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Abstract

Light-emitting diodes (LEDs) have been widely applied in indoor cultivation to enhance
crop production and induce targeted photomorphogenic, biochemical, or physiological
responses in plants. The effect of light quality on plants varies depending on species, treatment
durations, light intensities, and spectrum. The aim of this study was to investigate the impact of
different ratios of blue and red LED light on growth, photosynthetic activity, as well as plant
biomass and metabolite accumulation of Mentha arvensis L. (Wild Mint). To achieve this, the
study employed several conventional and high-throughput phenotyping methods to evaluate
growth modeling alternative LED light strategies for obtaining optimal Wild Mint production.
The results showed that mono-blue LED stimulated light energy absorption and converted it
into chemical energy in the light-dependent reactions of photosynthesis. Nevertheless, this
treatment reduced the products of the carbon fixation reaction, thereby inhibiting biomass
accumulation and the development of the Wild Mint plant. In contrast, Wild Mint plants grown
under mono-red LED maintained the light reaction phases at a low level and tended to increase
biomass accumulation, enhance growth rate, and improve morphology development. A strong
positive correlation was found between the chlorophyll content index and the maximal quantum
yield of photosystem II, these traits have a low positive correlation with the photochemical
fluorescence quenching coefficient, electron transport rate, and the flavonol index. The study
also found that plant metabolites have a strong positive relationship with plant biomass,
including the nitrogen balance index, fresh weight, dry weight, sucrose content, starch content,
and total phenolics content. However, no significant relationship was found between stomatal
traits, photosynthesis, and plant biomass. These results revealed distinct physiological
responses of Mentha arvensis L. to changes in light environments. Notably, the combination of

a 30% blue and 70% red LED spectrum significantly enhanced photosynthesis productivity,



biomass, and secondary metabolites in the Wild Mint plant. The findings of this study
emphasize the potential of LED technology in manipulating the growth and accumulation of
desirable bioactive compounds during Wild Mint plant cultivation, contributing to the

refinement of indoor herb cultivation protocols to meet production demands.



Introduction

By 2050, the human population is predicted to reach 9.7 billion, which will require crop
production to be double the present levels to meet the projected demand (Ray et al., 2013).
However, the current agricultural output growth rate fails to reach the demanding growth.
Furthermore, the productivity of up to 40% of crop cultivation land has been hibernated (Fischer
and Edmeades, 2010). The greatest challenge to ensure global food security is climate change
due to the increasing of carbon footprint, which leads to various adverse weather conditions
(Altieri and Nicholls, 2013; Hunter et al., 2017). Global warming impacts are different
depending on geographical regions, further complicating the effort of finding solutions.
Developing countries are especially susceptible to the changing climate due to limited available
resources as well as unproductive cultivation methods (Altieri and Nicholls, 2013). Therefore,
the increasing of crop production requires targeted sustainable methods for different agro-
ecological regions by adopting modern techniques for plant breeding, cultivation, and crop
management (Chawade et al., 2018). The ultimate goal is to generate high productivity and

tolerance crop cultivars in the target environments.

To improve plant yield and quality, studies investigating the association between
genotypic and phenotypic information are crucial. The development of next-generation
sequencing technologies has enabled the acquisition of high-resolution genetics information at
lower cost. Obtaining plant phenotypic information with high-throughput and resolution and
low cost has become a bottleneck to facilitate these studies. Plant phenotypes are results of the
complex, multi-layer interaction between genotype and a multitude of envirotype (Xu, 2016).
Therefore, comprehensive and accurate phenotypic information can provide insight into gene
functions and regulatory networks as well as accelerated plant breeding pipelines (Cheng et al.,

2020). In addition, the development of automated monitoring systems to determine plant health



is also important to ensure agricultural production. For both goals, field-based high-throughput
phenotyping tools are required (Zhang et al., 2023). With the technological advances in imaging
sensors, image analysis as well as machine learning, plant phenotypic traits include
morphological, physiological and biochemical can be accurately acquired at various levels

ranging from cell, tissue, organ and whole plants to field populations of plants (Jin et al., 2022).
1. History and development

The term ‘phenotype’ originated from the Greek phaeno and typos, which mean show and
type respectively. Phenotype was described by Wilhelm Johannsen as “all types of organisms
can be distinguished by direct inspection or with finer methods of measurement or description”
(Johannsen, 1911). In 1949, the term ‘phenome’ was first defined as a complementary with
genome as the whole set of phenotypic entities expressed by a cell, tissue, organ, organism, or
species (Davis, 1949). Phenotypic studies can be traced back to the 1990s in the context of
studying complex human disease. The new discipline phenomics has been established as a key
complement of genomics in order to identify the association between genes and clinical
endpoints (Schork, 1997). Phenomics can be characterized as the systematic measurement and
analysis of qualitative and quantitative traits, including clinical, biochemical, and imaging
methodologies, for the refinement and characterization of a phenotype (Shahzad et al., 2022).
In term of plant science, plant phenotyping refers to the set of methodologies and protocols for
quantitatively evaluate plant’s anatomical, ontogenetical, physiological and biochemical traits

at various scales ranging from cells to even populations (Walter et al., 2015).

As the results of complicated interactions between genetics and external factors, crop
phenotypes present as a challenge to accurately evaluate. The combining effects of genotypes
and envirotypes influence plants on various levels, ranging from structural, functional to content

traits. These internal properties are in turn expressed as crop external phenotypes such as



morphology, biomass, and productivity (Li et al., 2021). Crop phenomics research require the
incorporation of various disciplines, including agronomy, life sciences, information science,
math, and engineering sciences to discover multifaceted phenotypic information of plant

growth and development in a complex environment.

Traditional phenotyping methods were based on the appearance, taste, and touch of the
crop, which are time-consuming, labor-intensive and even destructive to sample large
populations (Li et al., 2021). Phenotyping efficiency has been highly recognized as the key
factor that restricts the progression of applied genetics, especially in different environments
(Guzman et al., 2015). Moreover, conventional phenotyping fails to apprehend physiological
and biochemical properties in term of plant basic mechanisms, which can provide insight into
patterns of genetics and biology. Hence, to address these limitations, various automated high-
throughput phenotyping platforms with the assist of technological advances have been
developed since 2000 and became common tools in commercial or research teams. These
phenotyping systems, in combination with artificial intelligence, have largely overcome the
problems of traditional methods. The novel tools provide advantages with respect to levels of

throughput, resolution, cost as well as applicability under various field conditions.

A high-throughput phenotyping platform is a combination of a data acquisition equipment,
a control terminal, and a data analysis platform (Xiao et al., 2022). Phenotypic data are mainly
obtained through non-invasive imaging and spectroscopy techniques for quantitative studies of
complex traits, such as growth, tolerance, resistance, architecture, physiology, yield, and the
basic measurement of individual quantitative parameters that form the basis for more complex
traits (Chen et al., 2014; Li et al., 2014). One of the first high-throughput phenotyping platforms
is the PHENOPSIS, which was developed in 2006 by Apilogic for Arabidopsis thaliana

(Granier et al., 2006). Another example is the in-house GROWSCREEN system (Walter et al.,



2007) that was used for analyzing phenotypes of different plant species. Both systems used a
camera that is moved over the plants to capture images. Other platforms targeting various plant
species were also developed, including LemnaTec 3D Scanalyzer system for rice (Oryza saltiva)
(Hairmansis et al. 2014); HyperART for barley (Hordeum vulgare), maize (Zea mays), tomato
(Solanum lycopersicum) and rapeseed (Brassica napus) (Bergstrisser et al. 2015); PhenoBox
for Brachypodium and tobacco (Nicotiana tabacum) (Czedik-Eysenberg et al. 2018) or
PhénoField for wheat (Triticum aestivum) (Beauchéne et al. 2019). Besides, phenotyping
techniques have also been developed for different targets, such as micro-computed tomography
(micro-CT) imaging and microscopic imaging for cells and tissues (Faulkner et al., 2017; Mele
and Gargiulo, 2020; Zhang et al., 2021), visible light imaging or X-ray imaging for seeds (Baek
et al., 2020; Ligterink and Hilhorst, 2017; Medeiros et al., 2020), near-infrared spectroscopy
and time-domain pulsed nuclear magnetic resonance (NMR) for biochemical contents
(Anderson et al., 2019; Jasinski et al., 2016; Melchinger et al., 2018). The characteristics and
potential applications of high-throughput phenotyping techniques at organs, individual plant

and canopy have also been well documented (Yang et al., 2013; Zhang Y and Zhang N, 2018).

In addition to imaging techniques, other methods were also applied for plant phenotyping,
including positron-emission tomography (Brezovcsik et al., 2020; Qu et al.,, 2016) or
microwave resonator (Dadshani et al., 2015; Sydoruk et al., 2016). Moreover, high throughput
phenotyping techniques can also be used in combination for providing more comprehensive
and accurate results. Some examples include the combination of RGB (red, green, blue) camera
with various sensors for yield estimation (Herrero-Huerta et al., 2020; Maimaitijiang et al., 2020)
and biochemical and biophysical parameters quantification (Maimaitijiang et al., 2017).
Generally, high-throughput phenotyping tools provide a large set of data for accurately and

efficiently evaluating plant performances. The obtained data can be extracted/processed using



various algorithms. With the advancement of computer technology development, deep learning
presents outstanding advantages on a wide range of plant phenotyping tasks. Detailed
information of applying deep learning in plant phenotyping can be found in several previous
reviews (Mochida et al., 2019; Singh et al., 2018). It is foreseeable that applying deep learning
in plant phenotyping is an inevitable trend, and there will be more research in this field in the

future.
2. Photosynthetic and high-throughput photosynthetic

The global carbon cycle is a key aspect of life, which generally comprises of carbon
reservoirs (stocks) and the dynamic transfer of carbon between them (fluxes) (Green and Byrne,
2004). Plant photosynthesis represents the major flux that drives global carbon cycle
(Friedlingstein et al., 2019). Photosynthetic activities extensively depend on various factors,
including plant species, plant functional types, plant development stages or the external
conditions (Beer et al., 2010). As the natural process to convert water and CO> into biomass by
utilizing light energy, photosynthesis plays a crucial role in plant productivity. Previous studies
on the mechanism of photosynthesis have resulted in key insights that photosynthesis was
inefficient at leaf to canopy scales. Particularly, the conversion rates of the intercepted radiation
into biomass for both C3 and C4 crop species were found to be only a fifth of the theoretical
maximum (Zhu et al., 2010). Therefore, improving photosynthesis has been considered as a
promising strategy for increasing crop production to meet the global demand (Long et al., 2015;
Ort et al., 2015). For this purpose, accurate and rapid techniques to characterize variations of

photosynthetic capacity over a range of spatial and temporal scales are of importance.
Traditionally, photosynthetic activities are quantified by gas exchange techniques at the
leaf level, which are found to be low-throughput, time-consuming and labor-intensive.

Furthermore, agronomic traits are based on canopy-scale processes and therefore require



canopy-scale measurements (Fu et al., 2022). High-throughput phenotyping tools, which can
overcome the limitations of traditional methods for evaluating photosynthesis in the context of
crop breeding, have emerged as potential solutions (Furbank et al., 2019). Various high-
throughput phenotyping platforms, either with indoor or outdoor settings, have been developed
to address the limitations of conventional methods (Bai et al., 2019; Bandopadhyay et al., 2020;
Meacham-Hensold et al., 2020; Salter et al., 2018; Zhang et al., 2020). These platforms
employed sensor-based non-invasive phenotyping to characterize plant growth and
photosynthesis over time. Commonly used sensors including RGB (red, green, blue),
hyperspectral, thermal, and fluorescence sensors while monochrome sensors, Raman
spectroscopy, and tomographic sensors are less frequentetly used (Tanner et al., 2022). These
phenotyping tools have greatly facilitated the mechanistic understanding of photosynthetic
physiology and the improvement of productivity via photosynthesis (Siebers et al., 2021). In
this section, we provide an overview of the current development of high-throughput
photosynthetic phenotyping techniques and their application in plant breeding pipelines.
2.1 Morphological traits in leaf

As the primary photosynthetic organs in plants, the leaves are optimally designed and
adapted for photosynthesis to occur. Via photosynthesis, leaves convert absorbed light energy
into organic matters and generate resources required for plant metabolism. Hence, leaves play
crucial roles in determining the growth rate and health conditions of the plants. Leaf
morphological traits include area, inclination angle, number, thickness, and phenology. The leaf
morphology varies greatly as the results from both internal (genotype) and external
(environmental) factors (Zhang et al., 2023). Leaf morphological features directly influence
whole-leaf photosynthesis through effects on light capture at the leaf surface, as well as via its

propagation and attenuation within the leaf. Therefore, leaf morphology is considered as an
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important factor to evaluate plant photosynthetic capacity.

Leaf area is a major morphological trait that influences crop productivity and economic
values, especially for species whose leaves are the end products. Leaf area can be studied at
different scales, varying from a single leaf to a whole plant population. A common parameter
for studying leaf area is the leaf area index (LAI) — the ratio of the total leaf area of a plant
population to the land area it covers (Fang and Liang, 2008). LAI reflects the total leaf size,
canopy structure as well as light energy utilization, which can be employed to estimate plant
growth and yield (Duchemin et al., 2008; Gaso et al., 2021). Single leaf area can be easily
obtained by several techniques. One of the simplest methods is employing two-dimensional
(2D) imaging and a reference object of known size to estimate the leaf area of a single leaf (Guo
et al., 2014). The most accurate leaf-area prediction model was based on the combination of
two parameters leaf length and leaf width (Fanourakis et al., 2021). Multiple advancements can
also be applied to improve the accuracy of leaf area estimation. For example, a visible-light
imaging system accompanied by a power-function model can be used to predict leaf area from
side view average projection area (Jiang et al., 2015). The accuracy of this model was evaluated
by investigating the influence of various factors, including side view projections, top view

projections area, texture, and morphological features.

