

박사 학위 논문

수평축 소형풍력발전기 블레이드 공력해석 및 실증에 관한 연구

강 명 보

제주대학교 대학원

에너지응용시스템학부 기계공학전공

2024년 2월

수평축 소형풍력발전기 블레이드 공력해석 및 실증에 관한 연구

이 논문을 공학박사 학위논문으로 제출함

강 명 보

제주대학교 대학원

에너지응용시스템학부 기계공학전공

지도교수 박 윤 철

강명보의 공학박사 학위논문을 인준함

2023년 11월

목	차
-	 ''

I. 서 론 ··································
1. 연구 배경
1) 신재생에너지 보급 정책
2) 소형풍력발전기 국내외 시장 현황
3) 소형풍력발전기 기술 현황4
2. 연구 목적
II. 이론적 배경
1. 풍력발전기 구조 및 원리
1) 풍력발전기 구조
2) 풍력발전기의 분류9
3) 풍력발전 원리
2. 블레이드 구조 및 원리
1) 블레이드 구조
2) 블레이드 원리
3. 공력해석 이론
1) 액추에이터 디스크 이론18
2) 운동량 이론
3) 로터 디스크 이론
4) 각운동량 이론
5) 날개요소 이론
4. 전산유체역학
1) 전단응력 수송 난류 모델35
2) ANSYS-CFX
3) Q Blade

5.	블레이드 설계 및 제작	· 40
	1) 역설계 기법	· 40
	2) 블레이드 제작 기법	• 42

III. 해석 방법 ······	47
1. 3kW급 소형풍력발전기 블레이드 공력해석 및 실증 과정	47
1) 3kW급 소형풍력발전기 블레이드 공력해석 절차 수립	47
2) 3kW급 상용 소형풍력발전기 사양 분석	49
2. 3kW급 소형풍력발전기 블레이드 3D 모델링	50
1) 역설계 기법을 통한 블레이드 3D 모델링 및 익형 추출	50
2) 데이터베이스를 활용한 익형 선정 및 블레이드 3D 모델링	54
3. 3kW급 소형풍력발전기 공력해석	58
1) 익형별 2차원 공력해석	58
2) 블레이드 형상별 3차원 공력해석	62
4. 소형풍력발전기 실증	66
1) 소형풍력발전기 설치	66
2) 소형풍력발전기 운영데이터 수집	69
IV. 해석 결과 및 분석	73
1. 3차원 공력해석 모델 타당성 검증	73
2. 익형별 2차원 공력해석 결과 분석	75
1) 기본 익형 공력해석 결과 분석	75
2) S822 익형 공력해석 결과 분석	77
3) S823 익형 공력해석 결과 분석	79
4) FX63 익형 공력해석 결과 분석	81
5) BW-3 익형 공력해석 결과 분석	83
6) SG6042 익형 공력해석 결과 분석	85
7) 익형별 공력해석 결과 종합 분석	87

3. 블레이드 케이스별 설계에 따른 출력성능 결과 분석89
1) S822 airfoil Case #1 출력성능 결과 분석90
2) S822 airfoil Case #2 출력성능 결과 분석
3) S822 airfoil Case #3 출력성능 결과 분석
4) S822 airfoil Case #4 출력성능 결과 분석96
5) S823 airfoil Case #1 출력성능 결과 분석
6) S823 airfoil Case #2 출력성능 결과 분석
7) S823 airfoil Case #3 출력성능 결과 분석
8) S823 airfoil Case #4 출력성능 결과 분석
9) 블레이드 설계안 최종 선정
4. 신형 블레이드 실증 및 운영데이터 분석

12

부록

LIST OF FIGURES

Fig.	1.	Percentage target based on power generation at 2034
Fig.	2.	Cumulative installed number of small wind turbine in the world
Fig.	3.	Structure of wind turbine7
Fig.	4.	Classification of wind power generators according to type9
Fig.	5.	Wind energy conversion system
Fig.	6.	Power curve of wind turbine
Fig.	7.	Coefficient of lift by angle attack in degrees
Fig.	8.	Cross-section of a wind turbine blade15
Fig.	9.	Bernoullil's principle
Fig.	10	Length, chord, twist of blade17
Fig.	11	. Cross section of airfoil17
Fig.	12	. Schematic representation of the actuator disk momentum theory 19
Fig.	13	. Wind particle trajectory through the rotor disk plane

Fig.	14.	Rotor plane forces and velocities
Fig.	15.	Standard blade plan and region classification29
Fig.	16.	Schematics of the blade elements
Fig.	17.	Blade element velocities and forces
Fig.	18.	Q Blade analysis process by modules
Fig.	19.	Reverse engineering process
Fig.	20.	Classification of 3D Scanners41
Fig.	21.	Blade inner section42
Fig.	22.	Production of a composite blade part by the RTM process
Fig.	23.	Lay-up of reinforcement material into the mold
Fig.	24.	SWT blade aerodynamic analysis and verification process
Fig.	25.	Picture of 3D scanning process
Fig.	26.	3D modeling of blade52
Fig.	27.	Airfoil coordinate extraction process52
Fig.	28.	Process of reverse engineering53

Fig. 29	. Six small wind turbine airfoil base lines	
Fig. 30	. Q Blade data creation process	
Fig. 31	. Blade 3D modeling creation process	
Fig. 32	2. Airfoil body creation for 2D flow analysis58	
Fig. 33	a. Airfoil boundary(a), Volume boundary(b), Turbulence solid(c) creation	
Fig. 34	. Create mesh based on created geometry	
Fig. 35	6. Setup internal and external pressure conditions to analysis	
Fig. 36	62 Process of ANSYS-CFX analysis	
Fig. 37	Create rotor area(a), fluid area(b)63	
Fig. 38	8. Create mesh of blade rotation area : geometry(left), mesh(right) 64	
Fig. 39	Create mesh of fluid area : geometry(left), mesh(right)64	
Fig. 40	. CFX setting : Domain interface of fluid	
Fig. 41	. Drawing of S823 airfoil blade	
Fig. 42	. Manufacturing new blades	

Fig.	43.	Small wind turbine(a), Charge controller(b), Inverter(c), Grid(d)67
Fig.	44.	Monitoring system schematic
Fig.	45.	Field demonstration of new blade
Fig.	46.	Monitoring system using web platform
Fig.	47.	Wind speed data for April 28, 2023 : 10 sec(left), 1min(right)71
Fig.	48.	Wind speed data for May 3, 2023 : 10 sec(left), 1min(right)71
Fig.	49.	Wind speed data for May 4, 2023 : 10 sec(left), 1min(right)71
Fig.	50.	Wind speed data for May 15, 2023 : 10 sec(left), 1min(right))72
Fig.	51.	Wind speed data for May 17, 2023 : 10 sec(left), 1min(right)72
Fig.	52.	Wind speed data for June 19, 2023 : 10 sec(left), 1min(right)72
Fig.	53.	Comparison graph of power by wind speed74
Fig.	54.	Pressure contour of default airfoil at AOA=7°76
Fig.	55.	Velocity streamline of default airfoil at AOA=7°76
Fig.	56.	Pressure contour of S822 airfoil at AOA=6°78
Fig.	57.	Velocity streamline of S822 airfoil at AOA=6°

Fig. 58. Pressure contour of S822 airfoil at AOA=6°80	
Fig. 59. Velocity streamline of S822 airfoil at AOA=6°80	
Fig. 60. Pressure contour of FX63 airfoil at AOA=1°82	
Fig. 61. Velocity streamline of FX63 airfoil at AOA=1°82	
Fig. 62. Pressure contour of BW-3 airfoil at AOA=4°	
Fig. 63. Velocity streamline of BW-3 airfoil at AOA=4°	
Fig. 64. Pressure contour of SG6042 airfoil at AOA=4°	
Fig. 65. Velocity streamline of SG6042 airfoil at AOA=4°	
Fig. 66. 2D aerodynamic analysis according to airfoil	
Fig. 67. Airfoil of NREL's S822	
Fig. 68. Airfoil of NREL's S823	
Fig. 69. Power curve of S822 airfoil Case #1	
Fig. 70. Power curve of S822 airfoil Case #2	
Fig. 71. Power curve of S822 airfoil Case #395	
Fig. 72. Power curve of S822 airfoil Case #4	

Fig.	73.	Power	curve	of	S823	airfoil	Case	#1		 	• 99
Fig.	74.	Power	curve	of	S823	airfoil	Case	#2		 	101
Fig.	75.	Power	curve	of	S823	airfoil	Case	#3		 	103
Fig.	76.	Power	curve	of	S823	airfoil	Case	#4		 	105
Fig.	77.	Torque	e value	ac	cordii	ng to k	olade	des	ign shape	 	107
Fig.	78.	Scatter	plot o	of S	5823 a	airfoil S	SWT	•••••		 	110
Fig.	79.	Power	by wi	nd	speed	l accor	ding t	to a	irfoil ······	 	111

LIST OF TABLES

Table 1. Domestic market size and outlook for small wind turbine2
Table 2. Industrial structure of small wind turbine
Table 3. Name and function of wind turbine
Table 4. Specification and performance of 3kW small wind turbine
Table 5. Specification of 3D scanner
Table 6. Airfoil coordinates of S82355
Table 7. Small wind turbine operation data70
Table 8. Comparison of output power(W) by wind speed section73
Table 9. Defult airfoil 2D aerodynamic analysis
Table 10. S822 airfoil 2D aerodynamic analysis77
Table 11. S823 airfoil 2D aerodynamic analysis79
Table 12. FX63 airfoil 2D aerodynamic analysis
Table 13. BW-3 airfoil 2D aerodynamic analysis
Table 14. SG6042 airfoil 2D aerodynamic analysis 85

Table 15. Lift-Drag ratio according to airfoil and angle of attack
Table 16. Blade data of S822 airfoil Case #190
Table 17. Power analysis of S822 airfoil Case #191
Table 18. Blade data of S822 airfoil Case #2
Table 19. Power analysis of S822 airfoil Case #293
Table 20. Blade data of S823 airfoil Case #394
Table 21. Power analysis of S822 airfoil Case #395
Table 22. Blade data of S823 airfoil Case #4
Table 23. Power analysis of S822 airfoil Case #4
Table 24. Blade data of S823 airfoil Case #1
Table 25. Power analysis of S823 airfoil Case #1
Table 26. Blade data of S822 airfoil Case #2100
Table 27. Power analysis of S822 airfoil Case #2101
Table 28. Blade data of S823 airfoil Case #3 102
Table 29. Power analysis of S823 airfoil Case #3103

Table 30. Blade data of S823 airfoil Case #4	
Table 31. Power analysis of S823 airfoil Case #4	
Table 32. Torque value calculation according to blade design	
Table 33. Output power according to wind speed	
Table 34. Comparison of power by wind speed according to airfoil	

Nomenclature

- C_L : Lift coefficient
- C_D : Drag coefficient
- C_L/C_D : Lift-Drag ratio
 - ρ : Density
 - A : Area
 - U : Velocity of fluid
 - C_T : Axial thrust coefficient
 - Ω : Angular velocity
 - N : Quantity of blade
 - σ : Blade rotation area
- kW : Power
- T : Torque
- AOA : Angle of Attack
- SWT : Small Wind Turbine
- HAWT : Horizon Axis Wind Turbine
 - CFD : Computational Fluid Dynamics
 - SST : Shear Stress Transport

수평축 소형풍력발전기

블레이드 공력해석 및 실증에 관한 연구

강 명 보

제주대학교 대학원 에너지응용시스템학부 기계공학전공

요약

본 연구에서는 소형풍력발전기의 역설계를 통한 익형 형상 데이터 취득에서부터 공력해석을 통한 신형 블레이드 설계 및 제작, 현장 실증을 통한 성능 데이터 수집 및 검증까지 전주기에 관한 연구를 수행하였다. (1) 상용 3kW급 소형풍력발전기와 역설계를 통한 공력해석 모델을 풍속 구간별 출력량 오차율을 계산한 결과 평균 오 차율은 5.1%로 3kW급 소형풍력발전기 공력해석을 위해 수립한 3차원 공력해석 모 델의 타당성을 확보하였다. (2) 익형 S822, S823, FX63, BW-3, SG6042 총 5종에 대해 ANSYS-CFX를 활용하여 받음각 1°~ 12°까지 2차원 공력해석을 수행 후, 출 력 곡선 경향성 및 익형의 형상이 가장 유사한 S822, S823 익형을 선정였고 Q Blade를 출력성능을 분석한 결과 성능이 소폭 증가한 총 8가지 케이스를 3차원 공 력해석을 위한 블레이드 설계안으로 선정하였다. (3) ANSYS-CFX를 활용한 3차원 공력해석을 통해 8가지 케이스 별 토크값을 계산한 결과, S823 airfoil Case #4의 경우 토크값은 109.3730N·m, 출력값은 3.281kW로 산출되어 정격 출력 구간에서 기존 상용 풍력발전기 대비 7.4%의 출력 향상을 나타내었다. (4) 최종 선정한 S823 airfoil Case #4를 실제 제작하여 상용 소형풍력발전기에 탑재 후 운영데이 터를 확보하였다. 공력해석 결과와 운영데이터 결과를 상호 비교 분석한 결과 평균 7.28%의 오차율로 3차원 공력해석 모델의 타당성을 검증하였다. 특히 정격 출력 구간인 10m/s에서는 오차율이 5.5%로 매우 정확한 3차원 공력해석 모델임을 검증 할 수 있었다.

I. 서론

1. 연구 배경

1) 신재생에너지 보급 정책

신재생에너지의 보급에 관한 관심사는 전 세계적으로 나날이 높아지고 있다. 국내에서도 2050 탄소 중립, RE100 등의 다양한 정책들을 수립하고 관련 산업군 과 경제 분야, 사회 영역에 걸쳐 속도감 있게 진행할 것을 확정하였다. 산업통상 자원부에서는 제5차 신·재생에너지 기술개발 및 이용·보급 기본계획을 통해 에너 지원별 발전 비중 목표를 제시하였으며, 특히 풍력의 경우 목표 달성을 위해 현 재 설비용량 대비 15배 이상의 증설을 목표로 하고 있다.

Fig. 1. Percentage target based on power generation at 2034

국내 소형풍력발전기(SWT : Small Wind Turbine) 제조사의 실제 규모는 영세한 편이며 10여개의 제작사 및 20여개의 부품 업체가 사업자 등록되어 있다. 국내 소형풍력발전기 제조업체는 아직 활성화되지 않은 시장 규모로 인해 지속 적인 연구개발에 몰두할 수 있는 환경을 갖추기가 어려운 상황으로, 시장의 활성 화를 위해서는 제품설치 시 보조금 지급과 같은 단순한 차원의 지원 방식보다 발전차액지원제도(Feed In Tariff)나 REC(Renewable Energy Certificate) 가중치 의 조정 등과 같은 민간 발전 사업지 육성과 같은 근원적인 대책 방안이 필요한 시점이다.

정부에서는 한국에너지공단의 신재생에너지 보급사업의 일환으로 융복합 지 원사업을 진행하고 있으며 2013년 이후 지자체를 중심으로 꾸준하게 소형풍력발 전기가 설치되고 되고 있다. 이에 Table 1과 같이 2018년에서 2024년간 20.1%의 연평균 성장률로 성장을 지속하여 2024년에는 72억 원 규모에 이를 것으로 전망 된다.[1]

특히 마이크로그리드 시장은 풍력, 태양광, ESS, ICT 산업 등 다양한 산업들 과의 시너지를 극대화 할 수 있는 융복합 기술로서 신산업 최근 그 관심도가 높 아짐에 따라 향후 마이크로그리드 시장과 함께 큰 폭으로 성장할 수 있을 것으 로 기대하고 있다.

Table 1. Domestic market size and outlook for small wind turbine

(Unit: KRW 100 million)

	2018	2019	2020	2021	2022	2023	2024	CAGR
Domestic Market	24	29	35	41	49	60	72	20.1%

세계풍력에너지협회(World Wind Energy Association)에 따르면 세계 소형풍 릭 시장은 2014 ~ 2015년간 성장세가 소폭 둔화하였지만, Fig. 2와 같이 향후 최 소 12%의 지속적인 성장률을 보일 것으로 예측하였다. 관련 업계는 2020년에 연 간 신규 설치 용량이 약 270MW에 달할 것이며, 2020년까지 누적 설치 용량은 약 1.9GW를 달성할 것으로 예측하였다.[2]

소형풍력발전시장은 국가의 에너지정책과 FIT(Feed In Tariff) 시행 여부 등 의 인센티브 정책에 따라 영향을 크게 받는 시장으로 나라별 규모에 큰 편차를 보이는 특성이 있다. 일본과 덴마크는 FIT 제도의 시행으로 소형풍력발전산업의 규모가 2017년부터 2018년 사이 300% 이상 크게 성장하는 반면, 영국의 시장은 정부의 FIT 제도 축소와 제한에 따라 꾸준히 감소하고 있다.

Fig. 2. Cumulative installed number of small wind turbine in the world

풍력발전은 발전 용량이 MW급으로 대형화되면서 대규모 풍력단지가 늘어나 고 바람 자원이 풍부한 해상으로 확대되고 있지만 대형풍력발전은 소음 등의 환 경문제와 설비 구축 공간 부족 등으로 시장 확대에 어려움을 겪고 있다.

소형풍력발전기는 독립전원으로써 전통적으로 자가발전용으로 시장이 형성되 었으나, 신재생에너지 확대 요구에 따라 상업 발전 분야로 시장이 확대되고 있 다. 최근 개발도상국 및 도서 지역을 중심으로 분산 전원 도입이 추진되고 있으 며, 특히 도심이나 소규모 개발 단지에서는 풍력, 태양광, ESS를 결합한 스마트 그리드 기술이 발달하고 있다.

국내의 경우에는 도심 지역의 풍속이 평균 2 ~ 4m/s로 그다지 높지 않아 풍력발전이 효율적으로 이뤄지기는 어려우나, 소형풍력발전기의 특성상 저속에서 도 전력 생산이 가능하며, 특히 환경 피해 및 설치 조건의 제약이 적어 기상 조 건만 적합하다면 주택의 옥상, 베란다 등을 활용한 마이크로그리드 형태의 분산 형 전원 시스템 구축이 가능하고 이를 통해 미래전력을 친환경 에너지로 바꿔나 갈 수 있다.

기업 측면에서 봤을 때, 중대형 풍력발전시스템은 많은 자본과 설비투자가 필요하여 대기업 중심으로 개발되고 있으나 소형풍력발전기의 경우 소규모 자본 및 설비로 자체 개발이 가능하여 국내 중소기업 특성상 적합한 업종으로 분류되 고 있다. 이와 관련하여 중소벤처기업부에서 발간한 중소기업 전략기술로드맵에 따르면 신재생에너지 분야에서 고효율 소형 풍력발전 시스템을 전략제품으로 선 정하였다.[1]

소형풍력산업은 기계, 항공, 전기, 전력 전자, IT, 토목 등과 같은 다양한 기 술 분야의 복합기술 결합체이고 기반 기술이 국내 인프라로 대응이 가능하여 대 부분의 구성부품을 국산화 할 수 있다는 장점이 있다.

