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Abstract 

Electrical Impedance Tomography (EIT) is a versatile method applied for imaging in fields 

such as phase flow analysis, medical diagnostics, and sensing materials imaging. It provides 

real-time, non-invasive cross-sectional imaging, aiding in pipeline optimization, energy 

reduction, and environmental impact mitigation. For medical purposes, EIT has been 

integrated with conductive fabrics for artificial skin, enabling simultaneous monitoring of 

electrical conductivity and mechanical properties. This thesis proposes Generative 

Adversarial Network (GAN) models for EIT reconstructions related to the mentioned fields. 

These neural networks based models effectively handle complex conductivity distributions, 

learn intricate features directly from data, and support learning by simulation cases. Their 

adaptability to various scenarios, data-driven nature, and ability to incorporate 

regularization techniques make them promising tools for EIT applications.  

The results demonstrate that the designed GAN-based models successfully reconstruct 

target positions and a more uniform background. The performance is also contrasted to 

alternative neural network approaches, including neural network and deep neural network 

models. The evaluation metrics indicate superior performance of the GAN models in 

comparison. 

Keywords: Electrical Impedance Tomography (EIT); Two-phase Flow; Inverse Problem; 

Reconstruction Algorithms; Generative Adversarial Networks (GAN); Piezoresistive Fabric; 

Attention Mechanism. 
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1. Introduction 

Electrical impedance tomography (EIT) is an imaging method that provides insight into an 

object’s interior by the injection of currents at its boundary and the measurement of 

voltages at the same points. Some of its application fields are phase flow, medicine and 

materials imaging. In the case of phase flow procedures, two-phase flow is one of its basic 

types, which includes various combinations between liquid, solid or gas flows. It is present 

in both nature or industry settings, encompassing scenarios such as the movement of 

particles in oils, as well as the flow of liquids in pipes. Gaining insight into the behavior of 

two-phase flow is essential for optimizing pipelines, reducing energy usage, and mitigating 

environmental effects [1]. To address this challenge, EIT offers a straightforward and non-

invasive cross-sectional method that has the capability to capture real-time images of the 

dynamics of two-phase flow [2]. Regarding medical applications, the combination of EIT 

with conductive fabrics for artificial skin applications has been explored in recent studies 

[3-4]. This integration allows for the simultaneous monitoring of both the electrical 

conductivity and mechanical properties of the fabrics. At the same time, a more 

comprehensive assessment of the monitored area's health status is possible and the chance 

for an early intervention with the enhancement of diagnostic capabilities, contributing to 

improved healthcare outcomes. 

However, only for simple geometry cases the reconstruction problem can be obtained by 

an analytical solution. For complex cases, numerical methods are required since the inverse 

problem to be solved is ill-posed. This means that the solution is highly unstable to data 
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perturbations [5]. To deal with this, regularization methods such as modified Newton-

Raphson or Landweber are applied since they improve the precision of the reconstruction. 

Another field around EIT reconstruction has been the study of neural network architectures. 

With the capability of managing non-linear relationships in data, they show good 

performance when dealing with complex conductivity distributions. These models have the 

ability to learn intricate features directly from the data, which can be essential for capturing 

patterns of EIT problems. Additionally, neural networks allow end-to-end learning, enabling 

the entire reconstruction process to be optimized as a whole. Their flexibility in terms of 

architecture, loss functions, and hyperparameters makes them adaptable to various EIT 

scenarios. Furthermore, neural networks are data-driven, making them well-suited for 

leveraging large datasets often available in EIT applications by simulations. Finally, they 

can incorporate regularization techniques within their architecture, upgrades of the model 

complexity, and techniques for overfitting prevention. 
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1.1 Scope of the Thesis 

This thesis proposes two approaches that employ Generative Adversarial Networks (GAN) 

for EIT reconstruction and enhancement. For the reconstruction model, the GAN model 

takes voltages obtained at the border of the object as input data. The model's outcome is 

generated through a multi-step process. Initially, a wide dataset is compiled, consisting of 

voltages and images with the corresponding target. During GAN training, the voltage signal 

serves as the input, while the expected output is images with the target. Through training, 

the model gradually refines itself to closely resemble the images that contain the target 

location. To assess the results of the model, simulations that take into account additive 

white Gaussian noise (AWGN) and measurements taken from experiments are utilized. Also, 

evaluation of its performance is done by comparing results against those produced by 

conventional basic models that are based on neural networks and deep neural networks. 

Regarding the image enhancement model, its objective is to enhance the quality of results 

obtained through the modified Newton-Raphson (mNR) method by pix2pix GAN with an 

attention mechanism. Based on the generative adversarial networks (GAN) approach that 

consists of learning the mapping between domains, the reconstructed mNR image and the 

corresponding image depicting the target's location are used. By integrating attention 

mechanisms into the mentioned model’s architecture, the proposed method effectively 

captures spatial details of the images, leading to improved outcomes in the reconstruction 

process. The effectiveness of this method is assessed by applying it to out-of-dataset and 

noisy mNR images, demonstrating its capability to reconstruct enhanced backgrounds and 

target representations based on the initial mNR input images. 
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2. Theoretical Framework 

2.1 Electrical Impedance Tomography 

Electrical Impedance Tomography (EIT) is an imaging technique in which electrodes are 

located around a region of interest (Ω) and at the same points voltages (𝑢)  are measured 

while alternating currents are applied in a defined pattern, to relate them and obtain the 

object’s resistivity (𝜌). The main used patterns are opposite, adjacent, and trigonometric. 

This imaging technique is advantageous for several reasons such as the employment of 

nonionizing radiation, easy portability, and the fact that is relatively inexpensive compared 

to other tomography methods, allowing it to produce a basic system at a reasonably low 

cost [6].  

Fig. 1 presents a diagram of an EIT basic configuration system. As shown, the main parts 

of an EIT system consist of the measurement, data acquisition, and data processing sections. 