Three-dimensional (3D) models can also be employed to address the limitations of 2D
images such as leaf curl or camera view angle. The 3D point clouds are generated from acquired
plant images using various types of cameras including visible light camera (Su et al., 2019),
RGB-D (Red, Green, Blue-Depth) camera (Yau et al., 2021), and LiDAR (Berk et al., 2020; Li
and Xue, 2023). The methods for constructing 3D point clouds include structure from motion
(SFM) (Itakura and Hosoi, 2018), multi-view stereo (MVS) (Li et al., 2020) and iterative closest

point (ICP) (Hosoi and Omasa, 2015), which serve for different types of cloud construction.
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Preprocessing steps such as filtering and de-noising (depth threshold or statistical filtering) on
the reconstructed 3D point cloud is commonly carried out to optimize the cloud (Zhang et al.,
2021). From this, a single leaf can be clustered and segmented. Common algorithms for point-
cloud clustering and segmentation include K-means clustering (Zhang et al., 2021), region
growth (Li et al., 2020), density-based spatial clustering of applications with noise (DBSCAN)
(Xu et al., 2020), and watershed algorithm (Itakura and Hosoi, 2018). Finally, the leaf surface
is built using Delaunay triangulation (Zhang et al., 2021), least squares (Hosoi and Omasa, 2015)
and other methods. The leaf area is measured by the surface grid of the reconstructed leaf grid

model from the point clouds.

Estimation of the total leaf area for a group of plants, which usually based on LAI required
a more complicated set up and model. LAI values can vary depending on factors such as
vegetation types, canopy structures and environmental conditions. For estimating LAI, remote
sensing imaging technology is widely employed. The popular systems include unmanned aerial
vehicles (UAVs) or manned aircraft carrying imaging sensors, satellites data or laser scanning,
which provide different utilities and limitations that can be applied for various schemes or
purposes. Several satellites have been used for this purpose such as the Sentinel-2 (Kaplan and
Rozenstein, 2021) or the Landsat 5 TM and 7 ETM+ (Kinane et al., 2021). The imaging
instruments are also flexible based on the field conditions, the weather and other factors to
optimize the model and reduce the errors while obtaining images. Many researchers have
employed UAVs due to their advantages of flexible operation and low cost compared to the
manned aircraft or satellite systems. The UAVs are accompanied by one or various imaging
sensors such as RGB (Liu et al., 2021a; Sakar et al., 2021), multispectral (Liu et al., 2021a;b)
and thermal cameras (Liu et al., 2021a; Wang et al., 2021) to acquire plant canopy images

containing color, spectral and thermal information. Prediction models will be established based

12



on the obtained imaging data using several methods such as multiple linear regression, artificial
neural network (ANN) (Sakar et al., 2021), random forest (RF), extreme gradient boosting
(XGBoost) (Liu et al., 2021b; Zhang et al., 2021), partial least squares regression (PLSR),

support vector regression (SVR) or deep learning (Liu et al., 2021a).

One of the most commonly used vegetation indices (VIs) for estimating LAI is the
normalized difference vegetation index (NDVI). NDVI quantifies vegetation by measuring the
difference in absorption/reflection rate between the near-infrared light that vegetation strongly
reflects and the red light that vegetation strongly absorbs (Rulinda et al., 2012). The canopy
reflectance is strongly affected by various factors such as the growth stages, the canopy
structure, the leaf inclination angle or the leaf surface characteristics. Therefore, some imaging
systems require the application of radiometric correction to calculate the true reflectance of
plants. For plants species with varying phenological traits during different growth stages,
phenology highly affects LAI estimation, which lead to the establishment of phenology-specific
models (Zhang et al., 2023). 3D point clouds can also be applied for measuring LAI of plant
populations. A previous study has employed UAVs carrying RGB and multispectral cameras to
obtain imaging data at various angles and calculate the LAI of the forest canopy from the

generated 3D point clouds (Lin et al., 2021).

In addition to multispectral imaging, hyperspectral cameras are also useful for estimating
LAI The high-resolution images obtained by hyperspectral imaging sensors provide rich and
complex hyperspectral information from a wide range of wavebands that can be used to
construct prediction models for LAI (Huang et al., 2022; Jiang et al., 2022). Compared to
multispectral images, hyperspectral images contained more data regarding vegetation indices
to be extracted. In exchange, these advantages also negatively affect the accuracy and efficiency

of the LAI due to the presence of low correlation indices among the full data set (Zhang et al.,
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2023). A method to avoid this limitation is employing feature band selection, which has been

proved to effectively improve the accuracy of the estimation model (Jiang et al., 2019).

Another important leaf morphological trait that can be measured using high-throughput
phenotyping techniques is the leaf inclination angle. This trait is determined as the angle
between the leaf axis and the horizontal. The leaf inclination angle directly controls the amount
of light that can be absorbed by the leaf, therefore affecting plant growth and biomass
production (Hu et al., 2019). Factors that govern the leaf inclination angle include the shape,
size, softness, and curvature, which lead to the diversity of methods to measure this trait.
Depending on plant species, the leaf angle can either be directly determined from side-view

captured images or estimate with several leaf features in consideration (Zou et al., 2014).

Quantification of plant leaf angle mainly involves measurement in 3D space, which is
based on the 3D point clouds of leaves. The workflow and methods for constructing 3D point
clouds are similar to that for measuring leaf area. From the constructed leaf surface, the leaf
inclination angle can be extracted by calculating the ratio of a single leaf to the leaf area (Zhang
et al., 2021), finding the angle between the leaf normal and the z axis (Hosoi and Omasa, 2015;
Li et al., 2020; Xu et al., 2018) or using a voxel-based 3D image processing method (Itakura

and Hosoi, 2018).

The number of leaves is one of the key visual traits that indicate the plant’s current status
and growth stages (Dobrescu et al., 2017). High-throughput phenotyping techniques based on
modern imaging technology and machine learning provide high-precision, time- and labor-
saving methods for leaf counting. Existing leaf counting methods can be divided into two
categories: deep learning and image processing. While image-based leaf counting must face the
problems of leaf occlusion and uneven in situ growth of the leaf, employing deep learning can

extract the intrinsic information from plant images despite the complex structure (Fan et al.,
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2022). Several commonly used deep learning models for estimation of plant leaf number
include the convolutional neural network (CNN) (Jiang et al., 2019), Faster R-CNN (Miao et
al., 2021; Zhou et al., 2021), Mask R-CNN (Lou and Lv, 2022; Zhou et al., 2021) or deep
convolutional neural network (DCNN) (Praveen Kumar and Domnic, 2020) models. Target
species for the current leaf counting models are mainly corn (Jiang et al., 2019; Lou and Ly,
2022; Miao et al., 2021; Zhou et al., 2021), sorghum (Miao et al., 2021) and rosette plants

(Praveen Kumar and Domnic, 2020; Ubbens et al., 2018).

The use of deep learning for leaf counting is mainly based on RGB, fluorescent or near-
infrared (NIR) imaging. The network is applicable for a variety of plant species and field
conditions (Giuffrida et al., 2018). Basically, there are two ways to obtain leaf numbers using
deep learning: (1) directly counting as a holistic regression problem or (2) estimation as a sub-
product from leaf detection and segmentation (Fan et al., 2022). For direct counting method,
the machine learning based regression model only requires the leaf number annotations, which
is easier compared to the segmentation-based methods. Various counting frameworks have been
proposed, which employed different deep learning models and data collection (Dobrescu et al.,
2017; da Silva and Goncalves, 2019; Ubbens et al., 2018). Beside these methods, several
segmentation-based methods for leaf count have also been developed (Aich and Stavness, 2017,
Kumar and Domnic, 2019; Ren and Zemel, 2017; Romera-Paredes and Torr, 2016). However,
for segmentation or detection-based method, only successfully segmented leaves can be
counted, which will result in reduced accuracy in case of imperfect detection/segmentation.
This limitation can be solved by employing segmented binary images to guide the learning of
leaf counting, which will not count directly from segmented image (Fan et al., 2022). Detailed
information regarding two approaches can be found in previous literature (Buzzy et al., 2020;

Fan et al., 2022; Lu et al., 2021).
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Leaves’ thickness reflects the influence of environment on plants, which leads to the
diversity phenotype among species, regions and altitudes. Leaf thickness is determined by plant
anatomy, including the number, size, and arrangement of leaf cells (Afzal et al., 2017). Thick
leaves are better in maintaining water potential under limited water supply, which is tightly
associated with plant survivability under arid, high-irradiance environments (Poorter et al.,
2009). Measurement of leaves thickness provides plant stress monitoring, which allows timely
management for better plant growth and development (Zhang et al., 2018). Despite its
importance, leaves thickness could not been measured effectively due to the complex, time-
consuming and labor-intensive nature of the conventional methods. This morphological trait
can only be obtained frequently in recent studies due to the advancement of imaging

technologies.

Tomography-based methods are commonly used for estimating leaves’ thickness. For
example, soybean leaf area and thickness were measured using computed tomography (CT)
(Pfeifer et al., 2018). Another example is the application of optical coherence tomography (OCT)
—anewly developed imaging technology for estimating leaf thickness on the basis of 3D OCT
images of biological tissues (de Wit et al., 2020). Beside tomography, several other methods
have also been applied in predicting/measuring leaf thickness, such as partial least squares
regression (Buitrago et al., 2018), digital thickness gauge (Ahn et al., 2020) or magnetic field

sensor (Afzal et al., 2017).

Beside the aforementioned morphological traits, plant phenology is another important
factor that affects plant growth and development. Plant phenology refers to the timing of plant
life cycle events such as leaf bud burst, flowering, and fruiting (Stucky et al., 2018). Plant
phenology is tightly associated with carbon, nutrients, and water availability, reflecting plant

adaptation to external and climatic changes. The advancement in technologies has provided the
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foundation for the development of plant phenology prediction models. These models are useful
for seeking insight regarding the relationship between various factors and phenology (Anderson
et al., 2016; Lei et al., 2013; Xie et al., 2018). The current status of phenology research based
on modern imaging sensors and data processing has been carefully reviewed in a previous study
(Zhang et al., 2023).
2.2 Leaf biomass
One of the ultimate goals of plant biological research is to generate new cultivars with
improved performance and yield under various external conditions. In this regard, the leaf
biomass is a crucial trait, which indicates the plant growth rates and net production. Study on
leaf biomass can be traced back to the 1980s, when soybean leaf biomass was assessed using
spectral data (Holben et al., 1980). From then, several models/methods have been proposed,
aiming to evaluate this performance-related trait in both woody plants (Le Maire et al., 2008;
Mediavilla and Escudero, 2003) or crop species (Friedl et al., 1994; Giltelson et al., 2003). The
development of new imaging technologies as well as imaging/data processing methods has
enabled the high-throughput evaluation of leaf biomass in a high-precision, time- and labor-

saving manner.

There are several methods that can be employed for leaf biomass estimation, depending
on the requirement of the study. One of the most used methods is the estimation of biomass
based on normalized difference vegetations index (NDVI), which can be obtained from
hyperspectral imaging sensors. This method has been applied for a wide range of crops,
including maize (Gitelson et al., 2001), wheat (Serrano et al., 2000) and soybeans (Kross et al.,

2015).

2.3 Leaf pigment contents

The leaf comprises of various pigments such as chlorophyll, carotenoid, or anthocyanin,
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among which chlorophyll is the main pigments for photosynthesis. Chlorophyll mediates leaf
light energy absorption, thus directly affecting the plant photosynthetic rate (Gao et al., 2018).
Furthermore, chlorophyll can also indicate the plant health status, as this type of pigment tends
to be degraded under stressful conditions (Li et al., 2021). Therefore, the leaf chlorophyll
content is an important physiological trait for monitoring plant growth and development as well
as yield prediction. Traditional techniques for estimating chlorophyll contents include
spectrophotometry and chlorophyll meter. Spectrophotometry measures the absorbance of
chlorophyll of grinding samples in a specific wavelength range, which is destructive, complex
and inefficient. On the other hand, chlorophyll meter can only provide data at a certain point of
the leaves and requires the average value from multiple measurement in various parts of the
leaves to obtain a representative chlorophyll content value. Additionally, these methods are
impractical on large scales and in field conditions. Therefore, various techniques employing
modern technology have been developed to quickly, accurately estimate chlorophyll contents

at different scales in a non-destructive manner.

RGB imaging, PLSR or ridge regression have been proved to be reliable methods for
measuring leaf chlorophyll content based on the color features of captured images. Several
studies on different plant species such as apple (Cheng et al., 2017), lettuce (Pérez-Patricio et
al. 2018), tomato (Sun et al., 2019) or sorghum (Zhang et al., 2022) have successfully employed
these methods. Multi-angle imaging and a stable light condition can greatly enhance the
accuracy of chlorophyll estimation from image data, as these factors directly influence the

obtained images (Pérez-Patricio et al. 2018).

One-dimensional spectral data is also useful for determining leaf chlorophyll contents.
The common technique is building a prediction model based on spectral information. Though

spectral imaging technology can provide comprehensive and rich information regarding leaf
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phenotype, spectral preprocessing is required to solve issues such as noise and spectral baseline
shift. Employing feature band extraction algorithms (Jiang et al., 2022) or second derivative-
partial least squares regression (2-Der-PLSR) (Wang et al., 2019) proved to significantly
improve the prediction performance in estimating leaf chlorophyll content. Several external
factors that can affect spectral-based chlorophyll content prediction models include soil, light,
and leaf structure. The impacts of these factors can be effectively diminished by utilizing
vegetation indices obtained from two or more corresponding spectral bands. Vegetation indices
reflect the essential characteristics of the spectra that vary depending on different pigment
classes, which is able to reduce large volume of data into a single viable value (Hallik et al.,
2017). Employing vegetation indices in chlorophyll prediction model has shown to be more
effective compared to single relevant band prediction model (Guo et al., 2019; Zhang et al.,

2021).