4

이를 통해 단가 절감과 경쟁력 확보, 공급망 구성을 통한 유관 산업계와의 연관성장까지 기대할 수 있으며 아울러 설계, 제조 및 설치의 전 과정에서 자동 화가 불가능한 기술집약형 산업으로 높은 고용효과를 기대할 수 있는 고부가가 치 산업으로, 부품별 유관 산업군을 Table 2에 나타내었다.

Industrial	Component				
Downstream	FRP(Fiberglass Reinforced Plastic), Permanent magnet, Material, Machining, Power electronic devices, Electrical equipment, Steel Structure, IoT(Internet of Things), Software				
Small wind turbine	Blade, Generator, Inverter with linkage device, PCS, Tower				
Upstream	Independent power, Grid connection, Commercial power generation, Convergence development, ESS(Energy Storage System), Microgrid				

Table 2. Industrial structure of small wind turbine

2. 연구 목적

앞서 언급한 바와 같이 국내에서는 소형풍력발전기의 시장 확보에 대한 어려 움으로 인해 3MW급 이상의 대형풍력 위주의 보급이 다수이며 익형(Airfoil) 및 블레이드(Blade) 형상에 대한 최적화 연구 역시 중대형 풍력발전기 위주의 연구 가 대부분이다. 이와 같은 사유로 소형풍력발전기의 국부적인 연구 결과는 다수 있으나 설계에서부터 공력해석, 실증까지 전주기에 관한 연구는 국내에 공개된 바가 없으며, 업체에서도 각자의 기밀 사항으로 외부 유출을 경계하고 있기 때문 에 학계에서 세부적인 연구에 진입하기가 어려운 실정이다.

이에 본 연구에서는 소형풍력발전기의 공력해석을 통한 출력성능이 향상된 신형 블레이드의 설계 및 실증에 관한 전주가 연구를 수행하였다. 블레이드 공력 해석모델을 수립하고 해당 설계를 기반으로 실제 블레이드를 제작한 후, 소형풍 력발전기에 탑재하고 일정 기간에 걸친 운영데이터를 수집하여 공력해석 모델과 의 비교 분석을 통해 검증을 완료하였다.

수행 과정으로는 기 설치된 상용 풍력발전기의 블레이드 역설계 기법을 통해 익형 좌표 데이터를 추출 후, 3D 모델링 및 공력해석을 통해 비교 대조군을 수 립하고 출력 곡선 비교를 통해 해석모델의 타당성을 확보하였다. 이후 출력성능 을 향상할 수 있는 블레이드 설계를 위해 NACA 및 NREL에서 제공하는 다양한 상용 익형 중 적합한 후보군을 선정하여 오픈소스 프로그램인 Q Blade를 통해 블레이드의 위치 구간, 시위 길위, 비틀림 각을 케이스별로 조합하여 설계하였고, 이를 3D 모델링 프로그램을 통해 실제 스케일의 형상을 구현한 후 기 수립한 공 릭해석 모델을 활용해 공력해석 결과 중 기존 대비 높은 출력을 갖는 익형 중 양항비의 경향성이 가장 유사한 익형을 선정하였고, 해당 설계를 기반으로 실제 블레이드 제작 후 실증을 통해 해석모델과 실제 출력값의 상호 비교 분석을 통 해 최종 공력해석 모델 수립을 완료하였다.

6

II. 이론적 배경

1. 풍력발전기의 구조 및 원리

1) 풍력발전기의 구조

풍력발전기는 크게 나셀, 로터, 블레이드, 타워로 구성되며 세부적인 부품 및 기능들은 Fig. 3 및 Table 3에 표시하였다.[3]

Fig. 3. Structure of wind turbine

Name	Function					
Tower	Structure that supports wind turbines					
Blade	Convert wind energy into rotational kinetic energy					
Nacelle	Case containing an electrical conversion device installed on the top of the tower					
Hub System	Connect the main shaft and blade					
Rotor Shaft, Main shaft	Transfers the rotational kinetic energy of the blade to a gearbox or generator					
Gearbox	Converts the low-speed rotation of the main shaft into high-speed rotation					
Yawing System	Nacelle rotation to align blades with wind direction Composed of gears and brakes					
Pitch control system	A device that controls output by adjusting the inclination angle of the blade according to wind speed					
Generator	Converts mechanical energy received from the gearbox into electrical energy					
Brake	Device for braking disc pads					
Control System	Set up and operate wind power generators to enable unmanned operation					
Monitoring System	Remote control and system status determination on the ground					

Table 3. Name and function of wind turbine

풍력발전기는 형태에 따라 Fig 4와 같이 분류할 수 있으며, 다양한 파생 모 델이 있다. (a) 형태는 수평축 풍력발전기로 상업화된 중·대형 풍력발전기 시스 템의 대부분을 차지하고 있다. 풍향의 변동에 영향을 받으며 작동 풍속이 높고 수직축 풍력발전기 대비 효율이 높은 특징을 갖는다. (b) 형태는 사보니우스형 수직축 풍력발전기로 좌우 반대 방향으로 조합된 2장의 원통형 날개로 구성된다. 회전수가 낮고 소음은 적으며 토크는 비교적 큰 특징을 갖는다. (c) 형태는 다리 우스형 수직축 풍력발전기로 2~ 3개의 날개로 구성되어 있으며 방향타가 불필 요하다. 정지 상태에서 바람에서 얻는 기동 토크가 매우 작기 때문에 모터로 기 동되며, 회전수가 매우 큰 특징을 갖는다.[4]

Fig. 4. Classification of wind power generators according to type

풍력발전기는 동력전달장치 구조에 따라서도 분류가 가능한데, 크게 기어드 타입(Geared type)과 기어리스 타입(Gearless type)으로 나뉜다.

기어드 타입은 풍력발전기의 출력주파수를 계통의 상용주파수로 조정하고 로 터 회전속도 증가를 위하여 기어박스를 활용하는 타입으로, 초기 풍력터빈의 개 발 단계부터 적용된 기술적 접근방법이었으며 현 풍력발전 시장의 80% 이상 채 택하고 있다. 종속비를 높여 발전기의 크기를 감소시킬 수 있는 장점이 있으나 기어박스 내 부품수가 많아 소음과 진동이 발생하며 고장률이 높아 유지보수가 필요하다.

기어리스 타입은 증속기를 사용하지 않고 로터 회전축이 발전기 회전축과 직 결되어 있는 구조로 기어박스가 없기 때문에 기계적 응력이 줄어들며 소음 및 진동도 비교적 작은 편이다. 고장률이 낮아 가동률이 높고 기어에서 손실되는 동 력이 없어 발전 효율을 높일 수 있다. 하지만 회전 속도가 느려 다극 발전기를 사용해야 하기 때문에 발전기의 크기 및 무게가 증가하게 되고 이로 인한 제작 비용이 높은 단점이 있다.

풍력발전기는 제어 방식에 따라 분류 가능하며 크게 피치제어(Pitch control) 방식과 스톨제어(Stall control) 방식으로 나뉜다.

피체제어 방식은 발전기의 블레이드 각도를 조정함으로써 회전 속도와 토크 를 제어하는 방식이다. 피치제어 방식의 장점으로는 적정 출력에 대해 능동적인 제어가 가능하고 피치각 회전을 통한 물리적 제동 방식을 사용하여 기계적 타격 없이 부드러운 발전기 가동 중단 및 계통투입이 가능하며, 계통투입 시 전압강하 나 유입전류를 최소화할 수 있다. 하지만 장기 운전 시 피치각 회전을 위한 유압 장치 실린더와 회전자 간의 기계적 연결 부분에 마모 및 부식 등에 의한 유지보 수 필요하며 외부 풍속이 매우 빠르게 변할 경우 실시간 제어가 어려울 수 있다.

10

스톨 제어 방식은 피치각을 고정하고 일정 풍속 이상 시 양력이 감소하고 항력이 급증하는 실속 현상을 일으켜 터빈의 회전속도를 조절하는 방식이다. 스 톨 제어 방식의 장점으로는 블레이드의 공기역학적 형상을 활용한 제어 방식으 로 피치제어 방식 대비 높은 발전량을 보인다. 또한 회전자 간 기계적 연결장치 와 유압장치의 부재로 장기 운전 시에도 유지보수의 필요성이 비교적 낮은 편이 다. 하지만 피치각에 의한 실시간 출력제어가 불가하여 과출력이 발생할 가능성 이 상대적으로 높고, 비상제동 시에도 피치각은 고정되어 있기 때문에 회전자 끝 부분만 제동장치로서 작동하므로 제동 효율이 낮고 동시에 유압 제동장치가 작 동해야 하므로 주축 및 기어박스에 충격이 가해질 우려가 높다. 또한 계통투입 시 전압강하나 유입전류로 인해 계통에 악영향을 줄 가능성이 높다.

소형풍력발전기는 용도별로도 분류할 수 있는데 크게 독립전원형, 계통 연계 형, 마이크로그리드형으로 구분된다. 독립전원형은 도서 지역이나 계통 미연계 지역에 소규모 전력 공급의 요구가 필요할 경우 주로 사용되며, 계통 연계형의 경우 전기 사용량 절감을 목적으로 계통연계 인버터를 통한 상계 거래 시 사용 된다. 마이크로그리드형은 전원 공급, 전력 저장, 에너지 관리 등 전력 최적화 및 안전성 확보기 필요한 분야에서 주로 사용된다.

풍력발전기는 발전 용량에 상관없이 동일한 원리로 에너지를 생산하는데, 블 레이드가 회전하면서 발생하는 기계에너지를 구동축을 통해 나셀 내부의 기어박 스로 전달하고 발전기를 통해 기계적 에너지를 전기에너지로 변환 후 이를 상용 계통으로 송신하게 된다.

바람이 불면 블레이드가 회전하며 바람을 회전운동 에너지로 변환한다. 주축 에서 블레이드가 만든 회전력을 회전 속도를 높여주는 증속기로 전달하고 주축 과 베어링으로 연결된 증속기가 주축으로부터 전달받은 저속의 회전운동 에너지 를 기계의 힘을 통해 고속으로 변환한다. Fig. 5와 같이 증속기에서 고속으로 변 환된 회전운동 에너지를 발전기로 전달하면 발전기는 전자기 유도작용에 의해 기전력을 발생시켜 에너지를 전기로 변환하며, 전력변환장치는 발전기에서 생산 된 직류전기를 교류전기로 변환한다.[5]

Fig. 5. Wind energy conversion system

풍속에 따른 풍력발전기의 출력성능을 도식화한 그래프를 출력 곡선(Power curve)이라 하고 이는 Fig. 6과 같이 나타낼 수 있으며, 효율적이고 안전한 풍력 발전기 운영을 위해 구간별 수행 역할이 구분되어 있다. Fig. 8의 A 구간에서는 풍속이 시동 풍속보다 낮아 발전이 불가하며, B 구간에서는 발전이 시작되지만 생산 출력이 정격 출력보다 낮은 구간이다. C 구간에서는 설계에 적용된 정격 출력만 생산하도록 토크는 일정하게 유지하면서 피치 각도를 제어하여 출력 및 회전수를 정격으로 일정하게 유지한다. D 구간에서는 풍속이 종단풍속보다 크므 로 작동을 중지하고 출력 생산 중지한다.[6]

Fig. 6. Power curve of wind turbine

2. 블레이드 구조 및 원리

1) 블레이드의 구조

블레이드는 풍력발전기의 발전 효율에 직접적인 영향을 미치는 중요한 요소 로, 공력해석을 통한 결과를 반영하여 에너지 변환 효율이 최대값을 갖도록 설계 해야 한다. 풍력발전기 블레이드 성능은 특정 양력계수(*C_L* : Lift coefficient)와 항력계수(*C_D* : Drag coefficient)를 갖는 익형의 조합으로 결정되며, 이는 식 (1) 에 나타내었다. 통상적으로 양력계수와 양항비(*C_L/C_D* : Lift to Drag ratio)가 높 은 익형이 높은 에너지 변환 효율을 갖게 된다.

$$L = C_L \frac{1}{2} \rho \nu^2 A, \ D = C_D \frac{1}{2} \rho \nu^2 A \tag{1}$$

Fig. 7 Coefficient of lift by angle attack in degrees

Fig. 8은 풍력발전기 블레이드 단면을 나타내었으며, 유체의 저항을 최소화하 기 위해 앞부분은 곡선으로 하고 뒤로 갈수록 날렵해지는 유선 형태를 띠고 있 다.

유체가 처음 맞닿는 둥근 형상 부분을 리딩 엣지(Leading edge)라고 하며 유 체가 지나가는 부위를 트레일링 엣지(Trailing edge)라 한다. 내부에는 블레이드 제조 공정 시 유리섬유 및 탄소섬류 적층 하중을 버틸 수 있는 버팀목 역할을 하는 시어 웹(Shear web)과 적층 과정에서 뼈대 역할을 하는 스파 캡(Spar cap) 이 있다.[7]

Pressure side Fig. 8. Cross-section of a wind turbine blade

블레이드에서 양력이 발생하는 주요 원인으로는 베르누이의 원리(Bernoullil's principle)를 들 수 있다. 베르누이의 원리는 유체의 속도가 증가하면 압력이 감 소한다는 원리로 블레이드에 적용될 경우의 모습을 Fig. 9에 나타내었다.[8]

바람이 불면 블레이드의 리딩 엣지를 지나 공기의 일부는 위로, 나머지는 아 래로 이동하게 된다. 이때, 블레이드 아래의 공기는 직선으로 이동하지만 위쪽 공기는 곡면을 따라 더 먼 거리를 이동해야 하기 때문에 블레이드 상단을 이동 하는 공기가 하단에 비해 빠른 속도로 트레일링 엣지까지 이동하는 것을 확인할 수 있다. 이로인해 블레이드 상단의 기압이 하단의 기압보다 낮아지면서 기압이 높은 하단의 공기가 상단 공기보다 더 큰 힘으로 날개를 밀어내면서 양력이 발 생하게 된다.

Fig. 9. Bernoullil's principle

바람이 블레이드를 통과하면서 흡입면과 압력면에서의 속도 차이에 의해 압 력차를 형성하게 되는데, 이는 양력의 크기와 같으며 시위길이(Chord length), 비 틀림 각(Twist angle)의 조정을 통해 압력차의 크기를 제어할 수 있다. 특히 팁 (Tip) 방향으로 갈수록 각속도가 빨라지면서 단면 별 받음각(Angle of attack)이 달라지므로 최적의 받음각을 유지하기 위하여 블레이드는 비틀림 형상을 갖도록 설계되어야 한다.[9]

Fig. 10. Length, chord, twist of blade

Fig. 11. Cross section of airfoil

3. 공력해석 이론

1) 액추에이터 디스크(Actuator disk) 이론

풍력발전기의 로터 면적을 원판(Disk) 형태로 가정할 경우, 상류(Upstream) 로부터 하류(Downstream)까지의 유관(Stream tube)에서 나타나는 현상을 Fig. 12에 나타내었다.[10]

디스크 단면적 대비, 상류의 유관은 작고 하류의 유관은 큰 단면적을 갖는다. 유관 내 임의의 위치에서 단면적을 통과하는 질량유량은 *ρAU*로 표현할 수 있으 며, 질량보존의 법칙에 의해 질량유량은 유관 내 어느 지점에서 측정하더라도 항 상 일정한 값을 갖으므로 식 (2)와 같이 나타낼 수 있다.

이때 밀도는 ρ, 단면적은 A, 유속은 U로 나타내며 는 로터 디스크 상류에서 무한한 거리는 ∞로 나타낸다. 디스크 단면 조건은 disk, 디스크 단면 후류에서 멀리 떨어진 곳의 조건은 wake로 나타낸다.

$$\rho A_{\infty} U_{\infty} = \rho A_{disk} U_{disk} = \rho A_{wake} U_{wake} \tag{2}$$

일반적인 유속의 변화는 액추에이터 디스크에 의해 발생하는데, 이때 흐름의 유선 방향 속도 성분을 aU_{∞} 로 나타낼 수 있다. a는 유입 변수 또는 축 흐름 유 도계수(Axial flow induction factor)라고 하며, 디스크 단면 중심으로 총 유선 방 향 속도는 식 (3)과 같이 나타낼 수 있다.

$$U_{disk} = U_{\infty} - a U_{\infty} \tag{3}$$

Fig. 12. Schematic representation of the actuator disk momentum theory

2) 운동량 이론

디스크의 단면을 통과하는 유속의 변화량은 $U_{\infty} - U_{wake}$ 와 같이 나타낼 수 있으며, 이때의 유체 속도는 가변적이다. 유속 변화량에 질량유량을 곱하여 운동량 변화율을 계산할 수 있으며 이는 식 (4)와 같이 나타낼 수 있다.

운동량 변화율=
$$(U_{\infty} - U_{wake})\rho A_{disk}U_{disk}$$
 (4)

운동량의 변화에 따라 디스크 단면을 가로지르는 압력의 변화로 인하여 힘이 발생하며, 이때 작용하는 힘은 식 (5)와 같이 나타낼 수 있다.

$$(P_{disk}^{+} - P_{disk}^{-})A_{disk} = (U_{\infty} - U_{wake})\rho A_{disk}U_{\infty}(1-a)$$
(5)

유관 상류와 하류에 Bernoulli 방정식을 적용하면 디스크 단면에서 발생하는 압력 차를 확인할 수 있으며, 정상상태일 경우 흐름방향으로 전체 에너지는 운동 에너지, 정압에너지, 위치에너지로 나타낼 수 있다.