The measurement stage comprises both the current injection and voltage measuring 

electrodes. In this first stage, the data dimension is defined by the current pattern. In the 

case of the data acquisition stage, the system usually relies on multiplexers and 

demultiplexers for simpler hardware implementation. Finally, the data processing stage 

applies a reconstruction algorithm to obtain a conductivity or resistivity estimation to 

display. This algorithm is a crucial part of the reconstruction since the problem to solve 

suffers from non-linearity and ill-posedness. 
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Fig. 1. Basic EIT system 

Regarding the mentioned electrodes, diverse physical models have been formulated, 

varying on the boundary conditions. From all of them, here are presented the shunt model 

and the complete electrode model, since they are the ones that take most into account 

the physical effects that are present in experimental setups. For the shunt model, it assumes 

the used metal for the electrode is a perfect conductor, so the voltage is constant in all 

the material. This leads to the boundary conditions and constraints [7]:  

∫
1

𝜌

𝜕𝑢

𝜕𝑣𝑒𝑙

𝑑𝑆 = 𝐼𝑙             𝑙 = 1,2, . . . , 𝐿             (1) 

1

𝜌

𝜕𝑢

𝜕𝑣
= 0                          off ⋃ 𝑒𝑙

𝐿

𝑙=1

                   (2) 

𝑢 = 𝑈𝑙    𝑜𝑛   𝑒𝑙                 𝑙 = 1,2, . . . , 𝐿,            (3) 

    

here 𝑒𝑙 is the electrode’s surface, 𝑣 the unit normal in the outward direction, 𝐼𝑙 as the 

currents that are injected, 𝐿 as the electrode’s quantity, and 𝑈𝑙 as the boundary measured 

voltages. Experimentally, this model has shown an underestimation of the resistivity values 

since it does not take into account the contact impedances at the electrodes’ interface. 

For the complete electrode model, the term 𝑧𝑙 is added as the contact impedance that is 
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present at the boundary of the electrode and the measured material or tissue. Equations 

and conditions for this model are[8-10]:  

𝑢 + 𝑧𝑙

1

𝜌

∂𝑢

∂𝑣
= 𝑈𝑙 ,   𝑥 ∈ 𝑒𝑙 , 𝑙 = 1,2, . . . , 𝐿.        (4) 

∫
1

𝜌

∂𝑢

∂𝑣𝑒𝑙

𝑑𝑆 = 𝐼𝑙,    𝑥 ∈  𝑒𝑙 , 𝑙 = 1,2, . . . , 𝐿        (5) 

1

𝜌

∂𝑢

∂𝑣
= 0,     𝑥 ∈ 𝜕Ω\ ⋃ 𝑒𝑙                                 (6)

𝐿

𝑙=1

 

∑ 𝐼𝑙 = 0

𝐿

𝑙=1

                                                               (7) 

∑ 𝑈𝑙 = 0.

𝐿

𝑙=1

                                                            (8) 

To address the complexities to solve (4-8) in intricate scenarios, the finite element method 

(FEM) is employed. This method is based on a discretization over the object (𝛺) to estimate 

the voltages at the electrodes (𝑈) and the potential distribution (𝑢). This calculation is part 

of the "forward problem." The explained approach is made by taking these approximations 

[11]  

𝑢 ≈ 𝑢ℎ(𝑥, 𝑦) =  ∑ 𝛼𝑖𝜙𝑖                                        (9)

𝑁

𝑖=1

 

𝑈 ≈ 𝑈ℎ = ∑ 𝛽𝑗𝑛𝑗.                                                  (10)

𝐿−1

𝑗=1

 

Here 𝑁 is the node quantity within the mesh, while 𝜙𝑖 represents a two-dimensional 

basis function of first order. The patterns for measurement, labeled as 𝑛 represent 𝑛1 =

(1, −1,0, . . . ,0)𝑇 , 𝑛2 = (1,0, −1, . . . ,0)𝑇 , 𝑒𝑡𝑐. ∈  ℝ𝐿 . The values to determine consist of the 

nodes and the boundary voltages, respectively 𝛼𝑖 and 𝛽𝑗. By applying (9) and (10), the EIT 
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forward solution can be expressed as the equation of matrices 

𝐴𝑏 = 𝑓                                                                         (11) 

in which 𝐴 stands for the matrix of coefficients, 𝑏 represents the solution vector, and 𝑓 the 

data vector. 

2.2 Modified Newton-Raphson Method 

The modified Newton-Raphson (mNR) method is employed to solve iteratively nonlinear 

equations such as equation (11). In the context of Electrical Impedance Tomography (EIT), 

this method is used to improve initial estimates of the electrical impedance distribution so 

that they match the measured data [12]. In each iteration of mNR, the Jacobian matrix is 

calculated, which represents how voltage data responds to changes in impedance. This 

matrix is used to update impedance approximations using the Newton-Raphson method, 

which involves the solution of a linear system of equations. To maintain stability and avoid 

a not converging point, a regularization term is introduced [13]. The equation for the 

resistivity approximation is [14] 

𝜌𝑖+1 = 𝜌𝑖 + (𝐽𝑖
𝑇𝐽𝑖 + 𝛼𝑊)

−1
(𝐽𝑖

𝑇(𝑈 − 𝑉(𝜌𝑖)))  (12) 

here: 

• 𝜌𝑖: 𝑖th iteration resistivity 

• 𝐽𝑖: 𝑖th iteration Jacobian 

• 𝑈: obtained voltage 

• 𝑉: estimated voltage 

• 𝛼:  regularization term 

• 𝑊: regularization matrix, which in the case of standard Tikhonov regularization is 

the identity matrix 

 



 

8 

 

The drawbacks of applying this method in EIT reconstruction include its high computational 

demands, sensitivity to initial guesses for impedance distribution, potential linearization 

errors when modeling impedance changes, non-guaranteed convergence, dependency on 

choosing an appropriate regularization term and susceptibility to measurement noise. An 

accurate parameter choice is vital to secure the algorithm's precision [15]. 