Beside the aforementioned factors, leaf morphological traits such as leaf inclination angle
and leaf surface characteristics can also affect the reflectance spectrum of plant leaves. The
reflectance difference ratio (RDR), the improved MDATT index (IMDATT) and other indexes
have been employed to overcome the impacts of these factors on chlorophyll content linear
regression model (Li et al., 2019; Zhao et al., 2019). Vertical leaf position is another factor that
needs to be considered in chlorophyll content prediction model. Generally, chlorophyll content
1s positively correlated at first and then negatively correlated with the increase of leaf positions.
This is due to the shading effect of upper layer leaves on the bottom layer, as well as the fact
that the leaves in the top layer are not fully developed. Therefore, it is necessary to study plant
chlorophyll content in the context of leaf vertical distribution. Wu et al. (2021) employed a
hyperspectral system that collects spectral information from various angles. The obtained data

is used to estimate the correlation between vegetation indices and the leaves vertical positions,
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which can provide insight into the optimal monitoring angle for predicting chlorophyll content

of different leaf layers at various growth stages.

Due to plant complex and diverse 3D morphology, plant phenotypic information can be
obtained more accurately using 3D point clouds. However, conventional 3D point clouds of
plants only provide color and coordinate information, which cannot be employed to effectively
estimate chlorophyll content. To address this limitation, Sun et al. (2019) proposed a combined
system of RGB, depth and multispectral images of plants at different angles. The obtained data
is used to construct a multispectral 3D point cloud, which provides vegetation indices
information to establish a prediction model for leaf chlorophyll content in a spatial distribution

context.

Remote sensing technology displayed advantages over ground-based imaging technology,
as they often have higher throughput and flexibility in a wide range of time and space. Satellite
remote sensing and UAV remote sensing are the two most commonly used technologies for
measuring plant chlorophyll content. These technologies can be combined with various imaging
sensors, including multispectral camera (Ali et al., 2020; Li et al., 2018; Xu et al., 2021), RGB
camera (Li et al., 2018) and hyperspectral camera (Cao et al., 2020; Hoeppner et al., 2020)

coupled with various platform/models to provide reliable prediction on chlorophyll content.

Finally, chlorophyll information can also be obtained from chlorophyll fluorescence
signals, which were measured based on pulse amplitude modulation (PAM) technologies.
Chlorophyll fluorescence information is obtained in a light environment to estimate
photochemical and non-photochemical quenching. This method has also been widely used in
measuring chlorophyll content (Campbell et al., 2021). Overall, chlorophyll prediction models
can be constructed from various types of data depending on the purpose and availability of the

study.
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Besides chlorophyll, high-throughput phenotyping systems are able to provide
information regarding other leaf pigments. By employing different VIs such as anthocyanin
reflectance index 1 (ARI1) and carotenoid reflectance index 1 (CRI1), the content of various
pigments in leaves can be accurately estimated using similar manner as chlorophyll content

(Tayade et al., 2022).

2.4 Leaf water content
Leaf water content reflects the water status of the leaves, which can govern the plant
growth environment and soil water potential. Furthermore, water supplies electrons for the light
reaction during photosynthesis. Leaf water content therefore can provide important insight into
plant current health and final yield. Leaf water content is conventionally calculated the
difference between leaves fresh and dried weights. Other indicators are for leaf water content
include relative water content (RWC), equivalent water thickness (EWT), fuel moisture content

(FMC) and crop water stress index (CWSI) (Zhang et al., 2023).

Hyperspectral imaging is one of the most common techniques for estimating leaf water
content. Hyperspectral sensors are able to capture thousands of bands per pixel, ranging from
the visible (400-700 nm), near infrared (700-1000 nm) to short-wave infrared (1000-2500 nm),
providing comprehensive information regarding leaf phenotypes (Ge et al., 2019). Currently,
hyperspectral-based high-throughput phenotyping systems focus on identifying different VIs
by combining multiple spectral. Though requires complex preprocessing steps to filter the
viable data, hyperspectral imaging produces normalized difference vegetation index (NDVI)
values that are effective for checking the leaf water content. This method has been employed to
study leaf water contents in various plant species, including cotton (Yi et al., 2013), soybean
(Kovar et al., 2019), wheat (Yang et al., 2021) or maize (Gao et al., 2019). By combining image

and spectral information, parameters that are highly correlated with plant leaf water can be
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identified. For example, canopy structure (Zhu et al., 2019), leaf parts (Murphy et al., 2019) or
leaf vertical positions (Kong et al., 2021) were found to affect the accuracy of leaf water content

prediction models.

Previous studies indicated that leaf water spectral absorption has higher sensitivity in the
infrared bands than other bands (Jin et al., 2017; Torres et al., 2019). Therefore, infrared
imaging is also widely employed, providing an effective, real-time and non-invasive monitoring
method for leaf water content in plants. For example, NIR signals were found to be proportional
with water content in barley (Chen et al., 2014). Another study constructed a prediction model
of leaf water content based on leaf spectral reflectance in SWIR domain (Zhang et al., 2019).
Overall, NIR imaging enables rapid, non-destructive analysis of leaf water content, providing

essential information for monitoring vegetation growth and forecasting final productivity.

Another commonly used technique in leaf water content studies is thermal imaging (or
infrared thermal imaging). This method generates the image based on radiation emitted by the
object, which is proportional to the object’s temperature. Thermal sensors can detect changes
in leaf temperature caused by transpiration, therefore estimating temperature-related features
such as water content (Ishimwe et al., 2014). Various studies have employed this method to
effectively predict leaf water content in different plant species (Arshad et al., 2018; Swain et

al., 2012; Ullah et al., 2014).

Beside the aforementioned methods/techniques, some new approaches are also proposed
for measuring leaf water content (Farinas et al., 2019). For example, leaf water status can be
reliably predicts using linear regression model based on t-LA, which are estimated by THz-
QCL and RGB image respectively (Pagano et al., 2019). Data from THz-QCL can also be used

to determine other water-related leaf traits such as the leaf water layer or RWC (Li et al., 2020).

22



3.5 Leaf stomatal traits

Stomata are the specialized gates present in the epidermis of plant cells, through which
plant leaves exchange gases with the environment. Stomata plays an essential role in plant
growth and development by regulating the balance between leaf water status and carbon
fixation. Factors that affect stomata activities include morphology, density, and sensitivity to
external stimuli (Lawson and Matthews, 2020). Stomata are dynamically regulated by various
external factors such as drought, heat, salinity, light. In nature, stomata display diversity
morphology and characteristics depending on the plant species (Franks and Farquhar, 2007),
which enable plants to adapt to a wide range of environmental conditions (Liu et al., 2018; Liu
et al., 2022). Given the current global climate changes, stomata flexibility made them primary

targets for improving crop survivability and productivity.

Traditional approach to determine stomatal traits involving tissue collection and imaging
following by manually phenotyping traits of interest. The most commonly used method for
stomatal phenotyping is the nail polish method, which is extremely time-consuming, costly and
impractical in large populations. This method requires applying nail polish on the leaf surface,
drying and carefully peeling off the polish to get the leaf imprint, following by examining under
a light microscope for images to determine stomatal traits. Beside the prolonged process, the
nail polish method also presents several limitations that can negatively affect the accuracy of
phenotyping process such as the unavoidable presence of air bubbles that interfere with stomata
imaging (Millstead et al., 2020). Altogether, stomatal phenotyping using leaf imprints is time-
consuming and inconsistent, which limits the maximum number of samples that can be analyzed
together and prevents this method from being employed for large mapping populations or

diversity panels (Pathoumthong et al., 2023).

To address the issues with conventional methods, several new techniques have been
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introduced. To reduce the time taken for samples imaging, many researchers currently
employed simple light-field or other manual stage microscopes (Fetter et al., 2019; Jayakody et
al., 2017). These technologies are sufficient to examine small numbers of stomata. However,
major drawbacks of these approaches include the limitations in leaf area for imaging and the
requirement of manual operation for refocusing the microscopes. Therefore, fast imaging
methods requiring minimal manual effort are of necessity. For example, Millstead et al. (2020)
has proposed the automatic microscope slide scanner to image nail polish imprints. This
technology allows the rapid collection of high-quality images from entire samples with minimal
manual effort. Another example is the application of optical topometric for a rapid and non-
destructive measuring of leaf surface at nanometer scale (Ferguson et al., 2021; Xie et al., 2021).
The obtained images will undergo several image processing steps before being used to extract
stomatal traits. Additionally, thermal or spectral imaging can also be employed to monitor
stomatal activities. Overall, there are still limitations present in current imaging technologies
for stomata phenotyping and the development of new approaches for data collection would

greatly facilitate stomata-related studies.

Besides imaging technologies, machine learning is being exploited to automatically
analyze stomatal features. Though displays low explanatory power, machine learning tends to
provide more accurate estimations (Houshmandfar et al., 2021). There are two types of machine
learning models: supervised and unsupervised learning. The basic difference between the two
categories is the requirement of data labeling. Therefore, supervised learning is often used in
various regression and classification problems, while unsupervised learning is employed for
identifying outliers and classification (Zhang, 2023). Due to their different natures, supervised
learning is the most prevalent method for agricultural research. A supervised learning model

basically begins with the model training for automatic feature extraction from preprocessed raw
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images. Subsequently, the trained model can identify, classify, quantify, and predict the
phenotypic traits of interest (Singh et al., 2018). In terms of stomata phenotyping, the input
images were first labeled as stomata and/or pavement cells and randomly split into a training
set for model training and validation. Various types of algorithm can be used to build accurate
stomata detection models, such as general one-stage object detection algorithms, single shot
multiBox detector (SSD, Sakoda et al., 2019) and you only look once (YOLO, Casado-Garcia
et al., 2020), and two-stage object detection algorithm, real-time object detection with Faster
R-CNN (Li et al., 2019) and mask region-based CNN (Mask R-CNN, Bheemanahalli et al.,
2021). These models have been successfully employed for stomata studies in different plant

species such as rice, soybean, wheat, maize, or sorghum.

Machine learning-based methods for stomata phenotyping significantly reduced the
required time and labor compared to conventional methods. Several studies have indicated the
strong correlations between predicted results from machine learning and manual measurements
across species. For example, the computer-predicted values of stomata traits in maize displayed
positive correlation with those manually obtained results (Xie et al., 2021). Another study on
sorghum also indicated the significant association between manual and predicted measurements
of stomatal complex area (Bheemanahalli et al., 2021). These results suggested the reliability
and accuracy of automated computer predicted methods. However, machine-learning based
stomata phenotyping is currently limiting to one species in isolation, and a comprehensive

practical model for predicting stomata across different plant species is required.
2.6 Chlorophyll-a fluorescent

Chlorophyll (chl) fluorescent is defined as the emission of photons from excited chl a
molecule. Chl fluorescent is widely used as an indicator of energy conversion in photosynthetic

organisms such as plants, algae, and bacteria. After being hit by a photon, chl molecules absorb
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the light energy and enter excited state, which is very unstable and require the releasing of
excess energy. There are three different competing ways for chl a molecule to return to a non-
excited state, including heat dissipation, photochemical utilization of energy and fluorescence
emissions. Depending on the physiological status of the photosynthetic apparatus, the
contribution of each process will vary (da Silva et al., 2007). The advancement of technologies
has facilitated chl fluorometry developing into various types, which can basically divide into
passive and active chl fluorescent (Candrero-Mateo et al., 2016). Passive methods measure
emission under actinic light, while active methods stimulate fluorescence emission using
dedicated light sources. Active fluorescence techniques are the prevalent methods for studying

fluorescence emission spectra.

One of the most commonly used active fluorescence techniques is laser-induced
fluorescence (LIF). In LIF, samples enter an excited state with a laser, and the emitted
fluorescence is subsequently captured by a photodetector. Depending on the laser and detecting
systems, LIF can be categorized into excitation and emission LIF. The fluorescence emission
when samples return from excited to non-excited state is detected by a photomultiplier tube
(PMT). In excitation LIF, a tunable laser is used to produce various excitation wavelengths,
which enable the resolve of vibrational structure of the excited state. A bandpass filter is
required in excitation LIF to remove scattered laser light before emission detection by PMT.
On the other hand, emission LIF employed a fixed pump wavelength, and a monochromator is
utilized to analyze sample emission in the detection wavelength. LIF can be conducted remotely,
hence preferably used for phenotyping in the field. LIF was applied in various plant studies for
different purposes, such as estimating overall photosynthetic activities during a defined period
of time (Astafurova et al., 2001; Zuev et al., 2009), differentiating plant species (Richards et al.,

2003; Saito et al., 2000) or estimating the maturity (Brach et al., 1977).
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Active fluorescence employing PAM techniques allows the estimation of various
photosynthetic-related traits such as the quantum efficiency of photosystem II, the electron
transport rate or the non-photochemical quenching. PAM fluorometry can distinguish between
the photochemical (qP) and non-photochemical use of light energy using the light-doubling
technique (da Silva, 2016). PAM fluorometry measures basal fluorescence (Fo) with a weak
pulse of light, followed by saturating light to establish the maximal fluorescence (Fm). The
effective quantum yield of photosystem II can be estimated using the fluorescence index AF/F,
which indicate the difference between the maximum fluorescence and the steady-state
fluorescence of light-adapted samples (Genty et al., 1989). The physiological status of the
photosynthetic apparatus directly affects Fo value, and this dependent relation is also affected
by external factors (Serddio et al., 2001). Healthy leaves of various plant species were found to
have a very constant Fy/Fy, value of approximately 0.832 £+ 0.004 (Bjorkman and Demmig,
1987). PAM was widely applied in various plant species including crops, such as maize
(Stefanov et al., 2022), rice (Jiang et al., 2023), wheat (Jia et al., 2023) or lettuce (Kumar et al.,

2021).