상류와 하류에 Bernoulli 방정식을 적용할 경우 각각 식 (6), (7)과 같이 나타 낼 수 있으며, 이때 수평 높이가 일정하고 유동이 비압축성이라 가정하면 각각 식 (8), (9)와 같이 나타낼 수 있다.

$$\frac{1}{2}\rho_{\infty}U_{\infty}^{2} + P_{\infty} + \rho_{\infty}gh_{\infty} = \frac{1}{2}\rho_{disk}U_{disk}^{2} + P_{disk}^{+} + \rho_{disk}gh_{disk}$$
(6)

$$\frac{1}{2}\rho_{wake}U_{wake}^2 + P_{\infty} + \rho_{\infty}gh_{\infty} = \frac{1}{2}\rho_{disk}U_{disk}^2 + P_{disk}^- + \rho_{disk}gh_{disk}$$
(7)

$$\frac{1}{2}\rho U_{\infty}^{2} + P_{\infty} = \frac{1}{2}\rho U_{disk}^{2} + P_{\infty}^{+}$$
(8)

$$\frac{1}{2}\rho U_{wake}^{\ 2} + P_{\infty} = \frac{1}{2}\rho U_{disk}^{\ 2} + P_{disk}^{-}$$
(9)

식 (8), (9)는 식 (10)과 같이 정리할 수 있다.

$$(P_{disk}^{+} - P_{disk}^{-}) = \frac{1}{2}\rho(U_{\infty}^{2} - U_{wake}^{2})$$
(10)

식 (5)와 식 (10)을 정리하면 식 (11)과 같이 나타낼 수 있다. U_{wake} 는 식 (12)와 같이 나타낼 수 있으며, 이를 통해 축 방향 손실은 상류와 하류에서 각각 절반씩 발생하는 것을 확인할 수 있다.

$$\frac{1}{2}\rho(U_{\infty}^2 - U_{wake}^2)A_{disk} = (U_{\infty} - U_{wake})\rho A_{disk}U_{\infty}(1-a)$$
(11)

$$U_{wake} = (1 - 2a)U_{\infty} \tag{12}$$

유동의 변화에 의해 디스크에 발생하는 힘은 식 (5)에 식 (12)를 대입하여 구 할 수 있으며, 이는 식 (13)으로 나타낼 수 있다.

$$F = (P_{disk}^{+} - P_{disk}^{-})A_{disk} = 2\rho A_{disk}U_{\infty}^{2}a(1-a)$$
(13)

식 (13)에 의해 발생한 일률은 로터 디스크 면에 집중되므로 FU_{disk} 로 나타낼 수 있다. 따라서 바람으로부터 생성되는 출력은 식 (14)와 같이 나타낼 수 있으며, 동력계수는 식 (15)과 같이 나타낼 수 있다.

$$Power = FU_{disk} = 2\rho A_{disk} U_{\infty}^3 a (1-a)^2$$
(14)

$$C_{P} = \frac{2Power}{\rho U_{\infty}^{3} A_{disk}} = 4a(1-a)^{2}$$
(15)

바람에 의해 발생하는 최대 동력계수를 계산하기 위해서는 디스크 단면을 통 과하는 바람의 축 방향 손실이 없다는 조건이 전제되어야 하므로, 식 (15)를 미 분한 값은 0이 되어야 하며 이는 식 (16)으로 나타낼 수 있다.

$$\frac{dC_P}{da} = 4(1-a)(1-4a) = 0 \tag{16}$$

식 (2.14)의 해를 구하면 축방향 유도계수 a는 1 또는 $\frac{1}{3}$ 과 같다.

물리적 유동이 없기 때문에 축 흐름유도계수 값은 1이 되며 $\frac{1}{3}$ 을 해로 정하 고 식 (15)에 대입 후 정리하면 식 (17)과 같이 나타낼 수 있다.

$$C_{P,\max} = 4a(1-a)^2 = \frac{16}{27} \approx 0.593 \tag{17}$$

식 (17)에 따라 풍력터빈에서 이론적으로 발생 가능한 최대 동력계수 0.593을 초과한 풍력터빈은 설계할 수 없다. 이는 독일의 항공역학자인 Albert Betz에 의 해 입증되었으며, 동력계수 0.593을 베츠의 한계(Betz limit)라 한다.

축 추력계수 CT는 식 (18)과 같이 무차원화 하여 나타낼 수 있다.

$$C_T = \frac{Power}{\frac{1}{2}\rho U_{\infty}^2 A_{disk}} = 4a(1-a) \tag{18}$$

a ≥ 0.5인 경우, 후류 속도 (1-2a)U_{wake} = 0이 되거나 음의 값이 산출 되면
 문제가 발생하게 되며 이 경우 운동량 이론은 적용 불가하기 때문에 실험을 통
 한 보정 과정이 반드시 적용되어야 한다.[13]

3) 로터 디스크(Rotor disk) 이론

일반적으로 수평축 풍력발전 터빈은 각 속도 Ω로 회전하는 3매의 블레이드 가 탑재된 로터를 장착하며, 풍향과 평행하도록 설치한다. 블레이드는 바람의 공 기역학적인 힘에 의해 회전력을 생성하며, 로터 전·후 단면에서는 후류의 운동량 손실에 따라 압력 차이가 발생하게 된다. 축 방향에서 손실된 운동에너지는 로터 부로 이동되어 동력전달장치에 의해 저속의 회전력으로 변환되며, 이때 발생하는 축 회전력은 고속 축에 장착되어있는 발전기(Generator)를 작동시켜 전력을 생산 함으로써 최종적으로 공기역학적 힘(Torque)을 전기적 에너지로 변환하게 된다.

로터 디스크 면을 통과하는 바람은 회전력으로 변환되며, 이때 반대 방향의 회전력 또한 로터 디스크에 작용하게 된다. 이러한 반작용 토크에 의해 바람이 로터 하류로 빠져나갈 때 역방향 회전력을 갖게 된다. 이때 바람은 각운동량을 생성하고, 로터 디스크 후류에서는 축 방향의 속도값과 로터 회전면에 대한 접선 방향으로의 속도값이 동시에 존재하게 된다. 바람이 블레이드를 통과하면 접선방 향 속도값을 갖게 되며 로터 후류에서 압력감소에 의한 손실 상쇄 효과로써 결 과적으로 운동에너지는 증가하게 된다.

로터 디스크를 통과하는 입자의 궤적에 대해 Fig. 13에 나타내었다. 로터 디 스크로 유입되는 유동은 회전운동을 하지 않지만, 로터 디스크로부터 빠져 나오 는 흐름은 각속도를 생성하고 로터 후류 방향으로 진행하는 과정에서 일정한 값 을 갖게 된다.[14] 일반적으로 로터 디스크 상류에서의 접선방향 속도 성분은 없 으며, 접선방향 흐름유도계수인 a'의 항으로 접선방향 속도 변화를 나타낼 수 있 다. r을 허브로부터 임의의 반경까지의 거리라고 하면, 디스크 하류에서의 접선 방향 속도 성분은 2*Qra*'이며, 디스크 중앙에서 접선속도 변화는 *Qra*'으로 나타 낼 수 있다. 블레이드에서 서서히 가속되는 접선방향 흐름의 가속 상태를을 Fig. 14에 나타내었다.[15]

Fig. 13. Wind particle trajectory through the rotor disk plane

Fig. 14. Rotor plane forces and velocities

축 방향 속도와 접선방향 속도는 블레이드 반경 방향 위치마다 모두 다르며, 로터 디스크를 반경을 r, 반경 방향 미소 길이 & 을 갖는 환형 고리고 가정하면 토크의 증가에 따라 접선방향 속도 성분은 가속하게 되지만 축 방향 속도는 감 속하는 결과가 나타난다.

로터 디스크는 수많은 & 의 적분 형태로 나타낼 수 있는데, 각각의 적분된 환형 고리는 상호 간 운동량전달이 발생하지 않아 환형 고리를 통과하는 흐름에 의해서만 운동량의 전달이 이루어진다고 가정할 수 있다.

미소 환형 고리에 발생하는 토크는 식 (19)와 같이 환형 고리를 통과하는 흐 름의 각 운동량 변화율로 나타낼 수 있으며, 여기서 δA_{disk}는 환형 고리의 면적을 의미한다.

$$\delta Q = \rho \delta A_{disk} U_{\infty} (1-a) 2 \Omega a' r^2 \tag{19}$$

로터 축의 구동 토크를 δQ 라 하면, 로터 축 동력의 증분은 식 (20)과 같이 나타낼 수 있다.

$$\delta P = \delta Q \Omega \tag{20}$$

따라서, 바람으로부터 발생 가능한 전체 에너지는 식 (14)의 축 운동량 변화 율을 대입하여 식 (21)과 같이 정리할 수 있다.

$$\delta P = 2\rho \delta A_{disk} U_{\infty}^3 a (1-a)^2 \tag{21}$$

토크에 의한 동력과 축 추력에 의한 동력을 같다고 가정할 경우 식 (22)와 같이 나타낼 수 있으며 이는 식 (23)과 같이 정리할 수 있다.

$$2\rho\delta A_{disk}U_{\infty}^{3}a(1-a)^{2} = \rho\delta A_{disk}U_{\infty}(1-a)2\Omega^{2}a'r^{2}$$

$$\tag{22}$$

$$U_{\infty}^2 a(1-a) = \mathcal{Q}^2 a' r^2 \tag{23}$$

여기서, 회전하는 환형 고리의 접선속도를 *Q*r라 하면 국부 속도비는 식 (24) 와 같이 나타낼 수 있으며, 이를 식 (23)에 대입하여 정리하면 식 (25)와 같이 나 타낼 수 있다.

$$\lambda_r = \frac{\Omega r}{U_{\infty}}, \ U_{\infty} = \frac{\Omega r}{\lambda_r}$$
(24)

$$a(1-a) = \lambda_r^2 a' \tag{25}$$

환형 고리의 면적 A_{disk}는 2πròr로 계산할 수 있으며, 식 (21)에 식 (25)를 대 입하면 식 (26)과 같이 정리할 수 있다. 식 (26)에서 괄호 안의 항은 환형 고리를 통과하는 동력 변화율을 의미하고, 괄호 밖의 항은 바람으로부터 동력을 추출하 는 블레이드 요소의 효율을 나타내므로 로터 블레이드의 효율은 식 (27)과 같이 정리할 수 있다.

$$\delta P = dQ\Omega = \left(\frac{1}{2}\rho U_{\infty}^{3} 2\pi r dr\right) 4a'(1-a)\lambda_{r}^{2}$$
⁽²⁶⁾

$$\eta_r = 4a'(1-a)\lambda_r^2 \tag{27}$$

이를 동력계수의 형태로 표현하면 식 (28)과 같이 정리할 수 있다.

$$\frac{d}{dr}C_{P} = \frac{4\pi\rho U_{\infty}^{3}(1-a)a'\lambda_{r}^{2}r}{\frac{1}{2}\rho U_{\infty}^{3}\pi R^{2}} = \frac{8(1-a)a'\lambda_{r}^{2}r}{R^{2}}$$

$$\frac{d}{d\mu}C_{P} = 8(1-a)a'\lambda^{2}\mu^{3}$$
(28)

여기서 $\mu = r/R$ 이며 식 (28)을 적분하여 블레이드 팁(Tip) 속도비 변화에 따 른 *a*,*d*'의 반경 방향 변화율과 로터 디스크 전체의 동력계수 계산이 가능하다.

풍력터빈 블레이드에서 루트(Root)에서 팁 방향으로의 반경 r과 길이 &r에서 발생하는 양력과 항력은 고리형 면적을 통과하는 바람의 운동량 변화를 야기시킨 다. 이는 후류 내 회전속도 변화와 관련된 압력 강하의 원인으로 작용하며, 로터 후방에서는 후류의 회전작용에 의한 계단형 압력 강하가 발생하게 된다.[16], [17]

Fig. 15. Standard blade plan and region classification

Fig. 16. Schematics of the blade elements

로터 후방으로 멀리 떨어진 곳에서도 후류는 여전히 회전력을 갖고 있기 때 문에 압력 강하는 발생하나 축 운동량 변화를 일으키지는 않는다. 각각의 블레이 드 반경 방향 위치에서 속도 성분은 풍속, 흐름유도계수, 로터 회전속도의 항으 로 나타낼 수 있으며 이를 통해 받음각을 결정할 수 있다. 또한 양력계수(C_L)와 항력계수(C_D)의 받음각 변화에 따른 변화량에 따라 a,a' 값에서 로터에 작용하 는 힘을 계산할 수 있다.

블레이드 현의 길이 *C*, 팁 반경 *R*, 블레이드 수 *N*, 각속도 *Ω*, 유입 풍속 *U*∞인 블레이드의 경우 최적의 효율을 갖기 위해 스팬 방향으로의 현의 길이, 피 치각 등이 적절하게 설계되어야 한다.

Fig. 17(a)에서 볼 수 있듯이 블레이드 요소의 접선 속도는 Ωr, 후류의 접선 속도는 Ωr'으로 나타낼 수 있으며 이는 블레이드에서 전체 유속의 합이 Ωr(1+a')과 같다는 것을 의미한다. Fig. 17(b)는 반경 r에서 블레이드 현의 길 이에 관계되는 모든 속도값과 힘의 관계를 나타내고 있으며, 블레이드에 작용하 는 벡터 합은 식 (29)와 같이 나타낼 수 있다.[18]

Fig. 17. Blade element velocities and forces

$$W = \sqrt{U_{\infty}^2 (1-a)^2 + \Omega^2 r^2 (1+a')^2}$$
(29)

합속도는 로터의 회전면에 대해 각도 ∅를 갖게 되므로, 이는 식 (30)과 같 이 나타낼 수 있다.

$$\sin \emptyset = \frac{U_{\infty}(1-a)}{W}, \cos \emptyset = \frac{\Omega r(1+a')}{W}$$
(30)

블레이드 길이를 δr이라 하면, 작용하는 양력(δL) 및 항력(δD)은 식 (31)과 같이 나타낼 수 있다.

$$\delta L = \frac{1}{2} \rho W^2 C C_L \delta r, \ \delta D = \frac{1}{2} \rho W^2 C C_D \delta r \tag{31}$$

날개요소 이론은 블레이드에서 발생하는 힘이 요소 면적을 통과하는 바람의 운동량 변화를 유도하는 유일한 값임을 전제로 한다. 반경 방향 요소들 사이에서 의 상호작용은 없으며, 축 방향 흐름 계수의 반경 방향 변화 역시 없는 것으로 가정한다.

N 개의 블레이드에 작용하는 축 방향의 힘은 식 32와 같다.

$$\delta L\cos \emptyset + \delta D\sin \emptyset = \frac{1}{2} \rho W^2 NC (C_L \cos \emptyset + C_D \sin \emptyset) \delta r$$
(32)

요소 면적을 통과하는 바람의 축 방향 운동량 변화율은 mU_{∞} 이므로 블레이 드를 통과하는 바람의 크기는 $(U_{\infty} - U_{wake})$ 이고, $U_{wake} = (1 - 2a)U_{\infty}$ 이다. 따라서 국부 회전 면적을 통과하는 바람의 축 방향 운동량 변화율은 식 (33)과 같이 나 타낼 수 있다.

$$\rho U_{\infty} (1-a) 2\pi r \delta r \times 2a U_{\infty} = 4\pi \rho u_{\infty}^2 a (1-a) r \delta r$$
(33)

후류의 회전에 의해 발생하는 압력 강하는 식 (34)와 같이 나타낼 수 있고, 이때, 축 방향에서 발생하는 힘은 식 (35)와 같이 나타낼 수 있다.

$$P_{drop, wake} = 1/2 (2a' \Omega r)^2 \tag{34}$$

$$F = 1/2 (2a' \Omega r)^2 \times 2\pi r \delta r \tag{35}$$

식 (32)는 축 방향의 공기역학적 힘을 나타내며 바람이 통과할 때 축 방향 운동량 변화와 로터 블레이드 후류에서 압력강하에 의해 발생되는 힘의 합으로 나타낼 수 있으며, 이는 식 (36)과 같이 정리할 수 있다.

$$1/2\rho W^2 Nc (C_L \cos \varnothing + C_D \sin \varnothing) \delta r = 4\pi \rho [U_{\infty}^2 a (1-a) + (a' \Omega r)^2] r \delta r$$
(36)

블레이드는 축 방향 힘 외에도 접선방향 회전력 즉 토크에 의한 힘을 발생하 며 식 (37)과 같이 정리할 수 있다.

$$(\delta L \sin \varnothing - \delta D \cos \varnothing) r = 1/2\rho W^2 NC (C_L \sin \varnothing - C_D \cos \varnothing) r dr$$
(37)

환형 면적을 통과하는 공기의 각 운동량 변화율은 식 (38)과 같이 나타낼 수 있다.

$$\rho U_{\infty}(1-a)\Omega r 2a' r 2\pi r \delta r = 4\pi \rho U_{\infty} \Omega r a' (1-a) r^2 \delta r$$
(38)

식 (36)과 접선방향 회전력으로부터 유도한 식 (38)의 양력계수 및 항력계수 에 관계되는 항을 식 (39)와 같이 대입하면 식 (40), (41) 같이 정리할 수 있다.

$$C_L \cos \emptyset + C_D \sin \emptyset = C_x, \ C_L \sin \emptyset - C_D \cos \emptyset = C_y$$
(39)

$$\frac{a}{1-a} = \frac{\sigma_r}{4\sin^2 \varnothing} \left[C_x - \frac{\sigma_r}{4\sin^2 \varnothing} C_y^2 \right]$$
(40)

$$\frac{a'}{1-a'} = \frac{\sigma_r C_y}{4\sin\emptyset\cos\emptyset} \tag{41}$$

최종적으로 식 (40), 식 (41)을 통한 반복계산법과 블레이드의 일부 위치에 해당하는 2차원 익형의 공력특성 데이터를 활용하여 축 방향 흐름유도계수 a와 회전 방향 흐름유도계수 *d*'을 계산할 수 있다. 여기서, 블레이드의 견고성(Blade solidity) *o*는 로터 블레이드의 전체 회전면적(Swept area) 중 로터 블레이드 면 적이 차지하는 비를 말한다.

$$\sigma_r = \frac{NC}{2\pi r} = \frac{N}{2\pi\mu} \frac{C}{R} \tag{42}$$

주어진 식 (40)과 식 (41)를 활용하여 최적의 블레이드 형상을 설계할 수 있으 며, 관련된 동력이나 토크 값들에 대해서도 계산이 가능하다. 로터의 토크와 동력 을 계산하기 위해서는 흐름유도계수 값이 필요하며, 이는 식 (40)과 식 (41)를 통해 구할 수 있다. 흐름유도계수는 반복 계산법에 의해 산출되며 익형의 공력특성 데이 터를 받음각 변화에 대해 비선형 함수로 표현할 수 있다.