2.3 Generative Adversarial Networks 

To understand the process of GAN design and its architecture, it is valuable to understand 

the architecture and operation of autoencoders. Beginning with their fundamental 

components, autoencoders consist of nodes, with their corresponding inputs, weights, 

biases, activation functions, and outputs. These fundamental node components are 

organized into layers and trained for learning and mapping complex relations through the 

modification of their weights. Consequently, the neural network contains three primary 

sections: the input layer, the output layer, and the hidden layers [16]. 

In terms of their design, the autoencoders consist of a pair of linked networks, known as 

the decoder and encoder. The operation of these two parts is [17]: 

1. The encoder processes a vector 𝑥 ∈  𝑅𝑑 with input features into 𝑦∗ ∈  𝑅𝑝, which is 

a vector in a latent space.  

2. From this, the decoder block uses a generated vector 𝑦 = 𝑦∗ ∈  𝑅𝑝 to process it into 

𝑥∗ ∈  𝑅𝑑. 

The desired outcome is that this result closely resembles the initial input. Both the encoder 

and decoder can consist of multiple hidden layers that incorporate nonlinearities, creating 

a deep or stacked autoencoder. This architecture enhances its ability to learn and capture 
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complex nonlinear relationships, which is particularly useful in tasks like EIT reconstruction. 

Fig. 2 illustrates a basic representation of an autoencoder’s basic structure. 

Fig. 2. Basic autoencoder structure 

For the GAN architecture, the same decoder works as a generative model, often referred 

to as the generator block. Its role is to take a latent vector and produce an output of a 

higher dimension [18]. To evaluate the quality of the generated images, the architecture 

includes a discriminator block. The overall structure undergoes progressive training where, 

initially the generator outputs a synthetic vector 𝑥∗ aiming to closely resemble the true 

conductivity at the domain. The image is produced from an input 𝑧, which for implemented 

GAN, corresponds to the obtained voltages at the electrodes. Subsequently, the synthetic 

input 𝑥∗ is evaluated by the discriminator and a classification error is obtained. Here the 
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generator’s task is to enhance the classification error by modifying its internal parameters 

through the overall error backpropagation. Throughout these iterations, an improvement 

in the generator’s ability to produce data that convincingly resembles the data provided 

as expected output is done. The improvements allow it to mislead the discriminator 

effectively with realistic outputs [19]. 

The training procedure and internal structure of a basic GAN are depicted in Fig. 3. Here 

the backpropagation for training is represented as the discriminator output.  

 

Fig. 3. Architecture and training process of GAN 

The training objective function follows the minmax relationship [20] 

𝑚𝑖𝑛𝑚𝑎𝑥 𝑉(𝐷, 𝐺) =  𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 (𝐷(𝑥)) ] + 𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) ]        (13) 

here 𝑝𝑑𝑎𝑡𝑎(𝑥) represents the distribution of the real data, 𝑝𝑧(𝑧) the distribution from the 

noise, 𝐸 the average value, 𝐺 and 𝐷 represents the generator and discriminator blocks 

correspondingly. The primary objective of the 𝐷 block is to improve its capability to 

differentiate between generated and fake samples, whereas the 𝐺 block aims to minimize 
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the performance of 𝐷. The 𝐷 block updates involve adjusting its parameters using the loss 

function gradient with respect to 𝐺 and updating 𝐺 by the gradient of the loss with respect 

to 𝐷. The iterative process continues to a point where 𝐺 generates data indistinguishable 

from the original dataset. 

To update the parameters of 𝐺 and 𝐷, the ADAM optimization method is employed. ADAM, 

as a better alternative to stochastic gradient descent (SGD), incorporates adaptive learning  

and momentum for faster convergence. It calculates its learning rates by maintaining an 

exponential average of square and past gradients. Additionally, ADAM incorporates a 

momentum component to mitigate fluctuations of gradients in the training. The 

mathematical expressions for the ADAM optimization method are as follows [21]: 

𝑚𝑡 = 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡                      (14) 

𝑣𝑡 = 𝛽2 ∙ 𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2                       (15) 

𝑚�̂� =
𝑚𝑡

1 − 𝛽1
𝑡                                                       (16) 

𝑣�̂� =
𝑣𝑡

1 − 𝛽2
𝑡                                                        (17) 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼 ∙ 𝑚�̂�

√𝑣�̂� + 𝜀
                                       (18) 

where: 

● 𝑚𝑡: mean(1st moment estimate) for gradients during 𝑡th iteration 

● 𝑣𝑡: uncentered variance(2nd moment estimate) for gradients during 𝑡th iteration 

● 𝑔𝑡: gradient during 𝑡th iteration 

● 𝛽1 and 𝛽2: respectively 𝑚𝑡 and 𝑣𝑡 rates of decay 

● 𝑚�̂� and 𝑣�̂�: estimates 𝑚𝑡 and 𝑣𝑡 with bias-correction during 𝑡th iteration 
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● 𝜃𝑡: 𝑡th iteration weight value 

● 𝛼: step size or learning rate 

● 𝜀: constant to prevent the division by zero 

Both the loss functions of 𝐺 and 𝐷 are differentiable, making it possible to utilize their 

gradients for parameter updates with the ADAM optimizer. Employing ADAM to optimize, 

enhances the GAN response by providing more efficient learning with a faster convergence 

of 𝐺  and 𝐷  towards a solution. ADAM has demonstrated effectiveness in managing 

complex data that address challenges associated with sparse gradients, a common issue 

during GAN training. As a summary, ADAM optimization holds a crucial place for the GAN 

process of training, by simplifying the process of optimization, and enhancing the overall 

performance of its networks [22]. 

2.3.1 pix2pix GAN 

The pix2pix GAN is a conditional model that learns how an input image corresponds to its 

corresponding output image by optimizing a loss function to strengthen this connection. 

