 3. For a >0, let Ua be the unique solution of the operator equation

(8)., Then lim U. exists and lim U.= A*py.
a a .

-0

Proof. Refer to Song [3].

We now examine some properties of the conjugate gradient algorithm described in the
introduction. Let P denote the orthogonal projection of X onto I_{T‘—) and let Q denote
the orthogonal projection of W onto R(C.). If ye D(C%), then Qy = y&¢ R(C.) and
v=Cty=Ctyand y =Qy =Cv=_=CCuy. Since Q is an orthogonal projection, the

functional J. {x) can be written as J. (x) = 1 C.x-y 1?= IC.
x-¢ 12+ | §-y I >. Thus, minimizing J. (x) is equivalent to minimizing the functional |
C.x-§ i 2 which we shall denote by K. (X},
Setting u=v+ (I-P)x,=C;y+ (I-P)xo. One can define the error vector e=x-u and the
vector r=C*(C x-¢)=C*{C x-¥)
Then (C2C.'e=r and [r. e] = | C.x-¢ || *=K. (x),

The sequence of iterates |x,} generated by the conjugate gradient method (2)-(5) is
contained in xo+R(C*)  with both r, and p,, for i=0, 1, 2, in R(C?). Unless
explicitly mentioned otherwise, we shall assume that the conjuate gradient method does

not terminate in a finite number of steps, that is r;#0 for i=0, 1, 2 .

We shall make use of the following lemmas.
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Lemma 4, (a) For k=0, 1, 2,-,i Ka (x;)=[r:, ex] =[es, 1]
(b) For i=0, 1, 2, v [pe] lIril?=Ke (x,) I p Il 2
Proof. Refer to Kammerer [4]

Lemma 5. The inequality [ e.,|2< Je;ll*—a Kea (x,) holds for i=0, 1, 2, -,
Proof. Making use of Lemma 4(b), we get the following sequence of identities :
lew 2= 1lle; Il 2—2a i[enpi] +a’f Ilp: 1%

2
— el ?—a ,(2Ke (x)—a, 1,12} H

= leil*—a dKa (x) +Ka (00} 1RO

slel?—a Ka (x,),
Lemma 6. For any nonnegative integers i and j, both [p,e;] and [e;e,] are
nonnegative.
Proof. Lemma 4 (b) shows that [p.,e;] is nonnegative. To show that [e,.e,] is
nonnegative, we shall assume without loss of generality that i=j. Then e,=e,+a , ,

Pyt eta ,p,, and [e,e,] = [ene] +5= @ . [e.p.], which is nonnegative.

k=j
4. Convergence of the conjugate gradient method.

In this section, using the conjugate gradient method, we find an approximate solution U
a of the regularized operator equation C:C_x=C2y.

We prove the convergence of the conjugate gradient method to a solution of C2C,x =C:

y.

THEOREM 7. In the assumptions of section 2-3. the conjugate gradient method (2)

-i5) converges monotonically to the least squares solution u=C;y+ I-Pix, of C,x=7y.
Proof. Refer to (5],

Lemma 8. If Qye R(C,C*), then for i=0, 1, 2, -+
@ lzi-zl 2 hz-z1 € 120721,
) le l2=Kalx,) | 2o-Z 1| 2
and
) lew 12=(1-Ble; |12 lle |I2
where B= | zo-z [ 2| C. || =
Proof. (a). (5) imply that z,-z,,,=a v~ 'p, for i=0, 1, 2, -
where U=C? | R(C*)
Izii-2 2=l 2:-2 | >-2a ,[U~'p,z;~2] +a 2, || U='p; | 2
=12zl %a {2[U'p,, iz,—2]-[U'ps, 2;—2:01]}
lzi-z 1 *-a ,[U'p;, (2:-2) + (2001-2)]
=lz-z [ *-a ,[U'p, v (e, +ei,)]

)

I
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=|z,-z | %a [v'u'p, e;+e.] where V=Ca | R(C*)
Therefore, we need only show that [v-'u™'p,, e+ e.,] is nonnegative.

i 1 ) 1
[v'u'p,, e.+e =l r 22— | 2[v“u"rk, eiten =1 rls—= — lewe+
k=o | ry 1 k=0 Ir Ty | 2

€],
which by Lemma 6 is nonnegative.

(b) Using the Cauch-Schwarz inequality and part (a), we obtain e, | *= | [x,-u, C*
z,-u] | 2= | [Caix,u), 2,-2) | *Skaixs) [ 20-Z 0%

(¢) The boundedness of C. show that

rel? Frif? !
[ HCpu BTN AL
Part (C) is established by using of Lemma 5 and 8 (b) and (9) in the following
manner :

9 a,=

[ i+l LS i - .‘K = z—a___—i " €: ”4 .__——————ue "
el he ll2-a Ka (x)= le,l =3 < (1- TZozl20C. 2 Vel

LEMMA 9. If the sequence {C;} of real numbers satisfies
0§C,‘+1§ (I-BC,-)C,-, 1:0‘ 1' 2, """ ) Wlth B>0 and 0<BC0§1 then

n C.= for i=0, 1, 2, .

Co
"T1+4+iBC,
Proof. If C,=0. then C;;,=0 for n=0, 1, 2, rrene . Therefore, without loss of
generality, we shall assume that C,>0 for all i.
The inequality C,., <Cy for k=0, 1. 2.--, cna be established easily by induction.

i Ck Ck+12 B(C? k

Then, summing the inequalities ék—;]- C.” TG -G, Ck”>B from k=0 to k=i—1

. ! i .
yields C. CO>1B.
Inequality (10) results when this inequality is solved for C,.

THEOREM 10, If Qye R(C.C:C,), then the conjugate gradient method (2)-(5), with
initial value xoe R(C*C,), converges monotonically to the best approximate solution u.=
C:y. In fact
an - I x;uall? =<

I Call2 1l xo-Ci¥ Il 2 Il (C2)*x0-(CCE)*F I
TCal 21 (C*xo- (C.CI9)*y I 2+i [ x0-Ciy |

Proof. From Lemma 8(c), lle.. 12<(1-Ble/ 1% le ll?
where B= || zo-z Il 21 C. | =% holds for i=0, 1, 2, - and

Bl el 2B | Xo-u, 1 2=B I Ctlzo-2) [2S | C2 121 C, [ =1, Lemma 9 can now be
applied to this difference inequality showing that
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I Xo-ue ||

e ll*<s—
-y e

Inequality (1) results when x,-u. is replaced by x,-C*¥ and

relation z= (C.C%)*y is utilized. This completes the proof of Theorm 10,
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