반경방향 길이 & 가 가지는 블레이드에 작용하는 토크는 식 (43)과 같이 나 타낼 수 있다.

$$\delta Q = 4\pi\rho U_{\rm m} \Omega r a' (1-a) r^2 \delta \tag{43}$$

만약 흐름휴도계수들을 구할 때 항력을 고려하지 않는다면 식 (44)와 같이 수정되어야 한다.

$$\delta Q = 4\pi\rho U_{\infty} \Omega r a' (1-a) r^2 \delta r - \frac{1}{2} \rho W^2 NCC_D \cos \emptyset \, \delta r \tag{44}$$

따라서, 전체 토크는 식 (45)와 같이 나타낼 수 있다.

$$Q = \frac{1}{2} \rho U_{\infty}^{2} \pi R^{3} \lambda \left[\int_{0}^{R} \mu^{2} \left[8a'(1-a)\mu - \frac{W}{U_{\infty}} \frac{N\frac{C}{R}}{\pi} C_{D}(1+a') \right] d\mu \right]$$
(45)

로터의 동력 P는 Q와 Ω의 곱으로 계산할 수 있기 때문에 동력계수는 식 (46)과 같이 나타낼 수 있다.

$$C_P = \frac{P}{\frac{1}{2}\rho U_{\infty}^3 \pi R^2}$$
(46)

4. 전산유체역학(Computational Fluid Dynamics)

1) 전단응력 수송(Shear Stress Transport) 난류 모델

k-ω SST 난류 모델은 벽 근처 영역에서 k-ω 모델의 정확한 공식과 원거
 리 영역에서 k-ε 모델의 자유 유동 독립성을 효과적으로 혼합하여 Menter가
 개발하였다.[19]

k-ω SST 모델은 표준 k-ω 모델과 변환된 k-ε 모델에 모두 혼합함수를
 곱하고 두 모델을 합산한다. 혼합함수는 벽에 가까운 영역에서는 표준 k-ω 모
 델이 활성화되고, 표면에서 멀어질수록 변형된 k-ε 모델이 활성화되는 되도록
 설계되었다.

k-ω SST 난류 모델의 난류점성계수는 식 (47)과 같이 나타낼 수 있다.

$$\mu_t = \frac{a_1 \rho k}{\max\left(a_1 \omega, \overline{SF_2}\right)} \tag{46}$$

여기서 *k*는 난류운동에너지, *ω*는 *k*의 소산률, *S*는 흐름 변형률, *a*₁은 모형상 수, *F*₂는 혼합함수를 말한다. *k*는 식 (47), *ω*는 식 (48)을 통해 구할 수 있다.

$$\frac{\partial k}{\partial t} + \tilde{u}_j \frac{\partial k}{\partial x_j} = \frac{1}{\partial x_j} \left\{ (\nu + \sigma_k \nu_t) \frac{\partial k}{\partial x_j} \right\} + P_k - \beta^* k \omega$$
(47)

$$\frac{\partial\omega}{\partial t} + \tilde{u}_j \frac{\partial\omega}{\partial x_j} = \frac{1}{\partial x_j} \left\{ (\nu + \sigma_\omega \nu_t) \frac{\partial\omega}{\partial x_j} \right\} + \alpha_1 \overline{S}^2 - \beta \omega^2 + 2(1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial\omega}{\partial x_i}$$
(48)

여기서 ν 는 물-공기 혼합 동점성계수, ν_t 는 난류 동점성계수, P_k 는 k의 생성 항이며 $\sigma_k, \sigma_\omega, \alpha_1, \beta^*, \beta, \sigma_{\omega 2}$ 는 모형계수, F_1 은 혼합함수이다.[20]

모형 계수 $\sigma_k, \sigma_\omega, \beta$ 는 식 (49)를 통해 계산할 수 있다.

$$\emptyset = \emptyset_1 F_1 + (1 - \emptyset_1) F_1 \tag{47}$$

본 연구에서는 $k-\omega$ SST 난류 모델 활용 시 모형계수 $\alpha_1 = \frac{5}{9}, \beta^* = \frac{9}{100},$ $\beta_1 = \frac{3}{40}, \beta_2 = 0.0828, \sigma_{k1} = 1, \sigma_w = 0.5, \sigma_{\omega 2} = 0.856 을 사용하였다.$

전산유체역학은 컴퓨터로 유체의 움직임과 그 효과를 묘사하는 유체역학의 한 방법으로, 다양한 공학 분야에서 활용되고 있다. 유체 운동의 지배방정식은 나비에-스토크스 방정식인데 이 방정식은 명확한 해를 구하는 방법이 알려지지 않았으므로, 사용자가 관심 있는 영역에 한정하여 컴퓨터를 이용해 수치해석적으 로 해를 구하는 방식을 선택한다.[21]

비선형계 편미분방정식인 나비에-스토크스 방정식(Navier-Stokes Equations) 을 유한차분법(Finite Difference Method), 유한요소법(Finite Element Method), 유한체적법(Finite Volume Method) 등의 방법들을 사용하여 대수 방정식으로 변 환하고, 이를 수치 기법(numerical methods)의 알고리즘을 활용하여 유체 유동을 해석한다. 고성능의 컴퓨터를 활용하여 유체와 기체의 상호작용에 대해 수치해석 을 수행하지만, 다양한 가정을 통해 수식을 간단히 만들거나 슈퍼컴퓨터를 사용 하더라도 대부분 근사치 값만을 얻을 수 있다. 적용 모델이 실제와 유사해질수록 아음속이나 난류 문제와 같은 복잡한 현상의 시뮬레이션은 보다 정교해지며, 모 델의 타당성 검증은 실험을 통한 데이터와 그 오차를 비교하는 방식으로 이루어 진다.

ANSYS-CFX는 다양한 유체 해석이 가능한 고성능 해석 프로그램으로 16개 이상의 난류 모델을 활용할 수 있는데, 주로 Standard $k-\epsilon$ model, Large-Eddy-Simulation(LES), Detached Eddy Simulation(DES) Second Moment Closure(SMC, Reynolds stress model) 모델 등을 사용하게 된다. SST 모델은 $k-\epsilon$ 모델과 비교했을 때 계산 속도는 비슷하지만 자연대류나 열전달 등 의 해석에서 standard $k-\epsilon$ model 보다 뛰어난 안정성과 정확도를 보인다. 특히 CFX는 ANSYS-Design modeler, ANSYS ICEM CFD, ANSYS Blade Modeler 등의 프로그램과 강력한 연계성을 지니고 있어 풍력발전기의 블레이드 유체 해 석에 큰 강점을 지닌다.

3) Q Blade

Q Blade 는 풍력 터빈 블레이드 설계 및 공기 역학 시뮬레이션을 위한 오픈 소스, 크로스 플랫폼 시뮬레이션 소프트웨어로 익형별 블레이드 설계에서부터 터빈의 출력 성능 해석까지 다양한 해석을 단기간 내 수행할 수 있다. Q Blade 는 C++ 언어 기반의 BEM(Blade Element Momentum) 코드로 사용되고 있으며 사용자 위주의 직관적인 인터페이스(GUI)로 구성되어 있어 초심자가 활용하기에 도 비교적 수월한 편이다.

Q Blade의 주요 기능으로는 VAWT(Vertical Axis Wind Turbine) 및 HAWT 로터의 공기역학적 시뮬레이션, 블레이드 이산화 및 블레이드 피치 각도 시뮬레이션, 유입 조건에 따른 공력해석, 정상상태 BEM 해석 등이 있으며 간편 화된 기능들을 통해 익형의 설계 및 360° 받음각 해석을 수행할 수 있다. 풍력터 빈이 작동하고 있는 조건과 유사한 환경 구축을 위해 후류(Wake)에 의한 손실 계수나 환경 조건에 따른 레이놀즈수 변화 등의 다양한 변수들을 고려한다면, 보 다 실제와 유사한 해석 결과를 얻을 수 있다.

Q Blade에서 제공하는 시뮬레이션 모듈은 로터 또는 터빈의 블레이드 요소 모멘텀 방법 시뮬레이션을 수행할 수 있다. 로터 시뮬레이션에는 팁 속도 비율이 나 출력 계수와 같은 무차원 변수만을 포함하며, 터빈 시뮬레이션 모듈 내 로터 는 터빈 객체를 정의한 후 출력성능 및 풍속 해석 등의 무차원 시뮬레이션을 수 행할 수 있다. 블레이드 설계 모듈에서는 블레이드의 구조 설계 및 분석 탭 내에 서 블레이드에 대한 간단한 구조 모델을 정의할 수 있다. 모델은 등방성 재료 특 성만을 사용하여 정의되지만 풍력발전기에 대한 전반적인 성능을 해석하는데 우 수한 근간 자료를 산출해 낸다. Q Blade의 주요 모듈과 해석 과정을 Fig. 18에 나타내었다.[23]

Fig. 18. Q Blade analysis process by modules

5. 블레이드 설계 및 제작

1) 역설계(Revers Engineering) 기법

역설계(Revers Engineering)란 제조 분야에서는 설계 데이터가 존재하지 않 는 실물의 구조를 3D 스캐너로 측정하고, xyz 포맷의 3차원 점군 데이터(Point Clouds)로 취득한 데이터를 컴퓨터 지원 제조 공정(CAM, computer aided manufacturing)에 활용하여 텍스트 기반 컴퓨터 프로그래밍, NC(Numerical Control) 코드를 출력할 수 있도록 CAD 데이터를 생성하는 기술을 말한다.

역설계 과정은 Fig. 19와 같이 스캔 데이터들을 여러 점군들이 합쳐져 좌표 계를 통일 시키는 정합(Registration) 작업을 거친 후 중복을 제거하고 데이터를 하나로 통합하는 병합(Merging) 작업을 수행함으로써 데이터 보정을 완료한다. 이후 삼각화를 통해 격자(Mesh)를 생성하고, 꼭지점을 공유함으로써 사물의 음 푹 패인 형상 등을 수정하게 된다.

Fig. 19. Reverse engineering process

3차원 스캐너는 Fig. 20과 같이 접촉식 측정 방식과 비접촉식으로 측정 방식 으로 구분한다. 접촉식 측정 장치는 3차원측정기(CMM) 장비가 대표적이며 프로 브 센서를 통해 물체 표면에서부터 3차원 좌표 점(Point) 데이터를 수집할 수 있 다. 비접촉식 측정 장치는 X-Ray, 구조광(Structured-light), 레이져(Laser) 등을 사용하며 고속으로 물체 표면에서 3차원 점군 데이터(Point Clouds)를 추출할 수 있다. 접촉식 측정은 비접촉식에 비해 정밀도가 높으며 색상, 투명도가 높고 광 원이 닿지 않는 깊은 구멍도 측정이 가능하지만 CMM 측정 장비는 설치형이기 때문에 한번 설치하면 이동이 어렵고 측정 대상물의 크기가 설치 장소에 따라 비교적 제한적이다. 비접촉식 측정은 신속한 데이터의 획득 속도와 측정물의 크 기 제한이 자유롭다는 장점이 있으나, 대상 제품과 직접적인 접촉이 없고 일정 거리에서 점군 데이터를 수집하기 때문에 접촉식에 비해 정밀도가 낮고 대상물 의 색상 또는 투명 정도에 따라 영향이 있어 측정 전 표면처리를 하기도 한 다.[24]

Fig. 20. Classification of 3D Scanners

예전의 블레이드 제작 방식은 겹겹이 적층한 유리섬유를 깎아내는 방식이었 으나, 최근에는 성형 틀(Mold)을 사용하여 내부에서 외부로 각종 섬유를 적층하 는 방식을 주로 사용한다. 블레이드 박판 표면에서는 평면 하중만 작용하기 때문 에 복합재를 아주 얇게 적층하여 제작한다. Fig. 21과 같이 스파 캡(Spar cap) 부분을 제외한 영역에는 복합재 적층 사이에 코어 재료를 삽입하여 샌드위치 구 조로 제작하여 무게는 보다 가벼우면서 좌굴(Buckling)과 굽힘에 잘 견디도록 설 계한다.[7], [25]

Fig. 21. Blade inner section

블레이드 상하 두 개의 틀에 이미 만들어둔 수십 겹의 유리섬유를 배치한 뒤, 틀을 조립하면서 한 개의 블레이드를 제작하는 방식이며 50겹 내외의 탄소섬 유와 유리섬유를 번갈아 적층하여 쌓는다. 이 위로 블레이드 하중을 지지하는 뼈 대와 같은 역할을 하는 탄소복합소재의 스파 캡(Spar cap)을 설치한다. 이후 유 리섬유, 탄소섬유, 스파 캡의 변형을 방지하기 위해 코어(Core)를 설치하는데, 소 재는 주로 폴리염화비닐(PVC), 강화나무(발사우드) 등 강성이 있는 재료를 사용 한다.

몰드를 진공상태로 만든 후 에폭시를 주입하여 섬유와 코어, 스파 캡 사이로 스며들게 한 후, 모든 소재를 단단하게 굳히기 위한 열경화 작업을 거친다. 모든 공정이 마무리되면 두 개로 나눠져 있는 틀을 하나로 조립하고 접착제를 발라준 다. 이후 두 개의 블레이드 단면이 하중을 견딜 수 있도록 지지대 역할을 하는 쉬어 웹(Shear web)을 설치한다. 최종적으로 조립된 블레이드를 틀에서 분리시 키고, 터빈과 체결을 위한 T-볼트를 조립 후 외부 표면에 수명 및 내구성 향상 을 위한 위한 겔 코트(Gel coat)를 도포한다.

기존에는 Fig. 22와 같이 RTM(Resin Transfer molding) 기법을 통해 블레 이드를 제작하였으나, 한국과학기술정보연구원이 분석한 '풍력터빈 블레이드용 강화복합재료성형몰딩 방법'을 살펴보면 Fig. 23과 같이 복합재료를 만드는 방법 으로 몰드를 활용한 VARTM(Vaccum assisted resin transfer molding : 복합성 형기술)을 이용하는 공법이 주목받고 있다. VARTM 공법은 직물과 직물 사이의 결합 및 코팅된 고분자 수지 이용해 복합재료를 성형한다. 블레이드 제작 과정은 우선 틀 내부에 복합재료를 넣고 밀봉한 후 틀 형상을 따라 적층한다. 오토클레 이브는 틀의 진공 백에 고압을 가해 재료의 층들을 함께 접착한다.[26], [27]

Fig. 22. Production of a composite blade part by the RTM process

(e) Demolding and final processingFig. 23. Lay-up of reinforcement material into the mold

블레이드의 최적화를 위해서는 블레이드 형상과 강도 사이에서 설계 변수들 의 조합이 가장 중요하다. 이상적인 블레이드는 공기역학적 부하에 견디도록 충 분한 강도를 가져야 한다. 때문에 루트 근처는 상대적으로 두껍지만 전체적으로 효과적인 공기역학적 성능을 가능하게 하도록 좁고 비틀린 형상의 스팬을 따라 구근 모양(Bulbous)으로 형성된다. 성형품과 금형 사이의 분리를 돕기 위해 필 플라이를 사용하고 수지 공급을 원활하게 해 주기 위해서 수지분배 매체를 사용 하며 밀폐, 진공을 위해 실링과 진공백 필름도 사용한다.

강화복합재료 성형 몰딩 방식의 경우 직물 내 수지 결합 공정 시간을 크게 단축시킬 수 있고 건조 시 오염이 발생하지 않아 블레이드의 물성치 보존에도 크게 이바지한다. 또한 수지의 운반 과정이 체계화될수록 복합 구조체의 기계적 강도 향상의 효과를 이끌어 낼 수 있어 시스템 적용이 매우 효과적이다.

III. 해석 방법

1. 3kW급 소형풍력발전기 블레이드 공력해석 및 실증 과정

1) 3kW급 소형풍력발전기 블레이드 공력해석 절차 수립

본 연구에서는 3kW급 소형풍력발전기 블레이드의 공려해석 및 실증을 위해 총 4가지의 프로그램이 사용되었으며, 각 데이터들은 상호간 연동되므로 수행 절 차의 수립이 매우 중요하다. 본 연구의 전주기 과정은 Fig. 21에 나타내었다.

첫 단계로 향후 모든 공력해석의 척도가 되는 기준 모델을 선정하기 위하여 기 설치되어있는 상용 3kW급 소형풍력발전기의 역설계를 수행하고, 이를 통해 취득한 블레이드 3D 모델링을 기반으로 3차원 공력해석을 수행하였다. 해당 결 과를 실제 3kW급 소형풍력발전기의 출력 곡선과 비교하여 해석 모델의 타당성 을 확보한 후, 3차원 공력해석을 위한 모델을 수립하였다. 두 번째 단계로 소형풍 력발전기의 출력성능 향상을 위한 신형 블레이드를 설계 및 제작하였다. 이를 위 하여 소형풍력발전기에서 주로 사용되는 익형 후보군을 선정 후, 2차원 공력해석 을 통해 기존 블레이드 대비 출력성능이 높고 출력 곡선의 경향성이 가장 유사한 익형 2종을 선정하였다. 해당 익형들은 Q Blade를 통해 각각 4가지, 총 8가지 케 이스로 블레이드 위치 구간, 시위길이, 비틀림 각을 조합하여 좌표 데이터를 취득 한 후 CATIA를 통해 3D 모델링을 생성하였고, 이를 기반으로 3차원 공력해석을 수행하여 각 케이스별 출력성능을 확인하였다. 최종 선정된 설계안은 몰딩 기법을 통해 블레이드를 제작하였으며, 기 설치되어있는 소형풍력발전기의 블레이드를 탈 거하고 장착하여 현장 실증을 수행하였다. 마지막 단계로 앞서 설치한 소형풍력 발전기의 운영데이터를 기반으로 정격 풍속인 10m/s일 때 출력을 확인하여, 공 력해석 결과와 실제 발전기의 출력성능을 상호간 비교 검증함으로써 소형풍력발 전기 블레이드 공력해석 및 실증에 관한 연구를 완료 하였다.

Fig. 24. SWT blade aerodynamic analysis and verification process

2) 상용 3kW급 소형풍력발전기 사양 분석

본 연구에서 소형풍력발전기의 블레이드 형상에 따른 출력성능 비교를 위해 현장에 기 설치되어있는 상용 3kW급 소형풍력발전기를 기준 제품으로 선정하였 으며, 이에 대한 공력해석 모델 수립을 수행하였다. 해당 제품의 세부 사양은 Table 4와 같다.

Contents		Performance
Turbine	Rated power	3kW
	Start wind speed	2.5m/s
	Cut-in wind speed	3.0m/s
	Cut-out wind speed	25m/s
	Survival wind speed	45m/s
	Overall weight	138kg
Rotor	Rotor diameter	5.0m
	Rotor speed	280rpm
	Blade material	Glass fiber
Tower	Free standing tower	9m
	Guyed tower	12m

Table 4. Specification and performance of 3kW small wind turbine

2. 3kW급 소형풍력발전기 블레이드 3D 모델링

1) 역설계 기법을 통한 블레이드 3D 모델링 및 익형 추출

상용 3kW급 소형풍력발전기 블레이드의 모델링 데이터를 취득하기 위해 한 국생산기술연구원 제주본원에서 보유하고 있는 S社의 3D 스캐너를 활용하였으 며, 세부 사양은 Table 5에 표시하였다.

Contents	Performance	
Cameras	2.0, 5.0MP Twin Camera	
Light Sourse	Blue LED 30,000 hours	
3D Scanning principle	Phase shifting optical triangulation	
3D Scanning area	90,175,350,500mm Diagonal select	
Size (W x H x D)	315 × 270 × 80 [mm]	
3D point accuracy up to	0.01 [mm]	
Weight	2.3Kg	
Interface	USB 3.0 B type	
Power	AC 100 ~ 240V / 47/63 [Hz]	
Output data format	STL	

Table 5. Specification of 3D scanner

3D 스캐너는 Fig. 25와 같이 테이블 위에 수평하게 눕힌 상태로 원형 스티커 를 부착하여 무작위 좌표 기준점들을 선정하고, 이를 통해 구간별 3차원 형상의 점군 데이터(Point clouds)를 데이터를 획득하였다. 대량의 중복 데이터들은 필터 링(Filltering) 작업을 거쳐 위치가 다른 데이터의 정합(Registration) 과정을 거친 후, 상용프로그램인 CATIA를 활용하여 Fig. 26와 같이 STL 파일로 생성함으로 써 블레이드의 3D 모델링 형상을 확인하였다.

상용 소형풍력발전기 블레이드의 익형 형상을 추출하기 위해 앞서 수행하였 던 3D 스캐닝을 통해 생성된 Solid 형태의 3D 블레이드 형상을 활용하였다. Fig. 27과 같이 블레이드 중심부에 단면을 생성하여 평면에 익형 곡선을 투영한 후, 곡선을 따라 상응하는 점의 위치 좌표를 추출해 내었다. 3D 모델링 및 익형 좌 표 데이터 추출을 위한 역설계 전 과정을 Fig. 28에 나타내었다.