Another variation of PAM fluorometry is the imaging-PAM fluorometry that has been
applied widely in plant phenotyping. Conventional and imaging PAM techniques employed
different technologies to detect fluorescence signal. While normal PAM fluorometry uses a
photodiode or phototube, a charge-coupled device (CCD) camera is used in imaging-PAM
fluorometry. Depends on the purpose, imaging-PAM fluorometry can measure PS II
photochemical efficiencies at the microscopic level (Oxborough and Baker, 1997; Oxborough
et al., 2000) or mapping of fluorescent parameters over large areas (Hill et al., 2004; Scholes et
al., 1996). As chlorophyll fluorescent techniques play a major role in plant phenotyping, various

commercial flatforms have been introduced to provide high-throughput phenotyping
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capabilities for plant breeders. Some notable flatforms include LemnaTec (Germany) or Photon

System Instruments (Czech Republic).

Various high-throughput phenotyping (HTP) methods are being developed so far. The
current study reviewed recently developed HTP methods and platforms for screening traits
related to photosynthesis that play a pivotal role in determining crop production. This would be

helpful to those who are interested in researching photosynthesis for enhancing crop yield.
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Chapter 1. Mentha arvensis L. growth under different combinations of LEDs light

1. Introduction

Mentha species, a member of the Lamiaceae family, is one of the most ancient and widely
beloved herbs globally (Bahadori et al., 2018; Fatih et al., 2017). It was originally described
and first named in 1789 by Jussieu, who assigned it to the Lamiaceae family (Fatih et al., 2017).
Among five basic Mentha species, Mentha arvensis L. commonly referred to as Corn Mint,
Wild Mint, or Field Mint, is a renowned herbaceous, with a remarkable ability to adapt to
diverse environmental conditions from temperate regions of Europe and western and central
Asia, east to the Himalayas and eastern Siberia, and North America (Ellis, 1960; Fatih et al.,
2017; Rehman et al., 2016). Leaves of Mentha arvensis L., which are a rich source of essential
oils, are central to its distinctive aroma and flavor profile. In traditional medicine systems,
Mentha arvensis L. has been esteemed for its therapeutic properties, including its role in
alleviating digestive discomfort and its potential as an anti-inflammatory and analgesic agent.
Nowadays, Mentha arvensis L. is of huge economic value and is widely used in the food,
pharmaceutical, beverage, perfume, cosmetic, and tobacco industries (Dar et al., 2014; Nacem

etal., 2012; Rao, 1999; Rashid et al., 2023).

Since the early 20th century, when human knowledge of photosynthesis began
(Rabinowitch and Livingston, 1946), manipulating photosynthetic production has been widely
used to enhance crop yields. Research on photosynthetic yield primarily focuses on changes in
plant biomass, such as fresh or dry weight, reflecting cumulative photosynthetic activity
throughout a plant's life. These measurements are typically determined at the end of harvesting
(Van Bel et al., 2003). Various laboratory techniques involve measuring photosynthetic organs
by monitoring changes in COz or Oz levels using electrodes within isolated chambers and a

conventional recording spectrophotometer (Hunt, 2003). In addition to these methods,
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photosynthetic efficiency in certain environments can also be evaluated by quantifying its
products, such as sucrose and starch, or by assessing components integral to the photosynthesis
process, including plant pigments and rates of water vapor loss (Beadle et al., 1985; Hind, 1985;

Yue et al., 2021).

Among various environmental factors, the quality of light exerts a significant influence
on photosynthesis. Therefore, it stands as an important element in the regulation of plant
development and protection, serving as a critical sensory signal that enables plants to adapt to
external stimuli (Liu and Van Iersel, 2021; Rahman et al., 2021). In higher plants, the blue and
red light regions within the visible light spectrum, characterized by wavelengths ranging from
380-750 nm (known as photosynthetically active radiation or PAR), are the two light regions
that most notably affect the photosynthesis process (Chen and Blankenship, 2011; Rabinowitch
and Govindjee, 1965). Red light plays a crucial role in shaping the development of the
photosynthetic system and can enhance the accumulation of photosynthetic products by
moderating photosynthetic translocation. Meanwhile, blue light has vital effects on chloroplast
development, chlorophyll formation, and the regulation of stomatal opening (Zhang et al.,
2020b). The utilization of a gradient of light colors proves to be a potent tool for assessing how

plants respond to variations in light quality (Lejeune et al., 2022).

The revolution and development of light-emitting diodes (LEDs) have enabled researchers
to delve deeper into the mechanisms of light's effect on photosynthetic activity. These LED
technologies are increasingly gaining attention, especially with the development and expansion
of indoor farms. They are gradually replacing traditional artificial lighting sources due to
several advantages, including higher energy efficiency, precise light spectrum emission, lower
heat emission, longer lifespan, and environmental friendliness (Jou et al., 2015; Kozai et al.,

2016; Olle and Virsile, 2013). Numerous investigations have indicated that altering the
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wavelength and intensity of LED light may serve as a means to control plant metabolism,
ultimately facilitating the production of functionalized foods (Hasan et al., 2017; Jung et al.,
2021). Additionally, LEDs can be flexible, and convenient integration into electronic systems
facility make them easily customized and controlled to simulate natural light conditions, which
allows to cultivation of a wide variety of crops and medicinal plants (Jou et al., 2015; Ma et al.,

2021).

Several studies reported that changes in light quality can enhance essential oils in Pepper
Mint (Mentha piperita L.), Japanese Mint (Mentha arvensis L.), Mexican Mint (Plectranthus
amboinicus (Lour.) Spreng.) and Sweet Mint (Mentha spicata) (Fahlén et al., 1997; Nguyen
and Saleh, 2019; Nishioka et al., 2008; Noguchi and Amaki, 2016). Furthermore, changing the
LED light spectrum triggered the change in oil composition and the accumulation of
monoterpenes in Mint species (Maffei and Scannerini, 1999; Nguyen and Saleh, 2019; Ueda et
al., 2021). Nevertheless, an exploration of the impacts of LEDs lighting on Wild Mint plant
growth within smart farm environments has yet to be reported. Thus, the current study is
designed to determine the effect of various LEDs lights on Mentha arvensis L. traits relative to
growth and important secondary metabolite: phenolics. It would be helpful to enhance the yield

and to increase the important chemical content in this plant.
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2. Material and methods

2.1 Plant material and experiment design

10-days-old Mentha arvensis L. plants (Wild Mint plants) was grown in a hydroponic
system (Figure 2.1). The hydroponic nutrition was provided from Hoptri Hydro Leafy medium
(Hoptri Investment Corporation, Vietnam) (Table 2.1). The growth conditions were controlled
at 27 + 2°C with a relative humidity of 65 + 5%, 6.8 + 0.2 pH, and 50 pmol photon m 2 s

using a fluorescent lamp with 12 hours of light and 12 hours of dark (12/12) photoperiod.

Figure 2.1 10-days-old Mentha arvensis L. plant in hydroponic system. Cross bar: 1cm.
Table 2.1 Component of a Hoptri Hydro Leafy mixture media.
Elements Part A Part B A+B
Nitrogen (NH4NO3, KNO3) 15% 6% 10,5%
Phosphorus (P2Os) 9% 4,5%
Potassium (K>O) 15% 26% 20,5%
Calcium (CaCl,. 2H>0) 12% 6%
Magnesium (MgSO4. 7H20) 3% 1,5%
Fe (FeNaEDTA) 4000 ppm 2000 ppm
Mn (MnSOs. 4H0) 1100 ppm 550 ppm
B (H3BO:3) 400 ppm 200 ppm
Cu (CuSOs4. 5H20) 100 ppm 50 ppm
Zn (ZnSO4. TH20) 400 ppm 200 ppm
Mo (NaxMoOs4. 2H>0) 50 ppm 25 ppm
S 4% 2%
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2.2 Light treatment

The Wild Mint plants were grown in the indoor hydroponic system for 4 weeks under four
light sources: 100% blue (B), 30% blue and 70% red (B3R7), 100% red (R), and cool white
LEDs (W), 12/12 photoperiod, at the same PPFD 150 umol photon.m™ s

LEDs light tubes were provided by Smart Agriculture Lighting Technology, Republic of
Korea. The emission spectra from light sources were measured with a PG200N (UPRtek, Taipei,

Taiwan) (Figure 2.2).
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2.3 Number of leaves and auxiliary bud

The number of leaves and auxiliary buds on the main stem were monitored over the

cultivation time, by counting all the pairs of leaves or auxiliary buds from the base of the plant.
2.4 Plant height

The plant height was measured over the cultivation time, using a digital ruler, starting
from the "shoot base" point (where the main stem of the plant emerges from the growing media,
this is typically the point where the plant starts growing upward) to the leaf base of the highest

fully developed leaf.
2.5 Fresh and dry weight

The fresh and dry weight of plants were determined at the end of harvest time. Each plant
was separated and weighed for its fresh weight using an HR-202i balance (A&D Company,
Limited, Japan). For the dry weight determination, the plants were dried in an electric drying

oven (UNB 500, Memmert, Germany) at 40°C for three days until a constant mass was achieved.
2.6 Extract and determine total sugar content
Preparation of sucrose standard curve:

Sucrose was dissolved in distilled water to prepare sucrose solutions with concentrations
ranging from 10 to 320 mg/L. One milliliter of each sucrose solution was mixed with 1 ml of
5% phenol and 5 ml of concentrated sulfuric acid, shaken well, allowed to cool, and its
absorbance was measured at a wavelength of 490 nm to establish the standard curve (Coombs

et al., 1985).
Extraction and quantification of total sugars:

Different plant organs (roots, stems, leaves) were isolated and stored in a refrigerator at -

20°C (to stop leaf metabolism immediately). One gram of samples was ground in absolute
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ethanol and then boiled in the water bath for 15 minutes. The mixture was then centrifuged at
4,000 rpm for 5 minutes, and the extract was collected. The residue after centrifugation
underwent the following steps twice: mixed with 80% ethanol, heated under reflux for 15
minutes, centrifuged at 4,000 rpm for 5 minutes, and the extract was collected. After the ethanol
had completely evaporated, distilled water was added to make up a total volume of 50 ml. One
milliliter of the diluted extract was reacted with 1 ml of 5% phenol (CsHsO) and 5 ml of
concentrated sulfuric acid (H2SOs4), and its absorbance was measured at a wavelength of 490
nm. The total sugar content (mg/g fresh weight) in the sample was determined based on the

sucrose standard curve (Coombs et al., 1985).
2.7 Extract and determine starch content
Preparation of glucose standard curve:

Glucose was dissolved in distilled water to prepare glucose solutions with concentrations
ranging from 10 to 320 mg/L. One milliliter of each glucose solution was mixed with 1 ml of
5% phenol and 5 ml of concentrated sulfuric acid, shaken well, allowed to cool, and its
absorbance was measured at a wavelength of 490 nm to establish the standard curve (Coombs

et al., 1985).
Extraction and quantification of starch:

After performing the total sugar extraction experiment described above, the residue of the
sample was dried at 70°C and then mixed with 2 ml of distilled water. After boiling in the water
bath for 15 minutes, the mixture was supplemented with 2 ml of 7N perchloric acid (HClO4),
vortexed, continued to be boiled in the water for 15 minutes, and then supplemented with
distilled water to reach a volume of 10 ml. The mixture was centrifuged at 4,000 rpm for 5
minutes, and the supernatant was collected. The residue was then supplemented with 2 ml of

4.6 N perchloric acid (HCIO4) and the process was repeated three times. The combined
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supernatants from the three centrifugation steps were evaporated to a volume of 5 ml, and
distilled water was added to reach a volume of 50 ml. One milliliter of the extracted solution
was mixed with 1 ml of 5% phenol, 5 ml of concentrated sulfuric acid, and its optical density
was measured at a wavelength of 490 nm. The starch content in the sample was determined by

comparing it to the glucose standard curve (Coombs et al., 1985).
2.8 Extract and estimate total phenolic

Quantification of total phenolic compounds using the Folin-Ciocalteu method: Based on
the reduction of phosphomolybdic/phosphotungstic acid complexes in the Folin-Ciocalteu
reagent by phenolic compounds in an alkaline environment to produce blue complexes which
are quantified through spectroscopic analysis with maximum absorbance at 765 nm (Ainsworth

and Gillespie, 2007).
Preparation of gallic acid standard curve

1 mg of gallic acid was diluted in 10 ml of 70% methanol to achieve a concentration of
100 pg/ml. Then, the solution was diluted to a range of concentrations from 0-50 pg/ml. Next
step, 0.4 ml of the diluted solution was added to 1 ml of 10% Folin reagent, 1 ml of distilled
water, and 1.6 ml of 7.5% Na>COs, incubated in the dark for 30 minutes, and measured the
optical density at a wavelength of 765 nm. A standard curve was constructed and the
relationship between the phenolic content of the sample (ug/ml) and the OD7¢s value was

determined. The equation used is y = 0.0099x - 0.0081 with R*=0.9994.
Extraction and determination of total phenolic content in the sample

One gram of different plant organs (roots, stems, leaves) was isolated ground in 70%
methanol, boiled in the water bath at 70°C for 10 minutes, and then centrifuged at 4,000 rpm
for 5 minutes to collect the supernatant. The residue was retained, and 70% methanol was added

to it, repeating the centrifugation steps 3 times. The total extract after centrifugation steps was
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diluted to 50 ml with 70% methanol (Chen et al., 2011). Take 0.4 ml of the diluted extract, add
1 ml of 10% Folin reagent, 1 ml of distilled water, and 1.6 ml of 7.5% sodium carbonate

(Na2CO0:3), incubate in the dark for 30 minutes, and measure the optical density at a wavelength

of 765 nm (Baba and Malik, 2015).