This model is renowned for its versatility in tasks such as reconstructing objects from edge 

maps, adding color to grayscale images, and performing various other image processing 

tasks [23]. The architecture diagram for the pix2pix GAN is illustrated in Fig. 4.  

 

Fig. 4. pix2pix GAN architecture diagram 

The pix2pix GAN model employs a U-Net style generator, which sets it apart from other 
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GANs. Instead, it utilizes a reference image and a target image as inputs, integrating 

dropout layers to introduce noise during both the training and testing phases. In the case 

of the discriminator model, a PatchGAN architecture is employed. This deep convolutional 

neural network specializes in classification. However, rather than evaluating the whole 

image, it processes segments of the image. Typically, a patch of 70 by 70 pixels is used, 

and the overall classification results are derived by averaging the classifications obtained 

for each patch [24]. The loss function for the pix2pix GAN is  

𝐿(𝐺, 𝐷) =  𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺)                        (20)  

where: 

• 𝐿𝑐𝐺𝐴𝑁: conditional adversarial loss between generator and discriminator 

• 𝐿𝐿1: cycle-consistency loss using L1 norm 

• 𝜆: hyperparameter to regulate how much L1 error weight is enforced 

 

2.3.2 Attention Mechanism 

The attention mechanism, introduced in 2014, presented an innovative approach to 

overcome the limitations of traditional machine translation models. In this model, the 

encoder is built using a bidirectional recurrent neural network (RNN), while the decoder 

incorporates a module for both decoding and alignment. What sets the attention 

mechanism apart is its ability to dynamically focus on different segments of the source 

sentence during translation, allowing it to adapt and attend to the relevant information as 

needed [25]. This joint learning of alignment and translation results in a significant 

improvement in translation quality, making it more adept at handling lengthy sentences 
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and capturing complex dependencies. Fig. 5 illustrates the original attention mechanism 

model for the processing of natural language [24]. 

 

Fig. 5. Proposed model in [24] with a sequence(x) as input 

The model takes an input sequence (𝑥) and assigns a weight to each of its elements. 

Subsequently, the bidirectional RNN (represented as block 1) processes the sequence 𝑥 in 

both forward and reverse directions, allowing it to capture any dependencies within the 

sequence. This process yields two hidden states, ℎ𝐵 and ℎ𝐹 , resulting from the forward and 

reverse processing, respectively. These two states are concatenated into a single state, ℎ. 

All elements in ℎ are then multiplied by attention weights α, which are determined by an 

alignment model that assesses the relationship between positions in the input and output 

[25]. The combination of ℎ and α produces a context vector, which serves as input for 

block 2 as depicted in Fig. 5. In this block, a RNN utilizes the context vector, previous 

outputs, and hidden states to generate predictions. 
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3. Materials and methods 

3.1 Two-Phase Flow 

To assess the effectiveness of the developed model, a combination of simulations and 

experiments is employed. The study involves a cylindrical container with a 4 cm radius, 

simulating a two-phase flow scenario with voids and bubbles. For numerical simulations, a 

domain with 32 electrodes is employed, with a contact impedance of 0.005 𝛺𝑐𝑚2. A pair 

of different mesh structures are used to prevent the "inverse crime" issue [11]. Boundary 

voltage measurements are taken using an unstructured mesh consisting of 2409 nodes 

and 4560 triangular elements. Resistivity distribution estimations are carried out using a 

structured mesh with 635 nodes and 1140 triangular elements. This approach is applied in 

both numerical simulations and experimental setups. 

3.2 Piezoresistive fabric 

To characterize a piezoresistive material, a Medtex p130b piezoresistive fabric is taken as 

a model. This is a silver plated knitted fabric with polyamide and elastomer as raw materials. 

Numerical simulations are conducted within a rectangular domain with 16 electrodes, each 

with a contact impedance of 0.005 Ωcm2. To prevent the "inverse crime," two different 

mesh structures are employed. Data processing tools include the Eidors toolbox [26], as 

well as MATLAB and Python. To generate various training cases with identical dimensions 

and parameters as the piezoresistive fabric, a MATLAB code is developed. The generated 

simulation cases serve as inputs for the proposed neural network models. 
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3.3 Evaluation Metrics 

To evaluate the performance of the proposed GAN model in image reconstruction, several 

performance metrics are employed, including the relative size coverage ratio (RCR), 

structural similarity index (SSIM), relative image error (RIE) and correlation coefficient (CC). 

The SSIM considers differences in structure, luminance and contrast between two images, 

where values that approximate 1 indicate both images are similar. RCR gives a quantitative 

assessment of the inclusion volumes recovery, where 1 represents a perfect match between 

the real and obtained volumes. CC assesses a linear relationship between both the 

reconstruction and the actual target. Finally, RIE makes a comparison of the same pair of 

images but calculates the norm, with smaller values indicating better reconstruction quality. 

Definitions for these metrics are [27-29] 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
              (21) 

𝑅𝐶𝑅 =
𝐶𝑅

𝐶𝑅𝑇𝑟𝑢𝑒
                                                                      (22) 

𝐶𝑅 =
𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑎𝑟𝑔𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
× 100%                                   (23) 

𝐶𝐶 =
∑ [(𝑝𝑖 − 𝑝)(𝑝�̂� − �̂�)]𝑁

𝑖=1

√∑ (𝑝𝑖 − 𝑝)𝑁
𝑖=1

2
∑ (𝑝�̂� − �̂�)𝑁

𝑖=1
2

                 (24) 

𝑅𝐼𝐸 =
‖𝑥 − �̂�‖

‖𝑥‖
                                                                     (25) 

where: 

● 𝑥: original image 

● 𝑦: generated image 
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● 𝜇𝑖: image 𝑖 mean value 

● 𝜎𝑖: image 𝑖 variance 

● 𝜎𝑖𝑗: images 𝑖 and 𝑗 covariance 

● 𝐶1 and 𝐶2: variables to avoid division by zero 

● 𝑁: quantity of pixels 

● 𝑝𝑖: pixel 𝑖  value, from original image 

● 𝑝�̂�: pixel 𝑖 value, from reconstructed image 

● 𝑝: variable 𝑝 mean 

4. Two-phase flow study 

Table 1 offers information regarding the training setup for the implementation of the 

proposed GAN model. This includes details on the dataset used, the architectural design, 

and the hyperparameters employed. The model's base is the conventional GAN, but it has 

been customized in its layers to work with the vector that contains the voltage 

measurements and the desired output image dimensions. 