Fig. 25. Picture of 3D scanning process

Fig. 27. Airfoil coordinate extraction process

Fig. 28. Process of reverse engineering

2) 데이터베이스를 활용한 익형 선정 및 블레이드 3D 모델링

상용 출력성능을 기준으로 보다 향상된 블레이드 설계를 위해 Fig. 29와 같 이 소형풍력발전기에 주로 사용되는 익형 형상 후보군을 선행 연구를 기반으로 선정하였다. 익형 형상의 좌표는 Airfoiltools에서 제공하는 데이터를 활용하였다.

Airfoiltools에서 제공하는 익형 형상 좌표는 x, y축만을 제공하므로 3D 설계 프로그램에서 로딩(Loading)을 위해 z축 좌표를 임의로 '0'으로 설정하여 3차원 좌표를 설정하였으며, S823 익형을 예시로 들면 Table 6과 같은 형식으로 정리 하였다.[28]

Fig. 29. Six small wind turbine airfoil base lines

Point	X_cord	Y_cord	Z_cord	Point	X_cord	Y_cord	Z_cord
1	1	0	0	33	0.00014	0.00136	0
2	0.99609	0.00064	0	34	0.00002	-0.00054	0
3	0.98505	0.00316	0	35	0.00029	-0.00194	0
4	0.96813	0.00760	0	36	0.00044	-0.00241	0
5	0.94605	0.01332	0	37	0.00128	-0.00439	0
6	0.91883	0.02008	0	38	0.00533	-0.01012	0
7	0.88704	0.02805	0	39	0.01538	-0.01868	0
8	0.85144	0.03704	0	40	0.03022	-0.02717	0
9	0.81278	0.04673	0	41	0.04956	-0.03520	0
10	0.77174	0.05668	0	42	0.07337	-0.04256	0
11	0.72895	0.06632	0	43	0.10137	-0.04906	0
12	0.68477	0.07482	0	44	0.13344	-0.05458	0
13	0.63895	0.08199	0	45	0.16922	-0.05903	0
14	0.59197	0.08792	0	46	0.20848	-0.06236	0
15	0.54432	0.09248	0	47	0.2508	-0.06455	0
16	0.49647	0.0953	0	48	0.29583	-0.06559	0
17	0.44832	0.09634	0	49	0.34309	-0.06550	0
18	0.40032	0.09595	0	50	0.39214	-0.06434	0
19	0.35301	0.09426	0	51	0.44242	-0.06214	0
20	0.30693	0.09136	0	52	0.49344	-0.05897	0
21	0.26259	0.08732	0	53	0.54459	-0.05483	0
22	0.22047	0.08221	0	54	0.59541	-0.04960	0
23	0.18102	0.07610	0	55	0.6458	-0.04346	0
24	0.14464	0.06908	0	56	0.69515	-0.03687	0
25	0.11171	0.06126	0	57	0.74286	-0.03007	0
26	0.08253	0.05275	0	58	0.78828	-0.02303	0
27	0.05742	0.04371	0	59	0.83143	-0.01608	0
28	0.03659	0.03430	0	60	0.87163	-0.01000	0
29	0.02031	0.02471	0	61	0.90795	-0.00522	0
30	0.0086	0.01514	0	62	0.93944	-0.00195	0
31	0.00176	0.00607	0	63	0.96515	-0.00014	0
32	0.00065	0.00340	0	64	0.98425	0.00045	0

Table 6. Airfoil coordinates of S823

앞서 수행한 역설계 과정에서는 3D 스캐닝을 통해 형상이 완성된 상태의 STL 파일 생성이 가능하였으나, 해당 과정이 없을 경우 Fig. 30과 같이 Q Blade 를 통해 최적의 C_P 값을 갖는 Chord length, Twist angle 값을 케이스별로 산출 하였으며, 이를 기반으로 3D 블레이드 모델을 생성하였다. 본 연구에서 사용된 블레이드 길이는 2.5m로 짧기 때문에, 루트부를 제외한 구간에서 익형 형상 1종 을 적용하였다.[29], [30], [31], [32]

Fit	t to Screen	Show Rotor	Surfaces	Foil Out TE/	E Out Fill Foils
G	il settings	Perspective	Coordinates	Foil Positions Foil N	ames
	L D .	1 010000010	000101110000		annoo
Blac Nev	te Data w Blade				
3 Ы	ades and 0, 10 r	m hub radius		🗌 Blade Root Coordinate	s
	Pos (m)	Chord (m)	Twist	Foil	Polar
1	0.1	0.13	0	Circular Foil	CD = 1.2 360 Pc
2	0.35	0.13	0	Circular Foil	CD = 1.2 360 Pc
3	0.37	0.16	0	Circular Foil	CD = 1.2 360 Pc
4	0.4	0.19	22.7627	NREL's S823 Airfoil	S823 360 M
5	0.5	0.23	17.4633	NREL's S823 Airfoil	S823 360 M
6	0.55	0.26	15.4078	NREL's S823 Airfoil	S823 360 M
7	0.6	0.285	13.6444	NREL's S823 Airfoil	S823 360 M
8	0.65	0.285	12.1178	NREL's S823 Airfoil	S823 360 M
9	0.7	0.26	10.785	NREL's S823 Airfoil	S823 360 M
10	0.8	0.227	8.57401	NREL's S823 Airfoil	S823 360 M
11	1	0.19	5.3925	NREL's S823 Airfoil	S823 360 M
12	1.2	0.162163	3.22246	NREL's S823 Airfoil	S823 360 M
13	1.4	0.141166	1.65183	NREL's S823 Airfoil	S823 360 M
14	1.6	0.124788	0.464046	NREL's S823 Airfoil	S823 360 M
15	1.8	0.11171	-0.464936	NREL's S823 Airfoil	S823 360 M
16	2	0.101054	-1.21103	NREL's S823 Airfoil	S823 360 M
17	2.2	0.0922163	-1.8232	NREL's S823 Airfoil	S823 360 M
18	2.4	0.085	-2.33443	NREL's S823 Airfoil	S823 360 M
19	2.5	0.081	-2.55967	NREL's S823 Airfoil	S823 360 M

Fig. 30. Q Blade data creation process

Fig. 31(a)와 같이 위치 구간(Pos)만큼 평면을 생성하여 익형을 투영한 후, Q Blade를 통해 획득한 구간 위치, 시위 길이, 비틀림 각을 적용하여 스케치를 생성한다. 이후 Fig. 30(b)와 같이 각 평면의 스케치를 선택하여 곡면 생성 작업 을 통해 단일 표면을 생성하고, Fig. 30(c)와 같이 경계부 접합 및 내부 솔리드 (Solid) 과정을 거쳐 최종 3D 모델링을 생성하였다.

Fig. 31. Blade 3D modeling creation process

3. 3k₩급 소형풍력발전기 공력해석

1) 익형(Airfoil)별 2차원 공력해석

앞서 Q Blade를 통해 추출한 익형 좌표를 ANSYS Design modeler를 통해 읽어들이고(Loading) Fig. 32와 같이 지오메트리(Geometry)를 생성한 후 2차원 공력해석을 위해 폭 0.1m 슬라이드 형태의 익형을 생성하였다. 익형의 시위 길이 (Chord)는 모두 1m로 설정하였으며 받음각은 1°~ 12°까지 지오메트리 각도를 변경하면서 공력 해석을 수행하였다.

Fig. 32. Airfoil body creation for 2D flow analysis

2차원 공력해석을 위해 우선 Fig. 33과 같이 경계조건들을 설정하였다. Fig. 32(a)와 같이 반경 1.5m 원형의 Airfoil boundary를 생성하고 Fig. 32(b)와 같이 앞부분은 반경 7m인 반원, 뒷부분은 한 변의 길이가 14m인 정사각형 형태의 Volume boundary를 생성하였다. Turbulence solid는 Fig. 32(c)와 같이 길이 14m, 폭 1.4m 형태로 생성하였다. Target body는 익형의 주변 영역들이 되며, Airfoil body는 영역 선택에서 제외시켰다.

Fig. 33. Airfoil boundary(a), Volume boundary(b), Turbulence solid(c) creation

해당 지오메트리에 대해 Fig. 34와 같이 비균일 사면체 격자(Unstructured tetramesh)를 생성하였다. 공력해석을 위한 물리적 설정에서 Physics preference 는 CFD, Solver preference는 CFX로 설정하였으며 Elemental size는 0.1m로 설 정하였다. Curvature와 Proximity 항목에 대해서는 별도 값을 설정하지 않았으며 Method는 Sweep을 선택하여 익형 경로에 따라 축을 이동시키며 균일한 격자를 생성하도록 설정하였다.

Fig. 34. Create mesh based on created geometry

격자 생성 후 CFX 공력해석을 위한 전 단계로 각 도메인에 대한 Setting 과 정을 Fig. 35와 같이 수행하였다. 정상 상태(Steady-state) 해석으로 대기압 경계 조건은 25℃ 등온 상태의 공기로 설정하였으며 난류해석모델은 Shere Stress Transport로 설정하였다. Inlet의 유체 속도는 정격출력 속도인 10m/s로 설정하 였으며 수렴 판단 조건은 10⁻⁵로 설정하여 공력해석을 수행하였다.

Fig. 35. Setup internal and external pressure conditions to analysis

2) 블레이드 형상별 3차원 공력해석

본 연구에서는 소형풍력발전기의 블레이드 형상에 따른 3차원 공력해석 수행 을 위해 상용프로그램인 ANSYS-CFX를 활용하였다. 지오메트리(Geometry)는 앞서 생성한 3D 블레이드 모델링 형상을 활용하였으며, Fig. 37과 같이 블레이드 회전 면적(로터 직경)을 회전 영역(Rotor area)로, 전체 유체영역을 주변 영역 (Fluid area)으로 구분하여 비균일격자(Unstructured mesh)를 생성한 후 ANSYS-CFX를 활용하여 공력해석을 수행하였으며 전반적인 과정은 Fig. 36에 표시하였다. 이때 난류 모델은 블레이드 주변에 발생하는 2차 유동에 대해 상대 적으로 정확한 예측이 가능한 SST(Shear Stress Transport) 모델을 적용하였다. 공력해석을 통해 공력계수(Aerodynamic coefficient), 회전력(Torque), 추력 (Thrust), 출력계수(Power coefficient) 등을 계산하였고 이를 통해 출력성능을 산출하였다.[33]

Fig. 36. Process of ANSYS-CFX analysis

Fig. 37(a)와 같이 회전 영역의 지름은 5.2m로 블레이드 반경인 5m에서 0.2m 여유 공간을 추가하였고 높이는 0.6m로 원통 형태의 영역을 설정하였다. Fig. 37(b)와 같이 주변 영역의 입구(Inlet)와 출구(Outlet)는 회전 영역의 4배 크 기로 가로20m, 세로20m 정사각형 형태이며 길이 30m인 정육면체로 설정하였 다.[34]

Fig. 37. Create rotor area(a), fluid area(b)

해당 지오메트리에 대해 Fig. 38, Fig. 39와 같이 비균일 사면체 격자 (Unstructured tetramesh)를 생성하였다. 앞선 설정과 동일하게 공력해석을 위한 물리적 설정에서 Physics preference는 CFD, Solver preference는 CFX로 설정하 였으며 Elemental size는 0.1m로 설정하였다. Curvature와 Proximity는 최소 0.001m로 설정하였으며 SST 난류 모델 적용을 위한 y⁺값을 고려하여 Inflation에 서 최대 레이어(Layer)는 10개, Growth rate는 1.3으로 설정하였다. 회전 영역에 서는 로터 반경의 Interface 부와 블레이드 부를 분리하여 명칭을 부여하였으며, 주변 영역은 Inlet, Outlet, Open 부로 명칭을 부여하여 도메인을 생성하였다.[35]

Fig. 38. Create mesh of blade rotation area : geometry(left), mesh(right)

Fig. 39. Create mesh of fluid area : geometry(left), mesh(right)

적자 생성 후 CFX 공력해석을 위한 전 단계로 Fig. 40과 같이 각 도메인에 대한 Setting 과정을 수행하였다. 앞선 설정과 동일하게 정상 상태(Steady-state) 해석으로 대기압 경계조건은 25℃ 등온 상태의 공기로 설정하였으며 난류해석모 델은 Shere Stress Transport로 설정하였다. Inlet의 유체 속도는 3kW급 소형풍 력발전기의 정격 풍속인 10m/s로 설정하였고, 나머지 Opening, Outlet은 대기압 경계조건으로 설정하였다. 블레이드 각속도는 기준 모델의 정격 출력에 맞춰 30rad/s로 설정하였고, 회전체 해석에 주로 사용되는 Frozen Rotor 기법을 적용 하였다. Output control에 방정식을 추가하여 Torque와 Thrust를 계산하였으며 수렴 판단 조건은 10⁻⁵로 설정하여 공력해석을 수행하였다.

Fig. 40. CFX setting : Domain interface of fluid

4. 소형풍력발전기 실증

1) 소형풍력발전기 설치

본 연구에서 설계한 신형 블레이드의 실증 데이터 확보를 위해 3kW급 소형 풍력발전기를 설치하였다. 블레이드는 3D 모델링을 기반으로 Fig. 41과 같이 도면 작성 후, 몰딩 제작기법을 통해 Fig. 42와 같이 제작을 완료하였다.

Fig. 41. Drawing of S823 airfoil blade

Fig. 42. Manufacturing new blades

그리드 계통은 Fig. 47과 같이 풍력발전기에서 생성된 전력을 AC 3상 계통을 통해 제어반으로, 제어반에서 DC 1상으로 인버터로 송출 후 최종 AC 1상으로 상 용계통으로 송출된다., 모니터링 시스템은 Fig. 48과 같이 연결하였으며 인버터에 서 확인할 수 있는 데이터들을 온라인 웹플랫폼으로 구축하였다.

Fig. 43. Small wind turbine(a), Charge controller(b), Inverter(c), Grid(d)

Fig, 44. Monitoring system schematic

상용 3kW급 소형풍력발전기 Fig. 50과 같이 최종 설치하였으며 2022년 8월경 부터 2023년 10월까지 지속적으로 운영중에 있다. 중앙에 보이는 소형풍력발전기 는 피스톤 구조의 타워로 유지보수 및 설치에 용이하도록 유압을 통해 내릴 수 있으며, 풍력발전기 하단의 캐비넷 상부에는 풍황계를 설치하여 풍속 및 풍향 데 이터를 수집할 수 있도록 하였다. 하단의 캐비넷에는 전력 수신 및 송출을 위한 인버터 시스템이 포함되어 있다.

Fig. 45. Field demonstration of new blade

공인인증기관 검교정을 거친 풍황계를 소형풍력발전기 부근에 설치함으로써 풍향 및 풍속 데이터를 실시간으로 수집하였고, 출력성능 역시 발전기가 작동하면 서 발생하는 출력량에 대해 실시간으로 수집하였다.

풍향, 풍속, 출력 등의 성능데이터는 모니터링 시스템을 통해 PC로 데이터를 전달하여 데이터베이스를 구축하였으며, 해당 시템은 Fig. 44와 같이 제조사에서 제공하는 웹 플랫폼을 활용하였다. 데이터베이스는 Table 7과 같이 엑셀시트 (Excel sheet) 문서 형태로 저장하였다.

Fig. 46. Monitoring system using web platform

Time	DC Voltage	Wind Speed	Power	Wind Direction	DC Current
2022-12-13 00:00:06	101.6	3.8	183	61.2	1.67
2022-12-13 00:00:16	102.4	5.6	301	64.9	3.06
2022-12-13 00:00:26	102.18	4.3	319	41.1	3.09
2022-12-13 00:00:36	102.27	6.2	269	73.1	2.7
2022-12-13 00:00:46	101.97	4.5	240	54.4	2.33
2022-12-13 00:00:56	102.34	6.5	316	65.7	3.11
2022-12-13 00:01:06	101.42	4.2	117	64.4	1.19
2022-12-13 00:01:16	102.18	5.7	318	80.5	3
2022-12-13 00:01:26	102.18	4.6	318	69.5	3
2022-12-13 00:01:36	102.18	5.3	318	49.7	3
2022-12-13 00:01:46	101.97	3.3	197	52.6	1.97
2022-12-13 00:01:56	101.97	3.3	197	35.1	1.97
2022-12-13 00:02:06	101.97	3.9	197	73.1	1.97
2022-12-13 00:02:16	101.97	6.1	197	35.8	1.97
2022-12-13 00:02:26	101.82	7.2	244	72.6	2.19
2022-12-13 00:02:36	101.96	6.9	232	53.5	2.21
2022-12-13 00:02:46	102.15	6.2	232	42.7	2.32
2022-12-13 00:02:56	102.24	5.1	313	48.9	3.04
2022-12-13 00:03:06	101.98	5.8	263	67.6	2.47
2022-12-13 00:03:16	101.98	5.8	263	31.7	2.47
2022-12-13 00:03:26	102.19	6.3	266	49.7	2.65
2022-12-13 00:03:36	102.11	5.9	272	41	2.6
2022-12-13 00:03:47	101.74	5.1	159	61.5	1.58
2022-12-13 00:03:57	101.74	5.6	159	65.7	1.58
2022-12-13 00:04:07	101.74	5.3	159	76.2	1.58
2022-12-13 00:04:17	101.74	5.3	159	61.5	1.58
2022-12-13 00:04:27	102.14	3.7	253	11.6	2.53
2022-12-13 00:04:37	102.14	7.4	253	43	2.53
2022-12-13 00:04:47	102.31	4.9	324	14.2	3.19
2022-12-13 00:04:57	102.09	5.1	267	54.4	2.57

Table 7. Small wind turbine operation data

풍속 및 발생 출력에 대해 10초 간격 및 1분 간격으로 구분하여 Fig. 47 ~ 49에 그래프로 나타내었으며 각각 2023년 4월 28일, 2023년 5월 3일, 2023년 5월 4일 데이터를 활용하였다.

Fig. 47. Wind speed data for April 28, 2023 : 10 sec(left), 1min(right)

Fig. 48. Wind speed data for May 3, 2023 : 10 sec(left), 1min(right)

Fig. 49. Wind speed data for May 4, 2023 : 10 sec(left), 1min(right)

풍속 및 발생 출력에 대해 10초 간격 및 1분 간격으로 구분하여 Fig. 50 ~ 52에 그래프로 나타내었으며 각각 2023년 5월 15일, 2023년 5월 17일, 2023년 6월 19일 데이터를 활용하였다.

Fig. 51. Wind speed data for May 17, 2023 : 10 sec(left), 1min(right)

Fig. 52. Wind speed data for June 19, 2023 : 10 sec(left), 1min(right)

IV. 해석 결과 및 분석

1. 3차원 공력해석 모델 타당성 검증

제조사에서 공식 제공하는 기본 익형 블레이드를 탑재한 상용 3kW급 소형 풍력발전기의 출력량 데이터와 역설계를 통해 추출한 블레이드를 ANSYS-CFX 를 활용하여 공력해석을 수행한 결과를 풍속 3 ~ 11m/s까지 Table 8에 구간별로 표시하였다.