The content of total phenolic compounds (mg/g rw) in the leaf extract through AOD765 nm
was calculated using the formula:

(Y+0.0081)+V+a

Total phenolic content = 0 9992em1000" (mg/g rw)

Y: AOD7s5s nm; a: dilution factor; V: initial volume of the extract (ml); m: sample weight
(®-

2.9 Statistical analysis

Each Wild Mint plant was used as a replicate. Data for plant height, the number of leaves,
and the number of auxiliary buds were collected from 30 plants per LED treatment. Data for
fresh weight, dry weight, sucrose content, starch content, and total phenolic content were
determined using 8 plants per LED treatment. All data analysis was performed using R software
(Version 4.3.1, the R Foundation for Statistical Computing, Vienna, Austria). The datasets were

checked for normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965).

The datasets for plant height, the number of leaves, and the number of auxiliary buds did
not meet the criteria for normality. Therefore, non-parametric data analysis was conducted using

the Kruskal-Wallis’s test, followed by the Dunn test with Benjamini-Hochberg correction.

In contrast, the datasets for fresh weight, dry weight, sucrose content, starch content, and
total phenolic content exhibited a normal distribution. For these datasets, parametric analysis
was conducted using the One-way ANOVA test, followed by the Fisher’s least significant

difference (LSD) post hoc test to compare measurements between different LED light

38



treatments. Line plots and bar plots were generated using the 'ggpubr' and 'ggplot2' packages in

R4.3.1.
3. Result

To investigate the effects of LED light qualities on the growth and development of Wild
Mint plants during the early vegetative phase, plants was illuminated with four different LED
light conditions: 100% blue (B), 30% blue and 70% red (B3R7), 100% red (R), and cool white
LEDs (W) closely resembling the terrestrial sunlight spectrum between 380 and 780 nm, all at
the same photosynthetic photon flux density (PPFD) of 150 umol photons m™2 s, within a
hydroponic vertical cultivation system. The results revealed significant differences in plant
morphological responses, including plant height, the number of leaves, and the number of

auxiliary buds in Wild Mint plants (Figure 2.3).
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The number of fully developed leaf pairs along the stem increased in all plants over the
course of the experiment, indicating the plants' growth under various light conditions. Wild
Mint plants started with one leaf pair at the beginning of the experiment and reached nine fully
developed leaf pairs along the main stem after four weeks. During the second week of the
experiment, Wild Mint plants illuminated with colored LEDs exhibited a slightly higher number
of leaf pairs compared to those under white LED lighting. This difference became significant

in the last week of the experiment (Table 2.2 and Figure 2.4).

Table 2.2 The statistical analysis number of leaves (pair of leaves) on Mentha arvensis

L. plants grown under different LED light treatments.

Time Light Rep. Min Max  Median Mean sd Range cv

B 30 2.00 4.00 3.00 3.20 0.61 2.00 0.19
st B3R7 30 2.00 5.00 3.00 3.17 0.70 3.00 0.22
R 30 2.00 5.00 3.00 3.17 0.70 3.00 0.22
W 30 2.00 4.00 3.00 3.13 0.51 2.00 0.16
B 30 3.00 6.00 5.00 5.03 0.85 3.00 0.17
ond B3R7 30 4.00 7.00 5.50 543 0.73 3.00 0.13
R 30 4.00 7.00 5.00 5.20 0.76 3.00 0.15
W 30 4.00 6.00 5.00 4.90 0.55 2.00 0.11
B 30 5.00 9.00 7.00 7.13 0.90 4.00 0.13
31 B3R7 30 6.00 9.00 8.00 7.70 0.92 3.00 0.12
R 30 3.00 9.00 7.50 7.43 1.17 6.00 0.16
\W 30 6.00 9.00 8.00 7.57 0.77 3.00 0.10
B 30 6.00 10.00 8.00 8.37 1.00 4.00 0.12
4 B3R7 30 6.00 10.00 8.00 7.87 0.82 4.00 0.10
R 30 7.00 11.00 9.50 9.40 1.10 4.00 0.12
W 30 6.00 11.00 9.00 8.83 1.05 5.00 0.12

All LED light treatments at the same PPFD 150 umol m= s~
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Figure 2.4 Number of leaves on Mentha arvensis L. plants grown under different LED

light treatments, all at the same PPFD 150 pmol m™2 s™'. Statistical analysis was performed
using a Kruskal-Wallis test (p-value < 0.05) followed by a Dunn—Benjamini—Hochberg post
hoc test for multiple comparisons. Different letters indicate a significant difference between the

two medians.
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Wild Mint plants began to develop auxiliary buds in the 2™ week of the experiment, and
they consistently exhibited greater bud formation in treatments with a high proportion of red
light, such as 70% and 100% red LED. Conversely, blue light resulted in a reduction in the
number of auxiliary buds in Wild Mint plants when compared to the other light conditions. By
the last week of the experiment, there was no significant difference in the number of auxiliary

buds between these LED treatments (Table 2.3 and Figure 2.5).

Table 2.3 The statistical analysis number of auxiliary buds on Mentha arvensis L. plants

grown under different LED light treatments.

Time Light Rep. Min Max  Median Mean sd Range cv

B 30 - - - - - - -
st B3R7 30 - - - - - - -
R 30 - - - - - - -
W 30 - - - - - - -
B 30 0 4 2.00 1.83 1.15 4.00 0.63
B3R7 30 0 5 3.00 2.83 0.99 5.00 0.35
2nd R 30 0 4 3.00 2.30 1.09 4.00 0.47
W 30 0 4 2.00 1.73 1.17 4.00 0.68
B 30 1 7 5.00 4.57 1.41 6.00 0.31
B3R7 30 2 7 6.00 5.83 1.02 5.00 0.17
3rd R 30 2 7 5.50 5.43 1.14 5.00 0.21
Y 30 0 7 5.00 4.97 1.47 7.00 0.30
B 30 3 10 8.00 7.37 1.63 7.00 0.22
B3R7 30 4 10 8.00 8.20 1.13 6.00 0.14
A R 30 2 11 8.00 7.77 1.89 9.00 0.24
W 30 0 10 8.00 7.50 1.93 10.00 0.26

All LED light treatments at the same PPFD 150 umol m= s~
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Figure 2.5 Number of auxiliary buds on Mentha arvensis L. plants grown under different

LED light treatments, all at the same PPFD 150 umol m2s™'. Statistical analysis was performed
using a Kruskal-Wallis test (p-value < 0.05) followed by a Dunn—Benjamini—Hochberg post
hoc test for multiple comparisons. Different letters indicate a significant difference between the

two medians.

After four weeks since the experiment, the height of Wild Mint plants was divided into
two groups. Plants grown under red LED lighting significantly exceeded the heights of plants

in other treatments (B, B3R7, and W) starting from the first week, with an average height of
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21.56 = 8.5 mm. The difference in plant height continued to increase between these two LED
groups over the four weeks of the experiment. Wild Mint plants grown under red LED lighting
were 1.5 times taller than those grown under B, B3R7, and W LED treatments, reaching average
heights of 51.43 + 13.84 mm, 201.67 = 45.57 mm, or 346.17 + 63.76 mm, respectively, after 2,

3, or 4 weeks (Table 2.4 and Figure 2.6).

In the second group, Wild Mint plants exposed to blue LED lighting did not exhibit
significant changes in plant height compared to the control group under white LED treatment.
The height of plants under the combination of blue and red LEDs was slightly higher during
the first three weeks but became significantly lower than that of control plants in the last week
of the experiment (Table 2.4 and Figure 2.6). Furthermore, red light increased the variation in
plant height among individual plants within the same experimental group, with a large range
between the min and max value; conversely, plants grown under combined lighting exhibited
greater uniformity among the plants within the same LED light treatment, with small of range,

standard deviation (sd) and coefficient of variation (cv) value (Table 2.4).
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Table 2.4

under different LED light treatments.

The statistical analysis of plant height (mm) of Mentha arvensis L. grown

Time  Light  Rep. Min Max Median Mean sd Range cv
B 30 322 3030 1526 1480 487 27.08 033
- B3R7 30 997 28.84 1577 1696  4.42 18.87  0.26
R 30 242 4594 2066 2156 850 43,52 0.39
W 30 325 2446 1433 1451 414 2121 0.29
B 30 12.62 49.75 2978 2938 720 37.13  0.24
ond B3R7 30 23.70  45.11 36.08 3561 624 2141  0.18
R 30 27.25 8633 4940 5143 13.84 59.08  0.27
W 30 1148 4573 3141 3156 634 3425 0.20
B 30 45.61 115.57 80.79 82.69 16.79 6996  0.20
30 B3R7 30 66.58 110.28 97.58 95.86 1020 43.70  0.11
R 30 70.00 280.00 205.00 201.67 4557 210.00 0.23
W 30 49.00 114.89 85.63 8436 16.62 6589  0.20
B 30 170.00 310.00 267.50 248.83 38.52 140.00 0.15
4t B3R7 30 195.00 270.00 235.00 236.50 16.51 75.00 0.07
R 30 150.00 450.00 340.00 346.17 63.76 300.00 0.18
W 30 160.00 330.00 265.00 263.83 34.03 170.00 0.13

All LED light treatments at the same PPFD 150 umol m=s™.
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Figure 2.6 Plant height of Mentha arvensis L. grown under different LED light treatments,
all at the same PPFD 150 umol m™2 s™'. Statistical analysis was performed using a Kruskal—
Wallis test (p-value < 0.05) followed by a Dunn—Benjamini—Hochberg post hoc test for multiple
comparisons. Different letters indicate a significant difference between the two medians.

The results of fresh weight measurements highlight the impact of different LED colors on
biomass properties and allocation in Mentha arvensis L. during hydroponic cultivation. Our
analysis encompasses fresh-weight ratios of leaves, stem weight percentages, and biomass
distribution to the roots, with the data presented in Table 2.5, Figures 2.7 and 2.8.

The total fresh weight of the entire plant ranged from 15.39 to 21.21 g. It was notably

higher under B3R7 or red LED lighting but lower under blue LED lighting compared to the
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control with white LED lighting. Furthermore, the combined light spectrum resulted in a
significant increase in fresh weight for both roots and stems compared to the other treatments
(Table 2.5). When considering the aerial parts of the plant, enhanced growth was observed in
the presence of B3R7 or red LED lighting, while only the root portion displayed improvement
under B3R7 LED lighting after four weeks of cultivation (Figure 2.7). Further analysis revealed
that all color LEDs caused a decrease in the fresh-weight ratio of leaves, accompanied by an
increase in the percentage of stem weight, indicating a shift in biomass allocation from leaves
to stems across all treatments. Notably, both blue and B3R7 LED treatments exhibited a
significant increase in biomass allocation to the roots, suggesting enhanced root development

under these light conditions (Figure 2.8).

Table 2.5 Fresh weight of different plant organs (roots, stems, leaves) of Mentha arvensis
L. after 4 weeks grown under different LED light treatments, at the same PPFD 150 pmol m™

S—l

) Fresh weight (g)
Light
Root Stem Leaves Total plant
B 1.20+0.04° 6.92+0.13°¢ 7.28+£0.14° 15.39+0.38 ¢
B3R7 1.71+£0.052 998+£0.12% 9.52+0.26* 21.21+0.21°%
R 1.38+£0.16° 835+0.72° 899+0.95° 18.72 £1.74 %
w 1.23+0.02° 7.33+0.38 " 8.58+0.21%°  17.15+0.59"
AN,[S;[]AS 0.0048 ** 0.0010 ** 0.0481 * 0.0062 **

Means of + standard errors followed by different letters within columns are significantly different by Fishers least

significant difference (LSD) test with one-way ANOVA; n = 8.
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Figure 2.7 Influence of LED light treatments on shoots and roots fresh weight in of
Mentha arvensis L. after 4 weeks grown under the same PPFD 150 pmol m™ s™'. Statistical
analysis was performed using a ANOVA test (p-value < 0.05) followed by a Fisher’s least
significant difference (LSD) post hoc test for multiple comparisons. Bars represent means of
eight biological replicates + standard errors, different letters indicate a significant difference

between the two means.
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Figure 2.8 Percentage of the total fresh weight per plant partitioned to different organs of
Mentha arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD
150 pmol m™ s™'. Statistical analysis was performed using a ANOVA test (p-value < 0.05)
followed by a Fisher s least significant difference (LSD) post hoc test for multiple comparisons.