 

Parameter Value

Batch size 16

Input layer neurons 128

Hidden layer neurons 12 500

Output layer neurons 16 384

Numbe of epochs 200

Numerical cases training set size 30 132

Experimental cases training set size 25 792

α 0.002

β 1 0.05

β 2 0.999

Table 1. Information on the dataset, hyperparameters, and numerical and experimental model 

configurations. 
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The training datasets are created through the use of MATLAB and EIDORS software [26], 

incorporating different target positions and varying sizes and shapes. In the case of the 

experimental model, a smaller number of cases are generated due to the predefined 

shapes. The training datasets can be enlarged as necessary to introduce additional 

variations in shape reconstruction. 

In the simulation scenarios, the background is depicted  as a 300 Ωcm liquid, while targets 

are defined as air bubbles or voids with a considerably higher 2000 Ωcm resistivity. The 

research explores situations featuring one, two, and four circular targets within the region 

to evaluate the performance of the proposed method in reconstruction. Furthermore, an 

additional case is examined, involving a shape not present in the training, such as a square. 

The evaluation involved experimenting with different neuron quantities in the hidden layers 

of both the generator and discriminator. The results reveal that employing 12,500 neurons 

produces effective reconstruction results. Fewer than 12,000 neurons fail to lead to the 

outputs of average probability to 0.5 in the training instances while using more than 13,000 

neurons leads to model overfitting. In Fig. 6(a), the two average probabilities when using 

10,000 neurons are presented. In Fig. 6(b), a model overfitting is showcased, where distinct 

inputs (as shown in row 1) result in an identical output (as seen in row 2). 
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Fig. 6. Behavior of model training with varying the quantity of neurons (a) 10,000 neurons average 

probability (b) 13 000 neurons model result, where (1) represents the target location and (2) shows similar 

outputs due to model overfitting 

For hyperparameters, the tuning of the ADAM optimizer involves adjusting 𝛼 and 𝛽1 based 

on the convergence of model probabilities, while 𝛽2 remains at its default value since it 

has minimal impact on the outcomes. During testing, the trained model demonstrates a 

reconstruction speed of 100 ms, and the process of training is carried out on the Google 

Colab platform [30]. 

Regarding the neural network (NN), is composed of densely connected layers with a 

neuron configuration of 128-256-128, using ReLU activation for most layers and linear 

activation for its output layer. The deep neural network (DNN) incorporates densely 

connected layers along with dropout layers and features a neuron configuration of 128-

512-1024-256-128. Both the NN and DNN utilize as optimizer the Adam model with a 

learning rate set at 0.002. Their reconstruction speeds are approximately 138 ms for the 

NN and 153 ms for the DNN. 

Furthermore, to evaluate the GAN model's performance in a real-world scenario, 

experimental data collected from a setup designed at a Jeju National University laboratory 
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was employed. This setup featured a cylindrical phantom with a 4 cm radius, with 32 

electrodes on its internal surface. Within the phantom, cylindrical targets (plastic rods) with 

high impedance and a diameter of 1 cm and 2 cm to simulate defect locations, were 

positioned. Between these targets, it was filled with a 0.15% saline solution having a 330 

Ωcm resistivity. The electrodes applied current in an opposite pattern, and the experiment 

was carefully conducted to keep the error rate for both applied current and measured 

voltages below 1%. The equipment used for the experiment included the Agilent Precision 

LCR meter 4284A for current injection and the Agilent 43970A for data acquisition. 

Additional information about the experimental setup is presented in Fig. 7.  

 

4.1 Numerical Results 

Fig. 8 presents different numerical methods used to produce target locations and 

corresponding reconstructions in various scenarios. These methods include modified 

Newton-Raphson (mNR), neural network (NN), deep neural network (DNN), and Generative 

Adversarial Network (GAN). 

Fig. 7. Set-up for experimental model. (a) used phantom and processing hardware (b) top view of possible 

target locations for the experimental tank 
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The neural network (NN) uses densely connected layers with a configuration of 128-256-

128 neurons, employing Rectified Linear Unit (ReLU) activation and concluding with a linear 

activation at the output. On the other hand, the deep neural network (DNN) incorporates 

densely connected layers having in between dropout layers, featuring a neurons model of 

128-512-1024-256-128. Both the NN and DNN utilize the Adam optimizer with 0.002 as 

the learning rate, and their respective processing speeds are approximately 138 ms and 

Fig 8. Numerical results for various two-phase flow shapes (a) location of the target (b) mNR reconstruction 

(c) neural network reconstruction (d) deep neural network reconstruction (e) GAN reconstruction, colorbar 

is included for reference in the reconstruction images, case (3) involves a shape not present in the dataset 
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153 ms. 

Fig. 8 displays various validation scenarios. Cases (1) and (2) mimic defects resembling 

those encountered during the training phase. In case (3), a target shaped as a square, 

which was not part of the training dataset, is introduced. Cases (4) and (5) involve the 

presence of multiple targets within the domain. 

To obtain the mNR reconstructions, five iterations are performed, with the inclusion of a 

regularization parameter α set at 5×10-6. Additional iterations are not found to significantly 

enhance the quality of reconstruction. The reconstruction process with mNR takes 

approximately 18.365 seconds. 