Wind speed(m/s)	3kW SWT power(W)	CFX analysis power(W)
3	60	57
4	165	161
5	345	332
6	620	596
7	1,020	1,001
8	1,560	1,529
9	2,260	2,241
10	3,050	2,927
11	3,150	3,063

Table 8. Comparison of output power(W) by wind speed section

상용 소형풍력발전기와 CFX 공력해석을 통한 출력값을 Fig. 53에 그래프로 나타내었으며, 각 풍속 구간에 대해 출력량 오차율을 계산한 결과 평균 오차율은 5.1%로 3kW급 소형풍력발전기 공력해석을 위해 수립한 3차원 공력해석 모델이 매우 정확함을 검증하였다.

Fig. 53. Comparison graph of power by wind speed

2. 익형별 2차원 공력해석 결과 분석

역설계 과정을 통해 추출한 상용 3kW급 풍력발전기 블레이드의 익형을 기본 익형(Default airfoil)으로 설정하고, 소형풍력발전기에서 많이 사용되는 익형인 S822, S823, FX63, SG6042, BW-3을 선정하여 받음각(Angle of Attack) 1°~ 12° 까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 ANSYS-CFX를 활용하여 2 차원 공력해석을 수행하였고 익형별 양항비(Lift-Drag ratio)를 비교분석 하였다.

1) 기본 익형 공력해석 결과 분석

기본 익형에 대해 받음각을 1°~ 12°까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 2차원 공력해석을 수행하여 익형별 양항비를 비교분석한 결과 를 Table 10에 나타내었다. 1°에서 14.8124로 6°까지 지속적으로 증가하여 7°에서 29.2664로 최고값을 나타내었으며, 이후 지속적으로 감소하면서 12°에서 25.6790 을 나타내었다.

Velocity(m/s)	Angle of Attack(°)	Lift coefficient	Drag coefficient	Lift-Drag ratio(Cl/Cd)
10	1	0.2018	0.0136	14.8124
10	2	0.2802	0.0145	19.3836
10	3	0.3562	0.0154	23.2024
10	4	0.4320	0.0168	25.7287
10	5	0.5091	0.0181	28.1106
10	6	0.5829	0.0201	29.0318
10	7	0.6559	0.0224	29.2664
10	8	0.7222	0.0247	29.2328
10	9	0.7915	0.0272	29.0505
10	10	0.8596	0.0303	28.3970
10	11	0.9194	0.0335	27.4786
10	12	0.9828	0.0383	25.6790

Table 9. Default airfoil 2D aerodynamic analysis

받음각 7°에서 기본 익형의 압력 등치선(Pressure contour)과 속도 유선을 Fig. 54와 Fig. 55에 나타내었다. 흡입면(Suction side) 대비 압력면(Pressure side)에서는 대부분 4.624e-04N 이하의 힘이 작용하며 익형 상부에서 양력이 발생함을 확인할 수 있었다. 이는 속도 유선(Velocity streamline)에서도 확인할 수 있는데, 압력면 대비 흡입면 유속이 약 0.4m/s 느리므로 베르누이의 원리에 의해 익형 하부에서는 상부보 다 높은 압력이 발생하며, 이로 인해 블레이드를 밀어내는 양력이 발생하게 된다.[36]

Fig. 54. Pressure contour of default airfoil at AOA=7°

Fig. 55. Velocity streamline of default airfoil at AOA=7°

S822 익형에 대해 받음각을 1°~ 12°까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 2차원 공력해석을 수행하여 익형별 양항비를 비교분석한 결과 를 Table 10에 나타내었다. S822 익형의 양항비는 받음각 1°에서 20.9163으로 5° 까지 지속적으로 증가하여 6°에서 32.1176으로 최고값을 나타내었으며, 이후 지 속적으로 감소하면서 12°에서 22.9275를 나타내었다. 전반적인 양항비의 경향성 은 기본 익형과 유사하였으며, 최고 양항비 값은 기본 익형 대비 2.8512 높았다.

Velocity(m/s)	Angle of Attack(°)	Lift coefficient	Drag coefficient	Lift-Drag ratio(Cl/Cd)
10	1	0.2772	0.0133	20.9163
10	2	0.3611	0.0142	25.4628
10	3	0.4466	0.0156	28.5866
10	4	0.5267	0.0170	31.0329
10	5	0.6099	0.0190	32.0527
10	6	0.6848	0.0213	32.1176
10	7	0.7647	0.0239	31.9906
10	8	0.8389	0.0268	31.3514
10	9	0.8954	0.0302	29.6035
10	10	0.9397	0.0342	27.4452
10	11	0.9836	0.0391	25.1836
10	12	1.0305	0.0449	22.9275

Table 10. S822 airfoil 2D aerodynamic analysis

받음각 6°에서 S822 익형의 압력 등치선과 속도 유선을 Fig. 56과 Fig. 57에 나 타내었다. 흡입면(Suction side) 대비 압력면(Pressure side)에서는 대부분 9.727e-07N 이하의 힘이 작용하며 익형 상부에서 양력이 발생함을 확인할 수 있었 다. 또한 흡입면의 유선 속도는 약 1.845e+01m/s, 압력면의 유선 속도는 약 9.235e+0m/s로 앞서와 같은 베르누이의 원리로 양력이 발생함을 확인할 수 있었다.

Fig. 56. Pressure contour of S822 airfoil at AOA=6°

Fig. 57. Velocity streamline of S822 airfoil at AOA=6°

S823 익형에 대해 받음각을 1°~ 12°까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 2차원 공력해석을 수행하여 익형별 양항비를 비교분석한 결과 를 Table 11에 나타내었다. S823 익형의 양항비는 S822와 유사한 경향성을 나타 내었으며, 1°에서 20.5908으로 5°까지 지속적으로 증가하여 6°에서 32.3749으로 최고값을 나타내었으며 이는 S822 익형 대비 0.2573 높은 값이다. 이후 지속적으 로 감소하면서 12°에서 26.4566를 나타내었다.

Velocity(m/s)	Angle of Attack(°)	Lift coefficient	Drag coefficient	Lift-Drag ratio(Cl/Cd)
10	1	0.3168	0.0154	20.5908
10	2	0.4097	0.0161	25.5103
10	3	0.4985	0.0174	28.6167
10	4	0.5847	0.0191	30.6816
10	5	0.6713	0.0210	31.9228
10	6	0.7537	0.0233	32.3749
10	7	0.8329	0.0261	31.9503
10	8	0.9133	0.0290	31.4901
10	9	0.9784	0.0323	30.2868
10	10	1.0611	0.0362	29.2944
10	11	1.1192	0.0403	27.7444
10	12	1.1827	0.0447	26.4566

Table 11. S823 airfoil 2D aerodynamic analysis

받음각 6°에서 S823 익형의 압력 등치선과 속도 유선을 Fig. 58과 Fig. 59에 나 타내었다. S822 익형 대비 리딩 엣지(Leading edge)에서 약 0.201e-3N 만큼 더 큰 힘이 발생함을 확인할 수 있었고, 최저 유속 역시 약 1.561e-2m/s 만큼 느림을 확인 할 수 있었다. 이는 유려한 유선형인 S822 익형 대비 리딩 엣지가 비교적 두터워 그만큼 힘을 받는 면적과 유선 길이가 길어지기 때문으로 판단된다.

Fig. 58. Pressure contour of S822 airfoil at AOA=6°

Fig. 59. Velocity streamline of S822 airfoil at AOA=6°

S823 익형에 대해 받음각을 1°~ 12°까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 2차원 공력해석을 수행하여 익형별 양항비를 비교분석한 결과 를 Table 12에 나타내었다. FX63 익형의 양항비는 받음각 1°에서 36.7632로 최 고값에서부터 시작하여 12°에서 24.0149로 최저값을 나타내었으며, 지속적으로 양항비가 감소하는 경향성을 나타내었다.

Velocity(m/s)	Angle of Attack(°)	Lift coefficient	Drag coefficient	Lift-Drag ratio(Cl/Cd)
10	1	0.7653	0.0208	36.7632
10	2	0.8508	0.0231	36.8116
10	3	0.9363	0.0258	36.3557
10	4	1.0223	0.0287	35.5805
10	5	1.1038	0.0319	34.6097
10	6	1.1814	0.0352	33.5458
10	7	1.2569	0.0391	32.1045
10	8	1.3340	0.0431	30.9269
10	9	1.3820	0.0468	29.5334
10	10	1.4431	0.0519	27.7899
10	11	1.4925	0.0571	26.1255
10	12	1.5217	0.0634	24.0149

Table 12. FX63 airfoil 2D aerodynamic analysis

받음각 1°에서 S822 익형의 압력 등치선과 속도 유선을 Fig. 60과 Fig. 61에 나 타내었다. 흡입면에서 작용하는 최대 힘이 S822, S823 익형 대비 평균 약 27.3% 낮 았고 유속 역시 평균 약 7.8% 느림을 확인할 수 있었으며 이를 통해 S822 및 S823 익형 대비 FX63 익형의 출력 성능이 낮을 것으로 판단하였다.

Fig. 60. Pressure contour of FX63 airfoil at AOA=1°

Fig. 61. Velocity streamline of FX63 airfoil at AOA=1°

BW-3 익형에 대해 받음각을 1°~ 12° 까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 2차원 공력해석을 수행하여 익형별 양항비를 비교분석한 결과 를 Table 13에 나타내었다. BW-63 익형의 양항비는 받음각 1°에서 33.2036으로 3°까지 지속적으로 증가하며 4°에서 37.1125로 최고값을 나타내었으며, 이후 지속 적으로 감소하여 12°에서 27.4558로 최저값을 나타내었다. S822, S823 익형과 비 슷한 포물선 형태의 경향성을 보이나 두 익형보다 낮은 받음각에서 최고점을 나 타내었다.

Velocity(m/s)	Angle of Attack(°)	Lift coefficient	Drag coefficient	Lift-Drag ratio(Cl/Cd)
10	1	0.4839	0.0146	33.2036
10	2	0.5607	0.0159	35.3246
10	3	0.6369	0.0174	36.5303
10	4	0.7103	0.0191	37.1125
10	5	0.7862	0.0213	36.8820
10	6	0.8569	0.0236	36.3128
10	7	0.9280	0.0262	35.4046
10	8	0.9942	0.0291	34.1075
10	9	1.0600	0.0322	32.9104
10	10	1.1106	0.0362	30.6443
10	11	1.1589	0.0400	28.9567
10	12	1.2059	0.0439	27.4558

Table 13. BW-3 airfoil 2D aerodynamic analysis

받음각 4°에서 BW-3 익형의 압력 등치선과 속도 유선을 Fig. 62와 Fig. 63에 나타내었다. 익형에서 발생하는 힘은 S822, S823과 유사하나 익형 단면의 폭이 매우 좁기 때문에 실제 블레이드를 제작 후 소형풍력발전기에 탑재할 경우 정격 출력 구 간에서 파손이 발생할 가능성이 있을 것으로 판단하였다.

Fig. 62. Pressure contour of BW-3 airfoil at AOA=4°

Fig. 63. Velocity streamline of BW-3 airfoil at AOA=4°

SG6042 익형에 대해 받음각을 1°~ 12°까지 1° 간격으로 정격출력 풍속인 10m/s 조건 하에 2차원 공력해석을 수행하여 익형별 양항비를 비교분석한 결과 를 Table 14에 나타내었다. SG6042 익형의 양항비는 받음각 1°에서 34.2851로 3° 까지 지속적으로 증가하며 4°에서 38.3180로 최고값을 나타내었으며, 이후 지속 적으로 감소하여 12°에서 26.2382로 최저값을 나타내었다. BW-3 익형과 유사한 경향성을 보였으며, 최고 양향비는 BW-3 익형보다 5.7945 높은 값을 나타내었 다. S822, S823 익형과 비슷한 포물선 형태의 경향성을 보이나 BW-3과 마찬가 지로 두 익형보다 낮은 받음각에서 최고점을 나타내었다.

Velocity(m/s)	Angle of Attack(°)	Lift coefficient	Drag coefficient	Lift-Drag ratio(Cl/Cd)
10	1	0.4751	0.0139	34.2851
10	2	0.5624	0.0153	36.6738
10	3	0.6484	0.0171	37.8801
10	4	0.7311	0.0191	38.3180
10	5	0.8120	0.0214	38.0249
10	6	0.8928	0.0240	37.2669
10	7	0.9701	0.0269	36.1259
10	8	1.0450	0.0302	34.6290
10	9	1.1143	0.0337	33.0931
10	10	1.1790	0.0379	31.0738
10	11	1.2378	0.0426	29.0869
10	12	1.2482	0.0476	26.2382

Table 14. SG6042 airfoil 2D aerodynamic analysis

받음각 4°에서 SG6042 익형의 압력 등치선과 속도 유선을 Fig. 64와 Fig. 65에 나타내었다. 전반적인 익형의 형상이 S822와 흡사하므로 작용하는 힘과 유선의 양 상 역시 유사한 경향성을 나타내었으나 S822 대비 익형에 작용하는 최대 힘이 약 18.6% 낮기 때문에 출력 성능 역시 소폭 낮을 것으로 판단하였다.

Fig. 64. Pressure contour of SG6042 airfoil at AOA=4°

Fig. 65. Velocity streamline of SG6042 airfoil at AOA=4°

7) 익형별 2차원 공력해석 결과 종합 분석

익형별 2차원 공력해석을 종합한 결과, FX63을 제외한 익형에서 4°~ 6°를 기 점으로 전반적인 양항비가 하강함을 확인할 수있었다. 익형의 유사도 및 양항비 곡선의 경향성을 분석한 결과, S822 및 S823 익형이 상용 그래프와 경향성이 매 우 유사하였고 양항비는 기존 대비 약 4.2가 높은 것으로 확인하였다. 받음각에 대한 익형별 공력해석을 통한 양향비는 Table 15에 정리하였다.

Angle of	Lift-Drag ratio(Cl/Cd)						
Attack (°)	Default	S822	S823	FX63	SG6042	BW3	
1	14.8124	20.9163	20.5908	36.7632	34.2851	33.2036	
2	19.3836	25.4628	25.5103	36.8116	36.6738	35.3246	
3	23.2024	28.5866	28.6167	36.3557	37.8801	36.5303	
4	25.7287	31.0329	30.6816	35.5805	38.3180	37.1125	
5	28.1106	32.0527	31.9228	34.6097	38.0249	36.8820	
6	29.0318	32.1176	32.3749	33.5458	37.2669	36.3128	
7	29.2664	31.9906	31.9503	32.1045	36.1259	35.4046	
8	29.2328	31.3514	31.4901	30.9269	34.6290	34.1075	
9	29.0505	29.6035	30.2868	29.5334	33.0931	32.9104	
10	28.3970	27.4452	29.2944	27.7899	31.0738	30.6443	
11	27.4786	25.1836	27.7444	26.1255	29.0869	28.9567	
12	25.6790	22.9275	26.4566	24.0149	26.2382	27.4558	

Table 15. Lift-Drag ratio according to airfoil and angle of attack

Fig. 66에는 Table 15의 결과값을 기반으로 각 익형별 양향비를 그래프로 나 타내었다. 기준이 되는 상용 양향비를 기준으로 S822, S823 익형의 양향비가 상 대적으로 높은 것으로 확인되며 경향성 역시 매우 유사한 것으로 확인된다. BW-3과 SG6042의 경우 두 익형이 유사한 양향비 곡선을 보였으며 받음각 1°에 서부터 매우 높은 값을 나타내었다. FX63의 경우 전반적으로 변곡점이 없이 우 하향 하는 그래프를 나타내었다.

Fig. 66. 2D aerodynamic analysis according to airfoil

3. 블레이드 케이스별 설계에 따른 출력성능 결과 분석

익형별 공력해석을 통해 출력 곡선의 형상이 기본 익형과 가장 유사한 경향 성을 띄는 S822, S823 익형을 신형 블레이드 설계를 위한 최종 형상으로 선정하 였으며 해당 익형의 형상은 Fig. 67, Fig. 68에 나타내었다.

두 가지 익형을 기반으로 구간 위치(Position), 시위 길이(Chord length), 비 틀림 각(Twist angle), 익형(Airfoil)을 조합하여 선행 설계를 완료한 후 Q Blade 프로그램을 활용하여 출력성능을 분석하였다. 상용 3kW급 소형풍력발전기의 출 력 곡선과 유사한 경향성을 나타내면서 출력성능은 소폭 향상된 블레이드 설계 안 중 익형별 4종류씩 총 8개의 케이스를 3차원 공력해석을 위한 케이스로 최종 선정하였으며, Table 8의 기본 익형과 비교한 출력 곡선 그래프를 Fig. 69 ~ 76 에 나타내었다.