Different letters indicate a significant difference between the two means.
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The same pattern of the LED light effect was observed in the total dry matter of Mentha
arvensis L. plants grown under red LED lighting tended to have a greater total plant dry weight,
while blue LED lighting decreased the dry biomass in both leaves and stem organs,
consequently reducing the overall plant dry matter of Wild Mint. And no significant difference
in plant dry weight was observed between the combination LED treatment and the control using
white LED lighting (Table 2.6). An increase in plant dry weight under B3R7 and red LED
lighting was recorded in both the aerial and root parts of the plant. Meanwhile, Wild Mint plants
grown under blue LED treatment showed no significant differentiation compared to those under
white LED lighting (Figure 2.9). The investigation into the partitioning of dry matter to
individual organs exposed that different LED light treatments led to changes in the dry weight
distribution among storage organs. Blue light increased leaf dry mass, red LED tended to
accumulate dry weight in the stems, while plants grown under a combination of B3R7 LED

lighting exhibited an enhanced dry biomass ratio in the roots (Figure 2.10)

Table 2.6 Dry weight of different plant organs (roots, stems, leaves) of Mentha arvensis
L. after 4 weeks grown under different LED light treatments, at the same PPFD 150 pmol m™

S 1

] Dry weight (mg)
Light
Root Stem Leaves Total plant
B 111.25+3.94°  37588+10.82° 629.38+27.65° 1116.50+40.93 ¢
B3R7 153.13+3.79%  508.50+9.16°  747.75+£22.71%  1409.38 +42.89%
R 136.88 + 10.88* 607.88+51.75*  845.00+45.36* 1589.75+111.31%
W 112.88+3.36% 452.88+26.94% 688.75+23.73% 1254.50 +16.92 b°
ANESYAS 0.0013 ** 0.0011 ** 0.0025 ** 0.0013 **

Means of + standard errors followed by different letters within columns are significantly different by Fishers least
significant difference (LSD) test with one-way ANOVA; n = 8.
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Figure 2.9 Influence of LED light treatments on shoots and roots dry weight in of Mentha
arvensis L. after 4 weeks grown under the same PPFD 150 pmol m™2 s™'. Statistical analysis
was performed using a ANOVA test (p-value < 0.05) followed by a Fishers least significant
difference (LSD) post hoc test for multiple comparisons. Bars represent means of eight
biological replicates + standard errors, different letters indicate a significant difference

between the two means.
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Figure 2.10 Percentage of the total dry weight per plant partitioned to different organs of
Mentha arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD
150 umol m™ s™'. Statistical analysis was performed using a ANOVA test (p-value < 0.05)
followed by a Fisher s least significant difference (LSD) post hoc test for multiple comparisons.

Different letters indicate a significant difference between the two means.
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The light spectrum not only influences plant morphogenesis and biomass but also affects
plant metabolic compounds. Table 2.7 presents the sucrose content of Wild Mint plants after
four weeks of exposure to different LED light sources, with the highlight being the higher
sucrose yield in the combined B3R7 LED treatment compared to the other light treatments.
When considering the results for each plant organ, lower sucrose content in the roots of plants
grown under a high red LED ratio was observed. Conversely, plants under blue LED lighting
showed no significant change compared to those under white LED lighting. All LED color
treatments enhanced the sucrose content in the stems. However, only the leaves of plants grown
under red LED lighting had significantly higher sucrose content than the other treatments (Table
2.7). Upon closer investigation, all LED color treatments significantly reduced the percentage
of sucrose content in leaves while increasing sucrose content in stems compared to the control.
Clear differences were noted in the combined blue and red LED light treatments. In the root
part, both blue and combined B3R7 LEDs had a higher ratio of sucrose content, whereas no

significant difference was observed between red and white LEDs (Figure 2.11).

Table 2.7 Sucrose content in different plant organs (roots, stems, leaves) of Mentha

arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD 150

pmol m=2s™.
. Sucrose content (mg/g rw) Total plant
Light
Root Stem Leaves (mg/plant)
B 2.59+0.052 4.84+0.03° 830+0.13° 100.56 £ 1.71°
B3R7 2.44 +0.05° 5.10 +0.09 ® 7.86 + 0.08 © 166.65 +10.372
R 2.13+0.04°¢ 4.83+0.09" 927+027°2 102.85+523"b
\\Y 2.58+0.03% 4.45+0.01°¢ 7.93+0.14° 99.65+1.89°
AN:;;(AS 2.36e-05 *** 0.0002 *3** 0.0002 *%** 6.71e-06 ***

Means of + standard errors followed by different letters within columns are significantly different by Fishers least
significant difference (LSD) test with one-way ANOVA; n = 8.
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Figure 2.11 Percentage of sucrose content per plant partitioned to different organs of
Mentha arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD
150 umol m™ s™'. Statistical analysis was performed using a ANOVA test (p-value < 0.05)
followed by a Fisher s least significant difference (LSD) post hoc test for multiple comparisons.

Different letters indicate a significant difference between the two means.



The starch content of Wild Mint plants cultivated under the combined B3R7 LED
treatment exhibited significantly greater yields compared to other light treatments (Table 2.8).
Furthermore, all LED treatments led to a notable shift in starch storage, with a transition from
leaves to stem or root organs observed (Figure 2.12). Specifically, the highest starch content
was recorded in the roots of plants exposed to the combined B3R7 LED light, while plants
grown under blue LED lighting accumulated this compound primarily in the stems (Table 2.8,

Figure 2.12).

Table 2.8 Starch content in different plant organs (roots, stems, leaves) of Mentha

arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD 150

pmol m2s™".
. Starch content (mg/g rw) Total plant
Light
Root Stem Leaves (mg/plant)
B 12.42+0.54° 12.65+0.50? 12.06 £0.17 % 20342 +5.11°
B3R7 17.27+0.392 90.88+0.12°¢ 11.11 £0.03 € 250.37 £ 18.54¢
R 12.28+0.10° 10.65+0.23 ¢ 11.31+£0.48 ¢ 183.38 +£9.64°
W 13.31+0.25° 11.41+£0.15° 1248 £0.172 197.26 +3.08 b*
ANOVAS  119e:06##% 0000155 *+* 0.0117 * 0.0052 **

Means of + standard errors followed by different letters within columns are significantly different by Fishers least
significant difference (LSD) test with one-way ANOVA; n = 8.
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Figure 2.12 Percentage of starch content per plant partitioned to different organs of Mentha
arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD 150
umol m2 s™'. Statistical analysis was performed using a ANOVA test (p-value < 0.05) followed
by a Fishers least significant difference (LSD) post hoc test for multiple comparisons. Different

letters indicate a significant difference between the two means.
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Lastly, the results illustrate the total phenolic content extracted from Wild Mint plants after
four weeks of growth under different LED light sources, as detailed in Table 2.9. Significantly
higher total phenolic concentrations were observed in plants subjected to all color LED
treatments compared to the control group exposed to white LED lights. Notably, phenolic
compounds were highest in the B3R7 combined LED treatment. They tended to accumulate in
the stems of plants exposed to blue LED light, whereas, in plants subjected to red light,

accumulation primarily occurred in the roots. (Table 2.9, Figure 2.13).

Table 2.9 Total phenolic content in different plant organs (roots, stems, leaves) of
Mentha arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD

150 pmol m=2 s,

Light Total phenolic content (mg GAE/g rw) Total plant
Root Stem Leaves (mg GAE/plant)
B 7.08£0.19°2 428+0.20% 17.85+0.67° 19822 +1.76°
B3R7 5.12+0.10° 2.63+£0.03 % 15.95+0.41% 252.07+12.22%
R 7.28£0.23 2 2.93+£0.06° 17.50 £ 0.84 ° 193.36 + 10.37°
W 323+0.16° 2.31+0.09°¢ 12.18 £ 0.15° 134.60 + 2.69 ©
ANS;:A’S 4.38e-09 *** 2.26e-07 *** 0.0002 **3* 3.51e-06 ***

Means of + standard errors followed by different letters within columns are significantly different by Fishers least
significant difference (LSD) test with one-way ANOVA; n = 8.
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Figure 2.13 Percentage of total phenolic content per plant partitioned to different organs of
Mentha arvensis L. after 4 weeks grown under different LED light treatments, at the same PPFD
150 umol m™ s™'. Statistical analysis was performed using a ANOVA test (p-value < 0.05)
followed by a Fisher s least significant difference (LSD) post hoc test for multiple comparisons.

Different letters indicate a significant difference between the two means.
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4, Discussion

Several studies have reported that differences in light quality are a significant factor
affecting plant growth in indoor farming (Kozai et al., 2016; Rahman et al., 2021; Sheibani et
al., 2023). In this study, four LED light conditions, all providing the same PPFD of 150 umol
m2s!, were applied to investigate the overall plant growth traits and yield of Wild Mint in a
plant factory. The results showed that red and blue light played opposing roles in determining
the height of Wild Mint plants, the number of leaves, and axillary buds (Figure 2.9-2.11). A
high ratio of red LEDs promoted the number of leaves and axillary buds in the cultivation

system of Wild Mint. Meanwhile, these traits did not significantly differ between plants grown

under blue and white LEDs.

Axillary buds, originating from axillary meristems within the leaf axils, can remain
dormant or extend to form branches of varying sizes (Holalu and Finlayson, 2017; Leduc et al.,
2014). According to Kong et al. (2018), the effect of different LED light spectra on leaf and
axillary bud growth is related to phytochrome activity (Kong et al., 2018). Plants grown under
red light enhanced phytochrome B (PHYB) receptor activity, leading to bud outgrowth in
Arabidopsis and Sorghum (Childs et al., 1997; Finlayson et al., 2010; Kebrom et al., 2006). The
development of axillary buds and branches can improve light absorption for photosynthesis in
plants, consequently increasing the red LED ratio in supplementary lighting will have a positive
effect on the overall growth of Wild Mint plants.

Furthermore, red LED light significantly increased the height of Wild Mint in the
cultivation system. Red light, acting through phytochrome receptors, induces the synthesis of
GA3 and auxins, augmenting the synthesis of cell wall extensions, leading to the elongation of
internodes in Arabidopsis plants (Schneider et al., 2019). Conversely, blue light acts as a signal

for the inhibition of cell division and cell expansion, thereby reducing the elongation of stem
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internodes in spinach plants (Spaninks et al., 2020).

The combination of blue and red light at specific ratios has a positive impact on plant
growth compared to white light, as reported in Morus alba, Vaccinium corymbosum L., Latuca
sativa L. (Hu et al., 2016; Hung et al., 2016; Li and Kubota, 2009; Stutte et al., 2009). The same
trend was observed in Wild Mint exposed to B3R7 combination LEDs, with a limitation on
plant height, similar to the effect of blue light but with enhanced branch and leaf development.
Our results determined that changing light quality can be used to manipulate plant performance

and development.

Modifications in branching and plant structure have a direct impact on the final crop yield
and overall plant productivity (Murchie and Burgess, 2022; Yang and Hwa, 2008). In the case
of Wild Mint plants, those cultivated under B3R7, or red LED lighting exhibited favorable plant
architecture that efficiently supported photosynthesis, resulting in high plant biomass. The
absence of a red-light spectrum (in blue-led treatment) was unfavorable for plant biomass
accumulation when compared to plants under white LED lighting. (Tables 2.5 and 2.6). The
majority of the increase in Wild Mint plant weight can be attributed to the biomass of the above-
ground portions (Figures 2.12 and 2.14), which hold particular economic significance due to
their crucial role in the production of valuable commercial products within the Mint species
(Ellis, 1960; Fatih et al., 2017). Interestingly, the fresh biomass produced by plants under red
LED light was lower than that of plants under B3R7 combination LEDs. However, the dry
biomass showed the opposite results, indicating a difference in the water content consumed by

Wild Mint plants under these light conditions.

A similar growth pattern was observed in the root biomass produced by plants under red
or B3R7 LED treatments, surpassing the growth observed in plants under blue and white LEDs.

This indicates accelerated root development in plants under these treatments. Roots play a vital
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role in plant growth, serving as the primary structures responsible for water and nutrient
absorption from the soil (Palacio et al., 2007; Tajima, 2021). Numerous studies have shown that
deeper roots, characterized by higher deep root ratios and greater rooting depth, tend to absorb
more water from the soil. Additionally, higher root length densities are associated with
increased nutrient absorption (Groff and Kaplan, 1988; Li et al., 2021). The parallel growth of
both roots and shoots highlights the adaptability of Wild Mint to changing of these light

conditions.

Photosynthesis, influenced by various LED light spectra, also affects the production of
primary metabolite in Wild Mint plants. In most plants, sucrose is the primary organic
compound found in the cytosol of photosynthetic (source) cells. It serves as an immediately
available form for transport to heterotrophic (sink) organs, where it can be used for metabolism
and respiration to generate the energy source ATP, or it can be stored as starch, playing a crucial
role in biomass (W. Patrick et al., 2013). Therefore, the content of substances such as sucrose
and starch are essential for evaluating the photosynthetic performance and growth of Wild Mint
plants under different light conditions. The increase in photosynthetic product accumulation,
such as sugar or starch (Table 2.7 and 2.8), leads to an increase in water uptake, consequently
resulting in increased fresh weight in Wild Mint plants grown under B3R7 combined light
compared to those in other LED light treatments (Figures 2.12 and 2.14). Similarly, the transport,
distribution, and storage of sucrose and starch in different plant organs are closely correlated
with the percentage of organ biomass in Wild Mint plants under various light conditions

(Figures 2.13, 2.15, 2.16, and 2.17).

Moreover, the sugars produced by the photosynthetic fixation of CO; provide raw material
for the biosynthesis of all the organic molecules found in plant, the photosynthetic primary

compound metabolism serves as a source of raw materials and energy, either directly or
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indirectly through respiration, for the biosynthesis of secondary compounds such as phenolics
in plants (Darko et al., 2014). In this study, all colored LED light treatments demonstrated an
increase in the total phenolic content in Wild Mint leaves compared to the control. Particularly,
the decrease in sugar content in the blue or red monochromatic light treatments was correlated
with an increase in the total phenolic content in Wild Mint plants. A similar trend was observed
in other plant species, such as Brassica napus L., Lactuca sativa, Ocimum basilicum, and
Rhodiola imbricata, when exposed to red or blue LEDs with light intensities ranging from 50
to 200 pmol m™ s7! (Bantis et al., 2016; Johkan et al., 2010; Kapoor et al., 2018; Park et al.,
2019). The total phenolic compound increased with additional color LED lights, even when
blue or red LEDs were applied only as supplemental light or in combination light source (Hasan
et al., 2017; Jung et al., 2021). Results in lettuce also indicated an increase in the total phenolic
compound after short- or long-term exposure to red or blue LED light when compared to white
light (Son et al., 2012). Several studies have reported the relationship between red or blue LED
light and phenylalanine ammonia-lyase (PAL), a key gene encoding the enzyme responsible for

phenolic metabolites (Heo et al., 2012; Park et al., 2020; Son et al., 2012).
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5. Conclusion

The results revealed that monochromatic blue light suppressed Wild Mint plant growth,
while monochromatic red light stimulated it. Plants grown under a combined light spectrum
(30% blue: 70% red) exhibited significantly enhanced productivity and biomass compared to
other treatments. The distribution and accumulation of photosynthesis products and biomass in
different plant organs were notably influenced by these distinct light treatments, impacting

source-sink relationships in plants, including factors such as assimilate demand.