The mNR reconstructions shown in Fig. 8(b) reveal that the target’s shape is unclear and 

the background is not homogeneous. In the scenario with two targets (case 4), the mNR 

reconstruction exhibits incorrect artifacts in areas that display uniformity in the real 

modeling. Furthermore, with the introduction of additional defects (case 5), the mNR 

reconstruction encounters difficulties in accurately representing all of them, as evident in 

the results. 

On the other side, the NN and DNN models accurately identify the target locations but 

display slight blurriness and a non-uniform background. In the reconstructions produced 

by the GAN model, the background appears more uniform, primarily because the GAN 

learns from target location images. Furthermore, the shapes closely resemble those of the 

validation cases. Notably, even in the situation where a target shape is outside the dataset 

(case 3), the GAN model makes an effort to approximate the target shape based on the 

patterns it has learned. Consequently, it correctly identifies the target location and partially 
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reconstructs the shape, with some minor noise near the target. 

Figure 9 presents two situations in which noise is added to the input signal during the 

GAN model's reconstruction process. In both cases, noise levels vary from 0% to 4%. The 

evaluation considers the Structural Similarity Index (SSIM), which accounts for elements 

like image similarity and texture. The SSIM difference between the noise-free scenario and 

the 4% noise scenario is determined to be less than 1.2% for both cases. 

 

Fig. 9. Reconstruction result of GAN model when input signal is subjected to added noise (a) target location 

(b) 0% (c) 2% (d) 3% (e) 4% (f) SSIM under the various levels of noise, a color reference bar is included 

for the reconstructions 

In summary, the reconstructions produced by the GAN model and deep learning 

techniques reveal a drawback characterized by the presence of noise near the target's 

boundary. Nevertheless, this challenge has the potential to be mitigated by integrating 

advanced modules or adopting other proposed GAN architectures, such as CycleGAN and 

LAPGAN. 
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Fig. 10. Output of the discriminator's probability during training of the numerical model 

Figure 10 illustrates the discriminator probability outputs during the training of the GAN 

model. As expected, they converge to 0.5, which means the discriminator has difficulty in 

confidently discerning between real and generated outputs. 

To perform a comparative assessment of the numerical results, Table 2 provides the 

evaluation metrics values of the dataset for validation. As expected, considering the notably 

uniform backgrounds depicted in Figure 8(c), (d), and (e), the metrics for the deep learning 

models typically yield superior results compared to mNR. It's worth noting that the RIE 

metric highlights a significant difference, with GAN outperforming the other methods by 

an order of magnitude.  
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Regarding the deep learning models metrics, they exhibit superior performance compared 

to mNR, as anticipated from the smoother backgrounds evident in Figure 5(c), (d), and (e). 

Notably is the considerable distinction of difference of one magnitude, revealed by the RIE 

metric between the GAN model and the other methods. In the scenarios displayed in 

Figure 7, which involve varying levels of noise, the SSIM difference between the noise-free 

scenario and the 4% noise scenario is minimal, registering a value below 1.2%. 

4.2 Experimental Results 

Figure 11 presents the reconstructions obtained from the different implemented methods 

in various experimental configurations, highlighting the location of the target. For mNR, 

the reconstructions were generated with a regularization parameter set at α=5×10-6 and 

five iterations.  

Table 2. Evaluation metrics for the numerical study 

SSIM RCR CC RIE SSIM RCR CC RIE SSIM RCR CC RIE SSIM RCR CC RIE

1 0.8715 0.1555 0.918 0.2792 0.6901 0.424 0.847 0.321 0.874 0.155 0.889 0.272 0.996 0.3856 0.9953 0.0541

2 0.8662 0.206 0.918 0.2883 0.5983 0.265 0.815 0.294 0.857 0.365 0.869 0.355 0.997 0.4165 0.9972 0.0419

3 0.8685 0.1792 0.916 0.2783 0.8559 0.259 0.885 0.261 0.913 0.28 0.896 0.275 0.996 0.3932 0.9959 0.0503

4 0.5188 0.1843 0.656 0.5231 0.5104 0.352 0.885 0.356 0.897 0.341 0.812 0.273 0.99 0.6508 0.9983 0.0606

5 0.7342 0.1803 0.81 0.4256 0.7885 0.218 0.908 0.246 0.815 0.386 0.921 0.231 0.943 0.636 0.9456 0.0852

6 0.7356 0.8213 0.915 0.3556 0.7535 0.655 0.865 0.234 0.814 0.597 0.857 0.239 0.848 0.6011 0.8854 0.0217

7 0.8662 0.8351 0.92 0.4585 0.3274 0.619 0.848 0.255 0.851 0.624 0.848 0.215 0.83 0.5947 0.9653 0.0221

8 0.7231 0.7221 0.643 0.2574 0.6471 0.456 0.799 0.268 0.819 0.345 0.867 0.292 0.95 0.4875 0.7845 0.0259

9 0.8274 1.0012 0.652 0.2451 0.5947 0.397 0.801 0.301 0.825 0.385 0.818 0.228 0.914 0.5646 0.7927 0.0294

Case
mNR GANNN DNN
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Fig. 11. Experimental results for two-phase flow (a) location of the target (b) mNR reconstruction (c) neural 

network reconstruction (d) deep neural network reconstruction (e) GAN reconstruction, a color reference 

bar is included for the reconstructions 

Figure 11(a) displays the positions of the targets in the experimental dataset. However, the 

reconstructions produced by mNR, shown in Figure 11(b), exhibit an uneven background, 

similar to what was seen in the numerical cases presented in Figure 8(b). 

In the case of NN and DNN, Figures 11(c) and 11(d) illustrate the experimental data 

reconstructions. As in the numerical scenarios for these two methods, the correct 
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identification of target positions is correct. However, in most of the reconstructions, 

noticeable irregularities in the background can be observed. Additionally, there is a 

variation in the shape of the results based on the target's position, exemplified in Figure 

11(c) and Figure 11(d). 