Fig. 67. Airfoil of NREL's S822

Fig. 68. Airfoil of NREL's S823

1) S822 airfoil Case #1 출력성능 결과 분석

S822 airfoil case #1 블레이드의 총 길이는 2.5m 이며 총 구간은 0.2m 길이로 총 13개 구간으로 설정하였다. 시위 길이는 최대 0.4395m 이며 비틀림 각은 18.4633°에서 시작하여 -1.5597°까지 시계방향으로 20.0230° 비틀리는 형상을 설 계하였다. 익형은 루트부를 제외하고 S822 단일 익형으로 설정하였으며, 모든 변 수값은 Table 16에 나타내었다. S822 airfoil Case #1 블레이드는 Q Blade를 통해 출력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 17 에, 출력 곡선을 Fig. 69에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Airfoil
1	0.0	0.2000	0.0000	Circular
2	0.2	0.1998	0.0000	Circular
3	0.4	0.4395	18.4633	NREL's S822
4	0.6	0.3292	11.7850	NREL's S822
5	0.8	0.2615	7.8181	NREL's S822
6	1.0	0.2163	5.2132	NREL's S822
7	1.2	0.1842	3.3787	NREL's S822
8	1.4	0.1603	2.0193	NREL's S822
9	1.6	0.1418	0.9728	NREL's S822
10	1.8	0.1271	0.1427	NREL's S822
11	2.0	0.1152	-0.5315	NREL's S822
12	2.2	0.1053	-1.0898	NREL's S822
13	2.4	0.0970	-1.5597	NREL's S822

Table 16. Blade data of S822 airfoil Case #1

Wind speed(m/s)	Power(kW)		
	Default airfoil	S822 airfoil Case #1	
3.0	0.05	0.001	
3.5	0.10	0.004	
4.0	0.15	0.020	
5.0	0.32	0.290	
6.0	0.58	0.730	
7.0	1.00	1.180	
8.0	1.51	1.730	
9.0	2.22	2.390	
10.0	2.90	3.350	

Table 17. Power analysis of S822 airfoil Case #1

Fig. 69. Power curve of S822 airfoil Case #1

2) S822 airfoil Case #2 출력성능 결과 분석

S822 airfoil case #2 블레이드의 총 길이는 2.5m 이며 총 구간은 0.1 ~ 0.3m 길이로 총 13개 구간으로 설정하였다. 시위 길이는 최대 0.35m 이며 비틀림 각은 22.7627°에서 시작하여 - 2.5597°까지 시계방향으로 25.3224° 비틀리는 형상을 설 계하였다. 익형은 루트부를 제외하고 S822 단일 익형으로 설정하였으며, 모든 변 수값은 Table 18에 나타내었다. S822 airfoil Case #2 블레이드는 Q Blade를 통해 출력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 19 에, 출력 곡선을 Fig. 70에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.00	0.2000	0.0000	Circular
2	0.15	0.1999	0.0000	Circular
3	0.30	0.3500	22.7627	NREL's S822
4	0.50	0.3000	13.6444	NREL's S822
5	0.80	0.2500	6.8182	NREL's S822
6	1.00	0.2200	4.2133	NREL's S822
7	1.20	0.1900	2.3787	NREL's S822
8	1.40	0.1700	1.0193	NREL's S822
9	1.60	0.1500	-0.0272	NREL's S822
10	1.80	0.1350	-0.8573	NREL's S822
11	2.00	0.1230	-1.5315	NREL's S822
12	2.30	0.1000	-2.3344	NREL's S822
13	2.40	0.0900	-2.5597	NREL's S822

Table 18. Blade data of S822 airfoil Case #2

Wind speed(m/s)	Power(kW)		
	Default airfoil	S822 airfoil Case #2	
3.0	0.05	0.001	
3.5	0.10	0.006	
4.0	0.15	0.020	
5.0	0.32	0.330	
6.0	0.58	0.780	
7.0	1.00	1.250	
8.0	1.51	1.850	
9.0	2.22	2.630	
10.0	2.90	3.610	

Table 19. Power analysis of S822 airfoil Case #2

Fig. 70. Power curve of S822 airfoil Case $\#\!2$

S822 airfoil case #3 블레이드의 총 길이는 2.5m 이며 총 구간은 0.1 ~ 0.3m 길이로 총 12개 구간으로 설정하였다. 시위 길이는 최대 0.3926m 이며 비틀림 각 은 17.4633°에서 시작하여 - 2.5600°까지 시계방향으로 20.0233° 비틀리는 형상을 설계하였다. 익형은 루트부를 제외하고 S822 단일 익형으로 설정하였으며, 모든 변수값은 Table 20에 나타내었다. S822 airfoil Case #3 블레이드는 Q Blade를 통 해 출력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 21에, 출력 곡선을 Fig. 71에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.0	0.2000	0.0000	Circular
2	0.1	0.1997	0.0000	Circular
3	0.2	0.1994	0.0000	NREL's S822
4	0.4	0.3926	17.4633	NREL's S822
5	0.6	0.3200	10.7850	NREL's S822
6	0.9	0.2430	5.3925	NREL's S822
7	1.2	0.1930	2.3787	NREL's S822
8	1.5	0.1590	0.4640	NREL's S822
9	1.8	0.1360	-0.8573	NREL's S822
10	2.1	0.1180	-1.8232	NREL's S822
11	2.3	0.1084	-2.3344	NREL's S822
12	2.4	0.1041	-2.5600	NREL's S822

Table 20. Blade data of S822 airfoil Case #3

Wind speed(m/s)	Power(kW)		
	Default airfoil	S822 airfoil Case #3	
3.0	0.05	0.001	
3.5	0.10	0.003	
4.0	0.15	0.020	
5.0	0.32	0.300	
6.0	0.58	0.690	
7.0	1.00	1.120	
8.0	1.51	1.620	
9.0	2.22	2.270	
10.0	2.90	3.150	

Table 21. Power analysis of S822 airfoil Case #3

Fig. 71. Power curve of S822 airfoil Case #3

4) S822 airfoil Case #4 출력성능 결과 분석

S822 airfoil case #4 블레이드의 총 길이는 2.5m 이며 총 구간은 0.1 ~ 0.3m 길이로 총 12개 구간으로 설정하였다. 시위 길이는 최대 0.3926m으로 Case #3과 같으며 비틀림 각은 30.4400°에서 시작하여 - 2.5600°까지 시계방향으로 33.0000° 비틀리는 형상을 설계하였다. 익형은 루트부를 제외하고 S822 단일 익형으로 설 정하였으며, 모든 변수값은 Table 22에 나타내었다. S822 airfoil Case #4 블레이 드는 Q Blade를 통해 출력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교 한 출력값을 Table 23에, 출력 곡선을 Fig. 72에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.0	0.2000	0.0000	Circular
2	0.1	0.1998	0.0000	Circular
3	0.2	0.2800	30.4400	NREL's S822
4	0.4	0.3926	17.4633	NREL's S822
5	0.6	0.3200	10.7850	NREL's S822
6	0.9	0.2426	5.3925	NREL's S822
7	1.2	0.1930	2.3787	NREL's S822
8	1.5	0.1595	0.4640	NREL's S822
9	1.8	0.1356	-0.8573	NREL's S822
10	2.1	0.1179	-1.8232	NREL's S822
11	2.3	0.1084	-2.3344	NREL's S822
12	2.4	0.1041	-2.5600	NREL's S822

Table 22. Blade data of S822 airfoil Case #4

Wind speed(m/s)	Power(kW)		
	Default airfoil	S822 airfoil Case #4	
3.0	0.05	0.001	
3.5	0.10	0.004	
4.0	0.15	0.020	
5.0	0.32	0.310	
6.0	0.58	0.720	
7.0	1.00	1.170	
8.0	1.51	1.710	
9.0	2.22	2.380	
10.0	2.90	3.310	

Table 23. Power analysis of S822 airfoil Case #4

Fig. 72. Power curve of S822 airfoil Case #4

5) S823 airfoil Case #1 출력성능 결과 분석

S823 airfoil case #1 블레이드의 총 길이는 2.5m 이며 총 구간은 0.1 ~ 0.3m 길이로 총 12개 구간으로 설정하였다. 시위 길이는 최대 0.3010m이며 비틀림 각 은 28.4373°에서 시작하여 -4.5597°까지 시계방향으로 32.9970° 비틀리는 형상을 설계하였다. 익형은 루트부를 제외하고 S823 단일 익형으로 설정하였으며, 모든 변수값은 Table 24에 나타내었다. S823 airfoil Case #1 블레이드는 Q Blade를 통 해 출력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 25에, 출력 곡선을 Fig. 73에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.0	0.2000	0.0000	Circular
2	0.1	0.1999	0.0000	Circular
3	0.2	0.2500	28.4373	NREL's S823
4	0.4	0.3010	15.4633	NREL's S823
5	0.6	0.2450	8.7850	NREL's S823
6	0.9	0.1860	3.3925	NREL's S823
7	1.2	0.1480	0.3787	NREL's S823
8	1.5	0.1223	-1.5360	NREL's S823
9	1.8	0.1040	-2.8573	NREL's S823
10	2.1	0.0904	-3.8232	NREL's S823
11	2.3	0.0831	-4.3344	NREL's S823
12	2.4	0.0790	-4.5597	NREL's S823

Table 24. Blade data of S823 airfoil Case #1

Wind speed(m/s)	Power(kW)		
	Default airfoil	S823 airfoil Case #1	
3.0	0.05	0.000	
3.5	0.10	0.002	
4.0	0.15	0.020	
5.0	0.32	0.230	
6.0	0.58	0.780	
7.0	1.00	1.240	
8.0	1.51	1.840	
9.0	2.22	2.610	
10.0	2.90	3.590	

Table 25. Power analysis of S823 airfoil Case #1

Fig. 73. Power curve of S823 airfoil Case #1

S823 airfoil case #2 블레이드의 총 길이는 2.5m 이며 총 구간은 0.1 ~ 0.3m 길이로 총 12개 구간으로 설정하였다. 시위 길이는 최대 0.2960m이며 비틀림 각 은 29.4373°에서 시작하여 -3.5600°까지 시계방향으로 32.9973° 비틀리는 형상을 설계하였다. 익형은 루트부를 제외하고 S823 단일 익형으로 설정하였으며, 모든 변수값은 Table 26에 나타내었다. S823 Case #2 블레이드는 Q Blade를 통해 출 력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 27에, 출력 곡선을 Fig. 74에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.1	0.2000	0.0000	Circular
2	0.2	0.1999	0.0000	Circular
3	0.3	0.2500	29.4373	NREL's S823
4	0.5	0.2960	16.4633	NREL's S823
5	0.7	0.2409	9.7850	NREL's S823
6	1.0	0.1827	4.3925	NREL's S823
7	1.3	0.1453	1.3787	NREL's S823
8	1.6	0.1201	-0.5360	NREL's S823
9	1.9	0.1021	-1.8573	NREL's S823
10	2.2	0.0887	-2.8232	NREL's S823
11	2.4	0.0816	-3.3344	NREL's S823
12	2.5	0.0784	-3.5600	NREL's S823

Table 26. Blade data of S823 airfoil Case #2

Wind speed(m/s)	Power(kW)		
	Default airfoil	S823 airfoil Case #2	
3.0	0.05	0.006	
3.5	0.10	0.019	
4.0	0.15	0.07	
5.0	0.32	0.350	
6.0	0.58	0.780	
7.0	1.00	1.250	
8.0	1.51	1.860	
9.0	2.22	2.630	
10.0	2.90	3.620	

Table 27. Power analysis of S823 airfoil Case #2

Fig. 74. Power curve of S823 airfoil Case #2

7) S823 airfoil Case #3 출력성능 결과 분석

S823 airfoil case #3 블레이드의 총 길이는 2.5m 이며 총 구간은 0.1 ~ 0.3m 길이로 총 17개 구간으로 설정하였다. 시위 길이는 최대 0.2830m이며 비틀림 각 은 17.9633°에서 시작하여 - 2.0597°까지 시계방향으로 20.0230° 비틀리는 형상을 설계하였다. 익형은 루트부를 제외하고 S823 단일 익형으로 설정하였으며, 모든 변수값은 Table 28에 나타내었다. S823 Case #3 블레이드는 Q Blade를 통해 출 력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 29에, 출력 곡선을 Fig. 75에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.10	0.1300	0.0000	Circular
2	0.30	0.1300	0.0000	Circular
3	0.34	0.1300	0.0000	Circular
4	0.37	0.1600	0.0000	Circular
5	0.40	0.1900	0.0000	Circular
6	0.53	0.2600	17.9633	NREL's S823
7	0.58	0.2770	16.0500	NREL's S823
8	0.60	0.2830	14.1444	NREL's S823
9	0.65	0.2830	12.7147	NREL's S823
10	0.70	0.2552	11.2850	NREL's S823
11	1.00	0.1935	5.8925	NREL's S823
12	1.30	0.1539	2.8787	NREL's S823
13	1.60	0.1272	0.9640	NREL's S823
14	1.90	0.1082	-0.3573	NREL's S823
15	2.20	0.0940	-1.3232	NREL's S823
16	2.40	0.0864	-1.8344	NREL's S823
17	2.50	0.0831	-2.0597	NREL's S823

Table 28 Blade data of S823 airfoil Case #3

Wind speed(m/s)	Power(kW)	
	Default airfoil	S823 airfoil Case #3
3.0	0.05	0.000
3.5	0.10	0.000
4.0	0.15	0.010
5.0	0.32	0.260
6.0	0.58	0.820
7.0	1.00	1.300
8.0	1.51	1.940
9.0	2.22	2.760
10.0	2.90	3.790

Table 29. Power analysis of S823 airfoil Case #3

Fig. 75. Power curve of S823 airfoil Case #3

S823 airfoil case #4 블레이드의 총 길이는 2.5m 이며 총 구간은 0.05 ~ 0.2m 길이로 총 19개 구간으로 가장 조밀하게 설정하였다. 시위 길이는 최대 0.2850m 이며 비틀림 각은 22.7627°에서 시작하여 -2.5597°까지 시계방향으로 25.3224° 비 틀리는 형상을 설계하였다. 익형은 루트부를 제외하고 S823 단일 익형으로 설정 하였으며, 모든 변수값은 Table 30에 나타내었다. S823 Case airforil #4 블레이드 는 Q Blade를 통해 출력성능을 분석한 후, 상용 3kW급 소형풍력발전기와 비교한 출력값을 Table 31에, 출력 곡선을 Fig. 76에 나타내었다.

No.	Position(m)	Chord length(m)	Twist angle(°)	Foil
1	0.10	0.1300	0.0000	Circular
2	0.35	0.1300	0.0000	Circular
3	0.37	0.1600	0.0000	Circular
4	0.40	0.1900	22.7627	NREL's S823
5	0.50	0.2300	17.4633	NREL's S823
6	0.55	0.2600	15.4078	NREL's S823
7	0.60	0.2850	13.6444	NREL's S823
8	0.65	0.2850	12.1178	NREL's S823
9	0.70	0.2600	10.7850	NREL's S823
10	0.80	0.2270	8.5740	NREL's S823
11	1.00	0.1900	5.3925	NREL's S823
12	1.20	0.1622	3.2225	NREL's S823
13	1.40	0.1412	1.6518	NREL's S823
14	1.60	0.1248	0.4640	NREL's S823
15	1.80	0.1117	-0.4649	NREL's S823
16	2.00	0.1011	-1.2110	NREL's S823
17	2.20	0.0922	-1.8232	NREL's S823
18	2.40	0.0850	-2.3344	NREL's S823
19	2.50	0.0810	-2.5597	NREL's S823

Table 30. Blade data of S823 airfoil Case #4

Wind speed(m/s)	Power(kW)	
	Default airfoil	S823 airfoil Case #4
3.0	0.05	0.000
3.5	0.10	0.000
4.0	0.15	0.020
5.0	0.32	0.310
6.0	0.58	0.800
7.0	1.00	1.270
8.0	1.51	1.890
9.0	2.22	2.680
10.0	2.90	3.690

Table 31. Power analysis of S823 airfoil Case #4

Fig. 76. Power curve of S823 airfoil Case #4

9) 블레이드 설계안 최종 선정

S822, S823 익형을 기반으로 출력성능 분석을 통해 총 8가지 케이스를 선정 하였고, 해당 설계 데이터를 기반으로 블레이드 3D 모델링 작업을 거친 후 ANSYS-CFX 프로그램을 통해 3차원 공력해석을 수행하였다.

정격 출력 구간인 풍속 10m/s, 각속도 30rad/s 기준으로 토크값을 분석한 결 과를 Table 32와 Fig. 77에 나타내었다. S823 익형에 기반한 블레이드가 전반적 으로 S822에 기반한 블레이드 보다 토크값이 높았으며, S823 airfoil Case #1과 S823 airfoil Case #3의 경우 각각 115.8080N·m, 153.7360N·m의 토크값을 나타내 었다. 이는 상용 제품 대비 12.5%, 34.1%의 성능 향상을 가져오는 수치이지만 두 익형 모두 시위 길이가 0.25m가 넘어가면서 지나치게 비대해져 실제 제작 및 기 존 로터부에 탑재가 어려울 것으로 판단하였다.

결과적으로 블레이드의 실제 제작 가능성 여부 및 소형풍력발전기와의 탑재 호환성을 고려하여 기존 대비 정격 출력 구간에서 7.4%의 성능 향상을 보인 S823 airfoil Case #4를 최종 블레이드 설계안으로 선정하였다.

106

Blade design	Torque(N·m)
Default airfoil	101.2780
S822 airfoil Case #1	56.8853
S822 airfoil Case #2	77.3063
S822 airfoil Case #3	54.2309
S822 airfoil Case #4	59.1622
S823 airfoil Case #1	115.8080
S823 airfoil Case #2	97.2104
S823 airfoil Case #3	153.7360
S823 airfoil Case #4	109.3730

Table 32. Torque value calculation according to blade design

Fig. 77. Torque value according to blade design shape

4. 신형 블레이드 실증 및 운영데이터 분석

앞서 최종 선정된 S823 airfoil Case #4 설계안을 기반으로 신형 블레이드를 제작하였으며, 설치 완료 후 2022년 8월부터 2023년 6월까지 실제 소형풍력발전 기를 운영하며 실시간 풍황 및 출력 데이터를 수집하였다. 해당 데이터들은 모니 터링 시스템을 통해 웹 기반으로 실시간 수집되었으며 최종 엑셀시트(Excel sheet) 형태로 데이터베이스를 구축하였다.

올해 5월 ~ 6월의 풍속 별 출력 데이터를 분석한 결과, 3kW를 넘는 출력이 발생한 시점이 다수 확인되었다. 특히 5월 4일경 00시부터 12시까지 10초 간격으 로 풍속별 출력성능을 분석한 결과, 3.3kW를 넘는 시점이 총 16회 관측되었으며 최대 풍속은 11.6m/s에서 최대 출력 3.438kW가 발생하였고 이는 Table 33에 나 타내었다. 또한 해당 기간 내 발생한 16,600여개의 풍속별 출력 데이터에 대해 산점도(Scatter plot) 그래프를 작성하고 이를 기반으로 레일리 분포(Rayleigh distribution) 기법을 활용하여 출력 곡선을 작성하여 Fig. 78에 나타내었다.

S823 airfoil Case #4 블레이드의 출력성능을 3 ~ 11m/s 구간까지 공력해석 결과와 운영데이터를 비교하여 Table 34 및 Fig. 66에 나타내었다. 각 구간에서 의 출력성능에 대해 분석한 결과 전반적으로 공력해석 결과값이 운영데이터 결 과값 대비 높은 출력값을 나타내었으며, 평균 7.28%의 오차율로 3차원 공력해석 모델의 타당성을 검증하였다.

108

Time	Wind speed(m/s)	Power(kW)
2023-05-04 02:15:42	7.4	3.325
2023-05-04 07:38:51	7.8	3.387
2023-05-04 07:39:01	4.2	3.387
2023-05-04 08:04:17	9.5	3.383
2023-05-04 08:04:27	6.5	3.383
2023-05-04 08:04:37	7.6	3.383
2023-05-04 08:28:43	7.1	3.306
2023-05-04 08:45:36	5.2	3.342
2023-05-04 08:45:46	7.4	3.342
2023-05-04 10:27:29	11.6	3.438
2023-05-04 10:27:39	6.7	3.438
2023-05-04 10:27:49	7.7	3.438
2023-05-04 10:30:19	9.7	3.381
2023-05-04 11:37:14	5.8	3.314
2023-05-04 11:37:24	4.3	3.314
2023-05-04 11:37:34	3.5	3.314

Table 33. Output power according to wind speed

Fig. 78. Scatter plot of S823 airfoil SWT

Wind speed(m/s)	Aerodynamic analysis	S823 airfoil Case#4 SWT operational data
3	0.164	0.143
4	0.284	0.262
5	0.457	0.439
6	0.728	0.664
7	1.180	1.066
8	1.786	1.670
9	2.570	2.496
10	3.281	3.101
11	3.463	3.215

Table 34. Comparison of power by wind speed according to airfoil

Fig. 79. Power by wind speed according to airfoil

V. 결론

본 연구에서는 소형풍력발전기의 역설계를 통한 익형 형상 데이터 취득에서 부터 공력해석을 통한 신형 블레이드 설계 및 제작, 현장 실증을 통한 성능 데이 터 수집 및 검증까지 전주기에 관한 연구를 수행하였다.