All colored LED light treatments increased the phenolic content of Wild Mint leaves.
Additionally, combination B3R7 LED light proved to be a more effective source to produce
total phenolic compounds in Wild Mint plants. These findings underscore the potential of LED
technology in manipulating the growth and accumulation of desirable bioactive compounds
during Wild Mint plant cultivation, contributing to the refinement of indoor herb cultivation

protocols to meet production demands.
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Chapter II: Growth traits and photosynthetic characteristics in Mentha arvensis L.

under varied LED lighting conditions based on high throughput phenotyping

1. Introduction

Photosynthesis is the process of converting light energy into chemical energy in the form
of reducing power, such as NADPH or NADH, and ATP. These chemical compounds are
subsequently utilized to facilitate the fixation of carbon dioxide and its reduction into sugars,
with the by-product of O; release (Bowyer and Leegood, 1997; Johnson, 2016). The outputs of
photosynthesis serve as the primary organic for plant biomass construction, thus, crucial in
determining crop yield and food production (Chen et al., 2018; Hu et al., 2021). With the world's
population growing at an increasingly rapid rate, there is a heightened demand for
pharmaceuticals, agricultural products, and food safety, necessitating a doubling of yields by
2050 (Valin et al, 2014). Consequently, there is an ongoing and pressing need to
comprehensively understand the mechanisms of photosynthesis and to develop strategies for

enhancing crop yield and quality through improvements in photosynthetic processes.

A comprehensive understanding of the light mechanisms that regulate photosynthesis
represents a complex study. Furthermore, achieving accurate measurements of photosynthetic
efficiency remains a challenge (Yahia et al., 2019). Currently, the most widely used method for
assessing photosynthesis is the gas-exchange method, which provides instantaneous
measurements and allows for the quantification of CO; assimilation, ranging from individual
leaves to canopy-level photosynthetic rates (Haworth et al., 2018). However, it is important to
note that these techniques are significantly influenced by environmental variables, particularly
temperature, which can compromise their precision. Furthermore, conventional measurement
techniques tend to be time-consuming, costly, destructive in certain phenological stages and not

suitable for large-scale phenotyping trials, even when incorporating methods designed to
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expedite data collection (Fu et al., 2022).

In response to "phenotyping bottlenecks" posed by limitations in traditional methods, the
emergence of high-throughput phenotyping techniques for measuring plant photosynthesis
represents a significant advancement (Furbank and Tester, 2011; Stirbet et al., 2020). This
development has given rise to the concept of “phenomics” which can essentially be described
as “high-throughput plant physiology”. Various high-throughput phenotyping (HTP) platforms,
combining novel technologies such as non-invasive imaging, spectroscopy, image analysis,
robotics, and high-performance computing, have been emerging to address the challenges of

traditional low-throughput methods (Fu et al., 2022; Stirbet et al., 2020).

Huichun Zhang et al. demonstrated the potential of optical sensing in assessing a wide
range of plant leaf characteristics, including morphology, physiology, and biochemical traits
(Zhang et al., 2023). High-throughput phenotyping has proven its power in large-scale
evaluations of plant yield, biomass, and phenotype using RGB images (Du et al., 2020; Han et
al., 2021). Non-destructive optical techniques, performed in situ, have become popular for
providing relative indications of photosynthetic pigment concentration by measuring the
percentage of light transmitted through and reflected off the leaf surface (Cerovic et al., 2015,
2012; Kuleshova et al., 2018; Parry et al., 2014). Additionally, researchers have used
chlorophyll fluorescence as a dynamic measurement to delve into the maintenance of
photosynthetic function under specific environmental conditions. This measurement can now
be carried out using affordable commercial instruments, particularly those utilizing pulse
amplitude-modulated (PAM) fluorometry (Baker, 2008, 2004; Fu et al., 2022; Kalaji et al., 2017;

Stirbet et al., 2020).

As aresult, the evaluation of plant performance in the field has become significantly faster,

allowing for a more comprehensive measurement throughout the plant's lifecycle and reducing
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the reliance on periodic destructive assays (Fu et al., 2022; Furbank and Tester, 2011; Stirbet et
al., 2020; Zhang et al., 2023). Moreover, these platforms are flexible and can be implemented
on different scales from in vitro, trials to field environments (Araus and Cairns, 2014; Awlia et
al., 2016; Bethge et al., 2023; Cho and Yang, 2023; Yang et al., 2020, 2020). The availability of
commercial sensors has made it possible to integrate various sensing technologies on a single
platform, offering a non-invasive, cost-effective, and efficient means of characterizing plant
growth and photosynthesis over time (Cho and Yang, 2023; Qiu et al., 2018). The application
of these tools in dedicated high-throughput, controlled-environment facilities have the potential
to enhance precision and reduce the need for replication in field studies. So far, these techniques
have had a substantial impact on our understanding of photosynthesis and photosynthetic
physiology, ranging from individual leaves to entire canopy scales (Araus and Cairns, 2014; Fu

et al., 2022; Valin et al., 2014).

In the present study, various high-throughput phenotyping methods were employed to
assess the effect of varying blue-to-red LED light ratio influences on the overall growth,
chlorophyll fluorescence parameters, and photosynthetic traits of Wild Mint plants. These
findings enhance the comprehension of how Wild Mint plants react to alterations in
environmental light conditions and assist in establishing consistent procedures for cultivating

and tending to these plants on a commercial scale.
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2.  Materials and methods
2.1 Plant material and experiment design

10-day-old Mentha arvensis L. (Wild Mint) plants were used as plant material. Plant
material was grown under four different LED lights: 100% blue (B), 30% blue and 70% red
(B3R7), 100% red (R), and cool white (W), 12/12 photoperiod, at the same PPFD 150 pumol
photon.m™ s°!. The growth conditions were controlled by using an indoor hydroponics system

with temperature at 27 + 2°C, relative humidity of 65 £+ 5%, 6.8 £ 0.2 pH.
2.2 Images acquisition

For the photograph of the Wild Mint plants, an indoor studio (600*600*600 mm) was set
up to reduce the influence of ambient light. An 18W class white (5600K) LED (CN-T96, Plastic,
Korea) was added to adjust the required illumination to prevent distortion and damage to the
data caused by shadows, and the background plate was made in-house in white considering the
green color of the plant. A 12.1-megapixel CMOS sensor digital camera (IXUS 220 HS, Canon,
Japan) was used as the camera. The camera settings had an ISO value of 400 and an exposure

time of 1/10.

For the examination of the leaf area, all leaves, including those on the lateral stem, were
1solated and placed on A4 paper as a background. Top-view leaf imaging was conducted within
the studio, maintaining a 90-degree angle and a 400 mm distance between the camera and the

leaf surface.

For the assessment of plant area or plant convex hull, side-view images of entire Wild
Mint plants, including stems and leaves were captured. The plants were positioned within the
same studio at a 400 mm distance from the camera, with the camera angle adjusted to 90 degrees

relative to the plant surface.
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2.3 Leaves area based on RGB images

The leaf area was measured using ImageJ (National Institutes of Health, NIH, USA)

(Schindelin et al., 2012), following these steps:

The leaf image (Figure 3.1A) was imported into Image]2 (Fiji) and its contrast was
enhanced by 30% to eliminate shadows (Figure 3.1B). Subsequently, the color threshold levels
(hue, saturation, and brightness) were adjusted to segment the leaves from the background and
convert the image into a binary format, with leaves represented as white pixels and the
background as black pixels. Any noise or small artifacts in the binary image were removed
using the "Fill Holes" tool (Figure 3.1C). Finally, the leaf area was measured from the binary

image using the "Analyze Particles" function (Figure 3.1D).

Figure 3.1 Representative picture showing the extraction of leaves area using ImagelJ2

(Fiji) software. Original image (A), enhancing contrast image (B), binary image (C), and

extract leaves area (D).
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2.4 Plant area and plant convex hull based on RGB images

The plant area and plant convex hull were measured using ImageJ (National Institutes of

Health, NIH, USA) (Schindelin et al., 2012), following these steps:

Side-view images of entire Wild Mint plants (Figure 3.2A) were imported into ImageJ2
(Fiji) and their contrast was enhanced by 30% to eliminate shadows (Figure 3.2B).
Subsequently, the color threshold levels (hue, saturation, and brightness) were adjusted to
segment the plant from the background and convert the image into a binary format, with the
plant area represented as white pixels and the background as black pixels (Figure 3.2C). The
plant area was measured from the binary image using the “Wand Tool” and the “Measure"
function (Figure 3.2D). The plant convex hull was measured from the binary image using the
“Convex hull” and “Measure" function (Figure 3.2E), and the original convex hull image is

shown in Figure 3.2F.
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Figure 3.2 Representative picture showing the extraction of plant area and plant convex
hull value using Imagel2 (Fiji) software. Original image (A), enhancing contrast image (B),

binary image (C), extract plant area (D), plant convex hull (E, F).
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2.5 Determination of stomatal characteristics based on leaf micrograph images

The fifth leaves from the tip of the plant’s canopy, at harvest time, were isolated and swept
onto the underside with a cyanoacrylate glue (mixed in toluene and ethyl acetate solvents) and
fixed on microscope slides. The stomatal micrographs of leaf on cyanoacrylate film were
captured by a CKX41 inverted microscope (Olympus, Tokyo, Japan) with a DFC450 camera
(Leica, Wetzlar, Germany), and the original images were stored in JPEG format with a
resolution of 3360 x 4480 pixels (Figure 3.3A). The stomatal characteristics in leaves of Mentha
arvensis L. were measured using ImageJ (National Institutes of Health, NIH, USA), following

as illustration below:

el ol

e

Figure 3.3 The stomatal characteristics measurement process in the leaves of Mentha

arvensis L. Original image (4), SD: stomatal density (C), separated individual stomata (B),
GCW: guard cell width (D), GCL: guard cell length (E) GCA: guard cell area (F), and SPA:

stomatal pore apertures (G).
2.6 Chlorophyll concentration index

The Chlorophyll Concentration Index (CCI) value of the 5 leaf position from the plant

tip was measured using a handheld CCM-200 plus (Apogee, USA). The leaves were clamped
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randomly at 4 positions on the leaf blade and averaged as a measurement value. The
measurement results are based on the light transmission ratio at two wavelengths: red and
infrared bands, through the leaf of the plant. The red wavelength spectrum falls within the
chlorophyll absorbance range while the other serves to compensate for mechanical differences
such as tissue thickness. Assuming an even distribution of chlorophyll in the leaf, the
chlorophyll index depends on the molecular chlorophyll content in the leaf and can be

determined using the formula:

Amount of light transmitted at 931 nm

I =
¢ Amount of light transmitted at 653nm

Chlorophyll Concentration Index (CCI) value that is proportional to the amount of
chlorophyll in the sample.
2.7 Polyphenols measurement
The flavonol index (Flav) value of the 5 leaf position from the plant tip was measured
using a handheld Dualex Scientific’™ device (Force-A, France). The leaves were randomly
clamped at four positions on the leaf blade and then averaged to obtain a measurement value.

The measurement results are based on the fluorescence light ratio at two wavelengths: red and

UV-A, through the plant's leaf (Figure 3.4).
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Sampling wavelength: Reference wavelength:
UV-A or Green Red

EPIDERMIS
Rich in polyphenols

Near-infrared fluorescence Near-infrared fluorescence

+T™M

Figure 3.4 Operating principle of the handheld Dualex Scientific™ " meter.

First, near-infrared chlorophyll fluorescence is measured under red excitation light as a
reference, which is not absorbed by polyphenols. Second, the fluorescence excitation under the
UV-A light wavelength spectrum, falling within the absorbance range of flavonols, was
measured. Only a fraction of this light reaches the chlorophyll in the mesophyll and can generate

near-infrared fluorescence. The flavonol index can be determined using the following formula:

Near — infrared fluorescence excited red

Fl lindex = L
AvOmotInaex = Y99 Near — infrared fluorescence excited UV — A

Similarly, the anthocyanin index was measured under red and green light, followed by the
formula:

Near — infrared fluorescence excited red

Anthocyanin index = Lo - -
y g Near — infrared fluorescence excited green

2.8 Measurements of the chlorophyll fluorescence parameters

The fluorescence yield of chlorophyll in Wild Mint plant leaves under varying LED light
ratios was investigated by PAM-2500 Portable Chlorophyll Fluorometer (Walz, Germany) with

DLC-8 (Dark Leaf Clip DLC-8) and Leaf-Clip Holder 2030B.

The 5" leaf position was isolated and dark-adapted for 15 minutes. The minimum
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fluorescence value (F,) was measured after a 1-minute in the dark and the maximum
fluorescence value (Fm) during a 1-second saturating light pulse 5700 umol m™ s™'. Then, the
leaf samples were exposed to experimental light conditions for 10 minutes, and fluorescence
values (F), maximum fluorescence values (Fm') during a 1-second saturating light pulse 5700
umol m2s?, and minimum fluorescence values (Fo') within 5 seconds under far-red light were
sequentially recorded over time. Fluorescence parameters were calculated using the following

formulas (Baker, 2008):
Maximal quantum yield of photosystem II:
Y(IDpax = Fv/Fm (ranging from 0 to 1)
Non-photochemical fluorescence quenching coefficient:

Fm' — Fo’

N=1-
1 Fm — Fo

Photochemical fluorescence quenching coefficient:

B Fm’' — F
" Fm' — Fo'

qP
Maximum electron transport rate:
ETR = PAR X ETR — Factor X Ppgy /Ppps X Y(II)
Where:
PAR is the photosynthetically active radiation intensity.