For the reconstructions produced by the GAN model in Figure 11(e), they display a 

smoother and more uniform background, which can be attributed to the model's capacity 

to learn from images of target locations. Additionally, targets’ shapes closely approximate 

those in various validation scenarios. 

Figure 12 illustrates the discriminator probability output during the training of the GAN 

model. As observed in Figure 10, these values tend to be around 0.5. This suggests that 

the discriminator cannot confidently distinguish between whether the outputs from the 

generator are real or fake. 

 

Fig. 12. Output of the discriminator's probability during training of the numerical model 
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Table 3 presents a comparison of the results from the validation cases in the experimental  

setting. In these experimental scenarios, the proposed GAN model demonstrates superior 

performance, with approximately a 10% improvement in SSIM compared to the other 

methods. In some cases, RCR shows a similar difference of 0.11 to 1 between mNR and 

GAN. However, it's worth noting that RCR may not necessarily reflect similarity in quality, 

and GAN results can be considered closer to the true target in terms of color and shape. 

In terms of quantitative performance, the GAN model outperforms the other methods in 

experimental cases, achieving around a 10% improvement in SSIM. While RCR values show 

a similar difference of 0.11 to 1 between mNR and GAN in some instances, it is important 

to note that RCR may not necessarily reflect similarity in quality, so results obtained from 

the GAN model can be considered closer to the true target in terms of color and shape. 

CC and RIE metrics are not considered for experimental cases as the exact impedance 

values of targets from experimental measurements are not known. 

 

 

 

Table 3. Evaluation metrics for the experimental study 

SSIM RCR SSIM RCR SSIM RCR SSIM RCR

1 0.8715 0.1555 0.6901 0.4241 0.8742 0.1548 0.9955 0.3856

2 0.8662 0.206 0.5983 0.2647 0.8574 0.3653 0.9968 0.4165

3 0.8685 0.1792 0.8559 0.2589 0.9129 0.28 0.9958 0.3932

4 0.5188 0.1843 0.5104 0.352 0.8971 0.3412 0.9901 0.6508

5 0.7342 0.1803 0.7885 0.2184 0.8154 0.3861 0.9433 0.636

GAN
Case

mNR NN DNN
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5. Piezoresistive fabric study 

For numerical simulations, rectangular meshes with the same dimensions as the fabric used 

in experimental experiments are employed. To avoid the "inverse crime" issue, distinct 

meshes are used for forward and inverse computations. Initially, reconstruction is 

performed using mNR with 5 iterations and a regularization parameter of α=5x10-6, 

determined through the evaluation of reconstruction results. After the mNR reconstruction, 

the resulting image serves as input for a trained pix2pixGAN model. Various numerical 

cases are assessed, including single-target scenarios, out-of-dataset target shapes, and 

cases with two targets. 

To simulate resistance changes, conductivity values are increased six times in areas with 

pressure points. Electrodes are evenly spaced based on fabric dimensions, and a 100mA 

alternating current is applied between adjacent electrode pairs. Voltages resulting from 

these injections are recorded for each electrode, totaling 16 electrode pairs and 256 

voltage measurements per data frame. Numerical cases also explore scenarios with the 

addition of 0.5 relative noise to model instrument and measurement errors. 

The proposed pix2pix GAN model architecture is based on the model introduced in [24], 

with modifications in layer dimensions and the inclusion of an attention mechanism. 

Detailed hyperparameters and dataset-related information can be found in Table 4. 
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Table 4. pix2pix GAN architecture and dataset details 

Hyperparameter/Data set detail Value 

Input layer size 256x256x3 

Output layer size 256x256x3 

Encoder layers C64-C128-C256-C512-C512-C512-C512-C512 

Decoder Layers TC512-TC512-TC512-TC512-TC256-TC128-TC64 

Dataset size 9787 

1 *C: convolution, TC: transposed convolution 

Fig. 13 presents evaluation cases taken each 200 iterations during the training of the 

pix2pix GAN with the attention mechanism model. It can be seen in this iterative training 

that the model progressively learns to generate the shape and location of the true target, 

taking the mNR reconstructions as input.  

 

Fig. 13. Evaluation cases for pix2pixGAN with attention mechanism model during training (a) 

reconstruction by mNR (b) reconstruction by pix2pix GAN with attention mechanism (c) real target 

location 

The experimental arrangement is depicted in Fig. 14 and comprises a Medtex p130b 

configured to allow the application of pressure points while the fabric remains stationary. 

The fabric's dimensions are 21x29, which is appropriate for a real application sensor. 
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Fig. 14. Experimental setup 

Laboratory experiments are carried out with an EIT setup consisting of an Agilent 4284A 

precision LCR meter serving as a stable current source and a National Instruments system 

(NI PXI-1042Q, National Instruments Corporation, Austin, TX, USA) utilized for data 

acquisition to measure the resulting voltages. This setup incorporates a total of 16 

electrodes, evenly distributed along the fabric's boundary, with four electrodes placed on 

each side of the fabric. 

The reconstruction process employs difference imaging, which begins with obtaining an 

initial measurement in the absence of pressure points to serve as a reference. To simulate 

the presence of pressure points, small objects are positioned on the fabric.  

5.1 Numerical Results 

The results of post-processing for mNR reconstruction are depicted in Figure 15. In Figure 

15(a), each row displays the actual locations and shapes of one or two targets. Figure 15(b) 

shows the outcomes of mNR reconstruction, while Figure 15(c) and Figure 15(d) display 

the results of post-processing using pix2pix GAN without and with an attention mechanism, 



 

32 

 

respectively.

 

For cases (1-2) with one target, (3-4) with two targets, and (5-6) with elliptical-shaped 

targets, mNR reconstruction yields indistinct target shapes and uneven background, 

consistent with the limitations of this method. In the two-target cases (3-4), both targets 

do not align with the same colorbar scale. When dealing with elliptical targets, mNR fails 

to represent the target's shape compared to circular targets. 