(1) 본 연구에서 성능 척도의 기준이 되는 상용 3kW급 소형풍력발전기의 블 레이드 역설계 과정을 통해 기본 익형 데이터를 추출하였으며, 이를 기반으로 3D 모델링을 수행하고 해당 모델에 대한 공력해석을 통해 각 풍속 구간에 대해 출력량 오차율을 계산하였다. 3m/s ~ 12m/s까지 1m/s 간격으로 구간을 나누었 으며, 각 구간별 평균 오차율은 5.1%로 3kW급 소형풍력발전기 공력해석을 위해 수립한 3차원 공력해석 모델이 매우 정확함을 검증하였다.

(2) 신형 블레이드의 설계를 위하여 다양한 익형들 중 선행 연구 결과를 기 반으로 소형풍력발전기에 주로 적용되는 익형 S822, S823, FX63, BW-3, SG6042 총 5종을 공력해석을 위한 후보군으로 선정하였다. 익형별 슬라이드 형태의 지오 메트리를 생성하고 ANSYS-CFX를 활용하여 받음각 1° ~ 12°까지 2차원 공력해 석을 수행 후, 출력 곡선 경향성 및 익형의 형상이 가장 유사한 S822, S823 익형 을 선정하였다. 해당 익형을 기반으로 Q Blade를 통해 구간 위치, 시위 길이, 비 틀림 각, 익형을 조합하여 출력성능을 분석하였으며, 상용 제품 대비 출력성능이 소폭 증가한 총 8가지 케이스를 3차원 공력해석을 위한 블레이드 설계안으로 선 정하였다.

(3) ANSYS-CFX를 활용한 3차원 공력해석을 통해 8가지 케이스 별 토크값
을 계산한 결과, 풍속 10m/s, 각속도 30rad/s 기준으로 상용 3kW급 소형풍력발
전기의 토크값은 101.2780N·m, 출력값은 3.038kW로 산출되었으며 S823 airfoil
Case #4의 경우 토크값은 109.3730N·m, 출력값은 3.281kW로 산출되어 정격 출
력 구간에서 기존 대비 7.4%의 출력 향상을 나타내었다.

112

(4) 최종 선정한 S823 airfoil Case #4 설계 데이터를 기반으로 신형 블레이 드를 제작하였고, 기존에 설치되어 있는 상용 소형풍력발전기에 탑재 후 모니터 링 시스템을 통해 운영데이터를 확보하였다. 공력해석 결과와 운영데이터 결과를 상호 비교 분석한 결과 전반적으로 공력해석 결과값이 운영데이터 결과값 대비 높은 출력값을 나타내었으며, 평균 7.28%의 오차율로 3차원 공력해석 모델의 타 당성을 검증하였다. 특히 정격 출력 구간인 10m/s에서는 오차율이 5.5%로 매우 정확한 3차원 공력해석 모델임을 검증할 수 있었다.

공력해석 결과와 실제 결과와의 차이가 발생한 이유에 대해서는 수치해석상 의 조건과 실제 환경 조건의 차이가 가장 큰 요인으로 작용한 것으로 판단하였 다. 공력해석 시 주변 영역의 유체 속도는 정격 출력 풍속인 10m/s로 고정하고 회전 영역과 주변 영역을 구분하여 유체 해석을 수행하게 되지만, 실제 현장에서 는 바람이 일정 풍속으로 지속적으로 불어오는 환경을 구축하기는 매우 어렵다. 아울려 주변 건물들로 인한 예상치 못한 기류의 흐름이나 마찰 및 진동과 같은 기계적인 요소들 역시 출력 저하의 요인으로 작용한 것으로 판단하였다.

본 연구에서는 소형풍력발전기 블레이드 최적화를 위한 3차원 공력해석 모델 을 최종 수립하였다. 연구 수행 과정에서 3차원 역설계 기법, Q Blade를 활용한 블레이드 형상 데이터 설계 및 양항력 분석, CATIA를 활용한 3D 모델링, ANSYS-CFX를 활용한 공력해석 모델 수립 등 다양한 상용프로그램들과 기법들 을 활용하였고 각 단계에서 도출된 데이터들에 대해 상호 연관성을 분석하고 호 환성을 확보하기 위한 노하우들을 체계화 하였음에 의의가 있다.

서두에 기술하였듯이 소형풍력발전 시장의 확대를 위해서는 소형풍력발전기 의 출력성능 향상을 위한 블레이드 최적화 연구가 반드시 필요한 상황이다. 신재 생에너지 보급 활성화에 따라 소형풍력발전기에 대한 관심은 지속적으로 증가하 고 있으며, 이러한 요구를 반영하여 개발도상국 및 도서 지역을 중심으로 분산 전원 도입이 추진되고 있고 특히 도심이나 소규모 개발 단지에서는 풍력, 태양 광, ESS를 결합한 스마트그리드 기술들이 주목받고 있다.

최근에는 소형풍력발전기의 출력성능 및 주민 친화성을 향상시키기 위한 다 양한 방면에서의 연구들이 진행되고 있으며, 해외에서는 Vortex generator, Dino tail 등 대형풍력발전기의 소음 저감을 위한 다양한 방법들이 현장에서 적용되고 있으나 소형풍력발전기의 블레이드는 길이가 짧아 별도의 소음 저감 방안은 도 입되고 있지 않다.

향후에는 본 연구에서 수립된 3차원 블레이드 공력해석 모델을 기반으로 다 양한 블레이드 형상에 대해 공력해석을 수행하고, 이와 동시에 Sound pressure level을 분석하여 최적의 성능 출력을 갖으면서 가장 낮은 소음을 발생시키는 블 레이드에 대한 설계 및 검증을 수행하여 보다 주민 친화적인 소형풍력발전기를 설계해 보고자 한다. 또한 1기의 풍력터빈이 아닌 단지 분석을 통한 주변 지형지 물의 간섭 요소를 고려하고, 하중해석을 통해 기계적 출력 저하 요인들도 함께 연계하여 마이크로그리드 구축에 기반이 되는 설계모델을 수립해 보고자 한다.

참 고 문 헌

- [1] 중소벤처기업부, 중소기업 전략기술로드맵 2021-2023 신재생에너지, 2021.
- [2] World Wind Energy Association, Small wind world report, 2017.
- [3] Paul A. Lynn, "Onshore and Offshore wind Energy", WILEY, 2011
- [4] 임성희, "도시형 소형풍력발전 기술 동향 및 보급 확대 방안", 2020 서울에너 지포럼, 2020
- [5] Bibhu Prasad Ganthia, Subrat Kumar Barik, Byamakesh Nayak, "Low voltage ride through capability enhncement using series connected fact devices in wind energy conversion system, Journal of Engineering Science and Technology, Vol. 16, No. 1, pp. 367, 2021.
- [6] Kanhaiya K., "Modeling and simulation of hybrid system", International Journal of Advanced Science and Technology, Vol. 29, No. 4s, pp. 2864, 2020.
- [7] Sang-Lae Lee, Sang-Joon Shin, "Structural design optimization of a wind turbine blade using the genetic algorithm", Engineering Optimization, pp. 9, 2021.
- [8] Scien Facts, "Bernoulli's Principle and Equation", 2020, https://www.sciencefacts.net/bernoullis-principle-and-equation.html
- [9] Michael Miller, B.Eng., "The Multi-Objective Design of Flatback Wind Turbine Airfoils", Ottawa-Carleton Institute for Mechanical and Aerospace Engineering Department of Mechanical and Aerospace Engineering Carleton University, pp. 5, 2016

- [12] R. Quinna, G. Schepersb, B. Bulderb, "A parametric investigation into the effect of low induction rotor(LIR) wind turbines on the levelised cost of electricity for a 1GW offshore wind farm in a North Sea wind climate", Energy Procedia, 94, pp. 165, 2016.
- [13] Bum-Suk Kim, "A Study on the Optimum Blade Design and the Aerodynamic Performance Analysis for the Horizontal Axis Wind Turbines", Korea Maritime & Ocean University, pp. 22–23, 2005
- [14] S.F. van den Broek, T. Ashuri, E.A. Ferede, F. van Keulen, "Towards High-Fidelity Aeroelastic Analysis of Wind Turbines", University of Michigan, pp. 16 - 17, 2013.
- [15] Francesco Mazzeo, Derek Micheletto, Alessandro Talamelli, Antonio Segalini, "An Experimental Study on aWind Turbine Rotor Affected by Pitch Imbalance", Energies, 15, 8665, pp. 3–4, 2022.
- [16] Praveen Kumar Nigam, Nitin Tenguria, M. K. Pradhan, "Review on Design of Horizontal Axis Wind Turbine Blades", International Journal of Research and Analytical Reviews, Vol. 5, Issue 4, pp.876, 2018.
- [17] Sang-Lae Lee, Sang-Joon Shin, "Wind Turbine Blade Optimal Design Considering Multi-Parameters and Response Surface Method", Energies, 13, 16369, pp. 2-4, 2020.
- [18] M.K.P., G.N.V.B., T.J.C., "Predicting scale effects on floating offshore wind turbines", Delft University of Technology, pp. 24–26, 2014.
- [19] F.R. Menter, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", Journal of American Institute of Aeronautics and Astronautics, Vol. 32, No. 8, pp. 1603–1604, 1994.

- [20] Seong-Wook Choi, Sung-Uk Choi, "Numerical simulation of submerged jump and washed-out jump using the k-ε SST model", Journal of Korea Water Resources Association, Vol. 54, No. 11, pp. 1013, 2021.
- [21] 진봉용, "전산유체역학의 소개 및 설비 분야에서의 CFD 해석 사례", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 44, pp. 102-103, 2015.
- [22] David Marten, "Q Blade v0.9 Guidelines", 2015
- [23] David Marten, "Q Blade v0.8 Short manual", 2014
- [24] Min-Guyn Kim, Nam-Jin Kim, "CAD data generation and aerodynamic analysis of 3kW wind turbine blades through the reverse design process", Jeju National University, pp. 5–7, 2022.
- [25] 나덕주, "풍력 터빈 로터 블레이드 제조방법", 한국과학기술정보연구원 ReSEAT, pp. 1-2, 2010
- [26] Brahim Attaf, "Ecomoulding of CompositeWind Turbine Blades Using Green Manufacturing RTM Process", International Scholarly Research Network, Vol. 2012, pp. 4–6, 2012
- [27] M. Koefoed, E. Lund, L. Lilleheden, "Modeling and Simulation of the VARTM Process for Wind Turbine Blades", Materials Science, 2002.
- [28] N. Karthikeyan, K. Kalidasa Murugavel, S. ArunKumar a, S. Rajakumar, "Review of aerodynamic developments on small horizontal axis wind turbine blade", Renewable and Sustainable Energy Reviews, Vol. 42, pp. 810–821, 2014

- [29] Vahid Akbari, Mohammad Naghashzadegan, Ramin Kouhikamali, Farhad Afsharpanah, Wahiba Yaïci, "Multi-Objective Optimization of a Small Horizontal-AxisWind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds", Machines, 10, 785, pp. 2, 2022
- [30] Tien-Anh TRAN, "Process for Calculating Design Parameters of a Small Horizontal Axis Wind Turbine of 300W", 6th International Conference on Green Technology and Sustainable Development, pp. 937–940, 2022.
- [31] Mustafa Alaskari1, Oday Abdullah, Mahir H. Majeed, "Analysis of Wind Turbine Using QBlade Software", 2nd International Conference on Sustainable Engineering Techniques, pp. 1–4, 2019
- [32] Min-Young Sun, Dong-Yong Kim, Jae-Kyoo Lim, "Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application", Journal of Korean Society of Mechanical Engineers B, Vol. 36, No.5, pp. 466, 2012
- [33] Kyoung-Soo Lee, Ziaul Huque, Sang-Eul Han, "Aerodynamic force evaluation of Pointed Tip Wind Turbine Blade Using CFD", Architectural Institute of Korea, Vol. 30, No. 7, pp.22, 2014
- [34] Chang-Hwan Yu, Seong-Hwan Kim, "A Study on the Performance of Upwind Small Wind Turbine Using Numerical Analysis by Turbulence Model", Journal of Advanced Engineering and Technology, Vol. 13, No.4, pp. 180–182, 2020
- [35] Ye-Chan Hwang, In-Su Paek, "CFD Analysis of the Mechanical Power and the Wake of a Scaled Wind Turbine and Its Experimental Validation", Journal of Korean Society for Precision Engineering, Vol. 38, No. 3, pp. 225–227, 2021
- [36] P. K. Nigam, Nitin Tenguria, M. K. Pradhan, "Verification of Sliding Ratio (Cl/Cd) of Airfoil through CFD Analysis", Journal of Scientific Research, Vol. 64, No. 1, pp. 244–249, 2020

- 부 록
- 1. 기본 익형 받음각 공력해석
- 1) Pressure contour at AOA=1° ~ 12°

Pressure contour at AOA=11°

2) Stream line at AOA=1° ~ 12°

Stream line of velocity at AOA=1°

Stream line of velocity at AOA=2°

Stream line of velocity at AOA=3° $\,$

Stream line of velocity at AOA=4°

Stream line of velocity at AOA=5° $\,$

Stream line of velocity at AOA= 6°

Stream line of velocity at AOA=7° $\,$

Stream line of velocity at AOA=8°

14691-011 10946901 5420-000 920-000

Stream line of velocity at AOA=9° $\,$

Stream line of velocity at AOA=10° $\,$

Stream line of velocity at AOA=11° $\,$

Stream line of velocity at AOA=12° $\,$

2. S822 익형 받음각 공력해석

1) Pressure contour at AOA=1° $\,\,\tilde{}\,\,$ 12°

2) Stream line of velocity at AOA=1° \sim 12°

1999+01 1999+01 1.177e+01 7.539e+00 2.747e-01 (m.8-1)

Stream line of velocity at AOA=1°

Stream line of velocity at AOA=2°

Stream line of velocity at AOA=3° $\,$

Stream line of velocity at AOA=4°

Stream line of velocity at AOA=5° $\,$

Stream line of velocity at AOA= 6°

Stream line of velocity at AOA=7° $\,$

Stream line of velocity at AOA=8°

 4/00-cg1

 1/2004;01

 2.00245(0)

 2.00245(0)

 2.00245(0)

Stream line of velocity at AOA=9° $\,$

Stream line of velocity at AOA=10° $\,$

Stream line of velocity at AOA=11° $\,$

Stream line of velocity at AOA=12° $\,$

3. S823 익형 받음각 공력해석

1) Pressure contour at AOA=1° $\,\widetilde{}\,$ 12°

2) Stream line of velocity at AOA=1 \sim 12°

Stream line of velocity at AOA=1°

Stream line of velocity at AOA=2°

13726x101 13776r01 144034r00 144034r00

Stream line of velocity at AOA=3° $\,$

Stream line of velocity at AOA=4°

Stream line of velocity at AOA=5° $\,$

Stream line of velocity at AOA=6°

Stream line of velocity at AOA=7° $\,$

Stream line of velocity at AOA=8°

Stream line of velocity at AOA=9° $\,$

Stream line of velocity at AOA=10° $\,$

Stream line of velocity at AOA=11° $\,$

Stream line of velocity at AOA=12° $\,$

4. FX63 익형 받음각 공력해석

1) Pressure contour at AOA=1° ~ 12°

Pressure contour at AOA=12°

2) Stream line of velocity at AOA=1° \sim 12°

Stream line of velocity at AOA=1°

Stream line of velocity at AOA=2°

Stream line of velocity at AOA=3° $\,$

Stream line of velocity at AOA=4°

Stream line of velocity at AOA=5°

Stream line of velocity at AOA= 6°

Stream line of velocity at AOA=7° $\,$

Stream line of velocity at AOA=8°

Stream line of velocity at AOA=9° $\,$

Stream line of velocity at AOA=10° $\,$

Stream line of velocity at AOA=11° $\,$

Stream line of velocity at AOA=12° $\,$

5. BW-3 익형 받음각 공력해석

1) Pressure contour at AOA=1° ~ 12°

Pressure contour at AOA=11°

2) Stream line of velocity at AOA=1° \sim 12°

Stream line of velocity at AOA=1°

Stream line of velocity at AOA=2°

Stream line of velocity at AOA=3° $\,$

Stream line of velocity at AOA=4°

Stream line of velocity at AOA=5° $\,$

Stream line of velocity at AOA= 6°

Stream line of velocity at AOA=7° $\,$

Stream line of velocity at AOA=8°

2.056+61 1.39991101 7.256+00 T7.256+00 T7.256+000 T7.256+000 T7.256+000 T7.256+000 T7.256+0

Stream line of velocity at AOA=9° $\,$

Stream line of velocity at AOA=10° $\,$

Stream line of velocity at AOA=11° $\,$

Stream line of velocity at AOA=12° $\,$

6. SG6042 익형 받음각 공력해석

1) Pressure contour at AOA=1° $\,\,\tilde{}\,\,$ 12°

Pressure contour at AOA=11°

2) Stream line of velocity at AOA=1° \sim 12°

Stream line of velocity at AOA=1° $\,$

Stream line of velocity at AOA=2°

Stream line of velocity at AOA=3° $\,$

Stream line of velocity at AOA=4° $\,$

Stream line of velocity at AOA=5°

Stream line of velocity at AOA= 6°

Stream line of velocity at AOA=7° $\,$

Stream line of velocity at AOA=8°

 Million
 21/20-01

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

 1/20/2001
 1/20/2001

Stream line of velocity at AOA=9° $\,$

Stream line of velocity at AOA=10° $\,$

Stream line of velocity at AOA=11° Stream

Stream line of velocity at AOA=12° $\,$

Research on aerodynamic analysis and verification of horizontal axis small wind power generator blades

Kang Myung-Bo

Department of Mechanical Engineering The Graduate School Jeju National University

Abstract

In this study, we conducted research on the entire cycle, from acquiring airfoil shape data through reverse engineering of a small wind power generator, to designing and manufacturing new blades through aerodynamic analysis, and collecting and verifying performance data through field demonstration. (1) As a result of calculating the output error rate for each wind speed section between a commercial 3kW small wind power generator and an aerodynamic analysis model through reverse engineering, the average error rate was 5.1%, which is the average error rate of the 3D aerodynamic analysis model established for aerodynamic analysis of a 3kW small wind power generator. Validity was secured. (2) After performing a two-dimensional aerodynamic analysis from 1° to 12° angle of attack using ANSYS-CFX for a total of 5 types of airfoil S822, S823, FX63, BW-3, and SG6042, the output curve tendency and shape of the airfoil were determined to be the best. Similar S822 and S823 airfoils were selected, and as a result of analyzing the output performance of the Q Blade, a total of eight cases with slightly increased performance were selected as blade design plans for 3D aerodynamic analysis.

(3) As a result of calculating torque values for eight cases through 3D aerodynamic analysis using ANSYS-CFX, for S823 airfoil Case #4, the torque value was calculated to be 109.3730N·m and the output value was calculated to be 3.281kW, which is the rated output. In this section, output was improved by 7.4% compared to existing commercial wind power generators. (4) The final selected S823 airfoil Case #4 was actually manufactured and mounted on a commercial small wind power generator to obtain operational data. As a result of comparing and analyzing the aerodynamic analysis results and operational data results, the validity of the 3D aerodynamic analysis model was verified with an average error rate of 7.28%. In particular, in the rated output section of 10 m/s, the error rate was 5.5%, which confirmed that it was a very accurate 3D aerodynamic analysis model.