Pix2pix GAN reconstructions, in all cases, correctly position the target but exhibit challenges 

in accurately reproducing the target's shape and clarity. Notably, in cases (5-6) featuring 

out-of-dataset elliptical-shaped targets, pix2pix GAN reconstructs them as circular targets. 

However, when employing pix2pix GAN with an attention mechanism, there is an 

improvement in target clarity compared to Figure 15(c). Metrics for Figure 15 are presented 

Fig. 15. Numerical results for the pix2pix GAN models (a) target location, (b) the reconstruction achieved 

using mNR, (c) the reconstruction obtained via the pix2pix model, and (d) the reconstruction accomplished 

using the pix2pix model, and (d) the reconstruction accomplished using the pix2pix model with an attention 

mechanism, a color reference bar is included for the reconstructions 
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in Table 5. 

Table 5. Evaluation metrics for Figure 15 evaluation cases 

Case 

pix2pix GAN pix2pix GAN with Attention Mechanism 

SSIM CC RIE SSIM CC RIE 

1 0.9929 0.9947 0.0492 0.9963 0.9982 0.0281 

2 0.9937 0.9956 0.0447 0.994 0.9965 0.0399 

3 0.9897 0.9936 0.0539 0.9967 0.9988 0.0239 

4 0.9862 0.9879 0.074 0.9979 0.9997 0.0109 

5 0.9944 0.9967 0.0433 0.9948 0.9973 0.0373 

6 0.9943 0.9965 0.0391 0.9947 0.9975 0.0325 

 

Results obtained using the same model but utilizing mNR images from a signal with 2% 

added noise as input are presented in Figure 16. The row in Figure 16(a) displays the actual 

positions and shapes of either one or two targets. Figure 16(b) shows the reconstruction 

achieved through mNR. In Figure 16(c) and Figure 16(d), the results of post-processing 

using pix2pix GAN and pix2pix GAN with an attention mechanism are presented, 

respectively. 

In cases (1-2) involving a single target, (3-4) with two targets, and (5-6) featuring targets 

with an elliptical configuration, mNR reconstruction exhibits a less uniform background 

compared to the reconstructions in Figure 16(b). Pix2pix GAN demonstrates variable target 

clarity among different cases and occasionally includes an unclear additional target near 

the true target position, as seen in cases (2-3) and (5-6). Pix2pix GAN, when coupled with 

an attention mechanism, accurately localizes the targets and provides better target 

definition, with the exception of cases (5-6) where the target is less clearly defined 

compared to other scenarios. In Table 6 the metrics for Figure 16 are presented. 
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Fig. 16. Numerical outcomes with the inclusion of noise for the pix2pix GAN models (a) the actual target 

location, (b) the reconstruction achieved using mNR, (c) the reconstruction obtained via the pix2pix model, 

and (d) the reconstruction accomplished using the pix2pix model with an attention mechanism, a color 

reference bar is included for the reconstructions 

Table 6. Evaluation metrics for Figure 16 evaluation cases 

Case 

pix2pix GAN pix2pix GAN with Attention Mechanism 

SSIM CC RIE SSIM CC RIE 

1 0.9924 0.9958 0.0436 0.9946 0.997 0.037 

2 0.9873 0.9906 0.0652 0.9957 0.9988 0.021 

3 0.9924 0.9963 0.0409 0.997 0.9997 0.011 

4 0.9956 0.998 0.0286 0.9971 0.9994 0.015 

5 0.9885 0.9928 0.0569 0.9877 0.9945 0.05 

6 0.9879 0.9917 0.0613 0.9874 0.9929 0.057 

 

5.2 Experimental Results 

Figure 17 illustrates the target positions and the resulting reconstructions obtained using 

mNR with difference imaging and its post-processing with pix2pix GAN and pix2pix GAN 

with attention mechanism in experimental scenarios.  
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Fig. 17(a) provides the target positions in the experimental dataset. Evaluation metrics are 

not estimated for these reconstructions since there is no ground truth image for the 

different experimental positions. The mNR-generated reconstructions are shown in Fig. 

17(b), which present a not homogeneous background. Figures 17(c) and 17(d) display the 

reconstructions of pix2pix GAN without and with attention mechanism respectively. Like 

the numerical cases, the target locations for mNR show noticeable background 

irregularities in most of the reconstructions. The pix2pix GAN model's reconstructions in 

Fig. 17(c) and Fig. 17(d) feature a more homogeneous background due to learning from 

the target location images, and the target shapes are well approximated due to the paired 

training. 

 

Fig 17. Experimental results for piezoresistive fabric. (a) target location (b) mNR reconstruction (c) pix2pix 

reconstruction (d) pix2pix with attention mechanism reconstruction, a color reference bar is included for 

the reconstructions 
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6. Future Works 

The integration of Generative Adversarial Networks (GAN) with Electrical Impedance 

Tomography (EIT) provides numerous opportunities for reconstruction and image 

enhancement models. Other applications for data augmentation and generalization 

techniques can also be developed with the use of GANs.  

Regarding the improvement of applied models, besides the attention mechanism, there 

can be variations in the network’s internal structure, such as in the recurrent neural 

networks (RNN) or the addition of residual modules.  Another field can be the integration 

of EIT with other imaging modalities through GANs for more comprehensive diagnostic 

capabilities in the medical and materials science fields.  
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7. Conclusions 

In this study, models based on Generative Adversarial Networks were used for EIT 

reconstruction and image enhancement. Results were verified with both simulated and 

experimental cases and reviewed by visual and metric analyses. The quality of the 

generated images has been enhanced in comparison to conventional reconstruction 

techniques like mNR and other deep learning methods. Generative Adversarial Networks 

can offer a good potential for their implementation in further EIT related applications. 
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