ETR-Factor: Absorptance of photons by photosynthetic pigments (default value is 0.84).

PPS2/PPPS Photons absorbed by PS II relative to photons absorbed by photosynthetic

pigments (default value is 0.5).

Y (I1): Effective photochemical quantum yield of PSII
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2.9 Statistical analysis

Each Wild Mint plant was used as a replicate. All experiments were conducted with 8
plants/LED treatment. Data analysis was performed using R software (Version 4.3.1, the R
Foundation for Statistical Computing, Vienna, Austria). The datasets were checked for

normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965).

For datasets that did not meet the criteria for normality distribution, non-parametric data
analysis was conducted using the Kruskal-Wallis test, followed by the Dunn test with

Benjamini-Hochberg correction.

In contrast, the datasets exhibited a normal distribution. For these datasets, parametric
analysis was conducted using the One-way ANOVA test, followed by Fisher's least significant
difference (LSD) post hoc test to compare measurements between different LED light

treatments. Bar plots and box plots were generated using the 'ggpubr’ package in R 4.3.1.
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3. Result

Recent developments in portable devices for photosynthetic measurement enable the
assessment of photosynthetic rates in individual leaves and provide the means to project these
leaf measurements to estimate the overall photosynthetic rates of the entire plant or canopy
throughout the growth cycle (Araus and Cairns, 2014; Fu et al., 2022; Haworth et al., 2018;
Zhang et al., 2023). However, the effect of light conditions on individual leaves varies
depending on their position and the heterogeneity within the plant canopy (Bauerle et al., 2020;
Constable and Rawson, 1980; Dwyer and Stewart, 1986; P. Zhang et al., 2020). To improve the
precision of experimental measurements, a leaf growth curve was constructed to assess the
photosynthetic rate of Wild Mint plant leaves, typically up to the stage of full leaf expansion.
The leaf area of Wild Mint plants, after 4 weeks of cultivation under white LED light, gradually
increases with leaf position. The maximum leaf area is observed at the 5™ position from the
plant tip, measuring 4.87 cm?. In the 4" and 5™ leaf groups, both biomass and chlorophyll
content exhibit significant increases, with measurements of 458 mg and 21.8 CCI, respectively
(Table 3.1, Figure 3.5). The increase in both the number of leaves and the total leaf area is
directly relative to the expansion of the overall plant area and canopy size as time progresses

(Figure 3.6 and 3.7).
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Table 3.1

Fresh weight, dry weight, leaf area and chlorophyll content index of leaves at

different positions in Mentha arvensis L. 4-week-old plants exposed to a white LED with a

PPFD of 150 pmol m? s,

Leaves Leaves area Fresh weight Dry weight ~ Chlorophyll content index
position (cm?) (mg) (mg) (CCI)

2 0.74 + 1.29¢ 76.5 + 9.25¢ 10.1+1.14¢ -

3 2.60+351° 296.8+22.64° 329+263¢ 17.1+0.73°

4 418+355% 4849+1576% 56.2+218% 20.9+0.602

5 4.87+3.27%° 5487+2287% 61.9+3.30% 21.8+0.712

6 458 +3.04%  478.4£2539%  49.0+3.84° 19.8+0.68°

7 402+3.77° 371.6+3529°  46.2+4.67° 15.2+0.60°¢

8 296+280° 291.9+2856°¢ 28.2+284¢ 14.8 £ 0.57 ¢

9 242+216° 255.3+19.38° 29.0+2.11¢ 14.6 +0.32 ¢

Statistical analysis was performed using a Kruskal Wallis test (p-value < 0.05) followed by a Dunn Benjamini

Hochberg post hoc test for multiple comparisons. Different letters indicate a significant difference between two
medians.
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Figure 3.5 Fresh weight, dry weight, leaf area and chlorophyll content index of leaves at

different positions in Mentha arvensis L. 4-week-old plants exposed to a white LED with a
PPFD of 150 umol m? s'. Statistical analysis was performed using a Kruskal Wallis test (p-
value < 0.05) followed by a Dunn Benjamini Hochberg post hoc test for multiple comparisons.

Different letters indicate a significant difference between two medians.
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S cm
Figure 3.6 Side view images of Mentha arvensis L. taken at 0 (A), 3 (B), 6 (C), 9 (D), 12
(E), 15 (F), 18 (G), 21 (H), 24 (I). 27 (J), 30 (K) days after transfer to white LED with a PPFD

of 150 pmol m2 s,
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5cm

Figure 3.7 Top view images of Mentha arvensis L. taken at 0 (A), 3 (B), 6 (C), 9 (D), 12
(E), 15 (F), 18 (G), 21 (H), 24 (I) days after transfer to white LED with a PPFD of 150 pmol
2

m2s?,
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The experiments with Wild Mint plants were conducted under three different light
conditions: monochromatic red LED (660 nm - R), blue LED (450 nm - B), and a combination
of B3R7 LEDs. These conditions were compared to white LED light, which served as the
control. Table 3.2 shows that supplementation with monochromatic blue or red LED light
resulted in a decreased maximum leaf area of Mentha arvensis L. compared to white or
combined B3R7 LED light. Red LED light had the most significant effect on the total leaf area
and plant area, but no significant differences were observed between blue LED light and the
control, whether used alone or in combination with red LED lights. A high ratio of red LED
light increased the plant's convex hull in both the 100% red and combined B3R7 treatments

compared to the control under white LED light (Table 3.2, Figure 3.8).

Table 3.2 Leaves area and total leaves area/plant, plant area and plant convex hull of
Mentha arvensis L. plant after 4 weeks grown under different LED light treatments, at the same

PPFD 150 pmol.m™2.s7".

Light 5" Jeaves area Total leaves area Plant area Plant convex hull
(cm?) (cm?) (cm?) (cm?)
B 25.86+0.38"  632.11+11.62° 327.80+14.89°  550.75+20.83°
B3R7 28.10+1.18 ¢ 669.53+£29.80°  412.44+55.32°%  843.21 +146.04 %2
R 25.52+0.80° 913.62+7442%  585.97+24.00* 859.90+21.122
4 28.05+0.42% 678.30 £43.36%  349.65+3837%  617.93+£74.57%®
AN,[S;[/A’S 0.0433 * 0.00197 ** 0.0012 ** 0.0481 *

Means of + standard errors followed by different letters within columns are significantly different by Fishers least

significant difference (LSD) test with one-way ANOVA; n = 8.
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Figure 3.8 Side view images of Mentha arvensis L. after 4 weeks grown under blue (A),

combined BR (B), red (C) and white LED (D) treatments, at the same PPFD 150 pmol m2s™".
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Based on the micrograph image and using the Fiji platform, we investigated the stomatal
characteristics on the abaxial side of Wild Mint plant leaves under various light sources (Table
3.3). The results showed that the stomatal density was not affected by supplemental LEDs. All
color LED treatments significantly decreased the width and length of the stomata guard cells,
resulting in a reduced stomatal guard cell area. However, the stomatal pore apertures in these

treatments were larger than those under white LED light.

Table 3.3 Stomatal characteristics in leaves of Mentha arvensis L. after 4 weeks grown

under different LED light treatments, at the same PPFD 150 pmol m s

Light SD GCW GCL GCA SPA
(SD mm?) (um) (um) (um?) (um)
B 165+5  2054+009¢  30.56+0.12¢  483.88+3.83° 550+0.05°
B3R7 160+5  20.60+£0.08°  30.71+0.12%  489.56+3.55% 4.86+0.05"
R 173+6  20.90+0.09°  31.00+0.12° 49878 +3.75°  4.66+0.06"
W 157+4  21.66+0.11°  31.77+0.13®  525.19+4.62° 4.90+0.08°
ANSS\:A’S 0.101 2e-16 *** 3.78e-12 % 2.05¢-13 **x 2e-16 **x

Means of + standard errors followed by different letters within columns are significantly different by Fishers least
significant difference (LSD) test with one-way ANOVA; n = 8.

SD: stomatal density, GCW: guard cell width, GCL: guard cell length, GCA: guard cell area, and SPA: stomatal
pore apertures.

Using an innovative optical leaf-clip device, the contents of three pigment types
(chlorophyll, flavonoids, anthocyanins) and the nitrogen balance index were measured to
investigate how each pigment responds to various light sources (Table 3.4-3.7, Figure 3.9). The
red LED light treatment decreased the chlorophyll content in Mentha arvensis L. leaves
compared to other light treatments. Meanwhile, both monochromatic red and blue LEDs led to
an increase in anthocyanin content. The irradiated plants exhibited significantly higher
flavonoid content compared to the control plants, which correlated negatively with the nitrogen

balance index in Mentha arvensis L. leaves under these LED treatments.
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Figure 3.9 Physiological parameters of the leaves, including chlorophyll content index

(A), flavonoid content (B), anthocyanin content (C), and nitrogen balance index (D), were
measured in the fifth leaves of Mentha arvensis L. plants after 4 weeks under different light
treatments, at the same PPFD of 150 pmol m™ s™. ns: non-significant at P < (.05, %, ** **x*

and **** Significant at the 0.05, 0.01, 0.001 and 0.0001 probability level.
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Table 3.4

The statistical analysis of chlorophyll content index (CCI) of Mentha arvensis

L. leaves, after 4 weeks grown under different LED light treatments.

Light Rep. Min Max  Median Mean sd Range cv
B 32 10.00 16.50 13.20 13.46 1.62 6.50 0.12
B3R7 32 8.80 21.30  15.60  15.10 2.93 12.50 0.19
R 32 6.40 13.90 9.25 9.43 1.77 7.50 0.19
W 32 9.60 19.10 1445 14.75 2.35 9.50 0.16
Table 3.5 The statistical analysis of anthocyanins content of Mentha arvensis L. leaves,

after 4 weeks grown under different LED light treatments.

Light Rep. Min Max  Median Mean sd Range cv

B 8 0.04 0.06 0.05 0.05 0.01 0.02 0.15

B3R7 8 0.02 0.05 0.03 0.03 0.01 0.03 0.33

R 8 0.03 0.07 0.05 0.05 0.01 0.04 0.29

W 8 0.02 0.04 0.03 0.03 0.01 0.02 0.21
Table 3.6 The statistical analysis of flavonoids content of Mentha arvensis L. leaves,

after 4 weeks grown under different LED light treatments.

Light Rep. Min Max  Median Mean sd Range cv
B 8 0.47 0.76 0.56 0.57 0.09 0.29 0.17
B3R7 8 0.44 0.63 0.52 0.52 0.06 0.19 0.11
R 8 0.33 0.42 0.38 0.38 0.03 0.09 0.08
Y 8 0.32 0.42 0.40 0.39 0.03 0.10 0.08
Table 3.7 The statistical analysis of nitrogen balance index (NBI) of Mentha arvensis L.

leaves, after 4 weeks grown under different LED light treatments.

Light Rep. Min Max  Median Mean sd Range cv
B 8 3320  57.79  48.88  48.09 7.17 24.59 0.15

B3R7 8 48.22 6194 5525 5540 4.14 13.72 0.07
R 8 42.67  79.58  65.69  63.89 11.87 3691 0.19
W 8 62.05 7733  69.80  69.48 5.97 15.28 0.09

85



The photosynthetic rate prediction models were also assessed via chlorophyll-a
fluorescence investigation (Table 3.8-3.11, Figure 3.10). The F\/Fi values in the leaves under
100% red LED were significantly lower than in the other treatments, while the presence of a
blue light spectrum maintained this value. Additionally, plants grown under a high proportion
of blue LEDs exhibited a higher Fy/Fn, value, surpassing 0.8, while the treatment with high red
LED ratios had values lower than 0.8. No significant differences were observed between all the
LED treatments for the non-photochemical fluorescence quenching coefficient rate (qN). Both
gP and ETR value of plants under the blue LED lights was higher than that under the red LED
light and control. Several studies have demonstrated that long-term red LED treatment can
reduce the quantum yield of PSII photochemistry, but blue or B3R7-combined LEDs could
alleviate these symptoms (Miao et al., 2019, 2016; Ouzounis et al., 2015; Zheng and Van
Labeke, 2017), which aligns with our results. This suggests that a high proportion of blue LEDs

is more effective in enhancing the photosynthetic properties of the Mentha arvensis L. leaves.

Table 3.8 The statistical analysis of maximal quantum yield of PSII (F\/Fm) values of

Mentha arvensis L. leaves, after 4 weeks grown under different LED light treatments.

Light Rep. Min Max  Median Mean sd Range cv

B 8 0.77 0.81 0.80 0.79 0.01 0.04 0.02
B3R7 8 0.78 0.81 0.80 0.80 0.01 0.03 0.01
R 8 0.71 0.78 0.75 0.75 0.03 0.07 0.04
W 8 0.75 0.81 0.80 0.79 0.02 0.06 0.02
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Table 3.9

The statistical analysis of non-photochemical fluorescence quenching

coefficient (qN) values of Mentha arvensis L. leaves, after 4 weeks grown under different LED

light treatments.

Light Rep. Min Max  Median Mean sd Range cv

B 8 0.48 0.66 0.58 0.56 0.06 0.18 0.11

B3R7 8 0.45 0.57 0.53 0.53 0.04 0.12 0.08

R 8 0.47 0.60 0.54 0.54 0.05 0.13 0.08

w 8 0.52 0.63 0.55 0.56 0.04 0.11 0.07
Table 3.10 The statistical analysis of photochemical fluorescence quenching coefficient

(qP) values of Mentha arvensis L. leaves, after 4 weeks grown under different LED light

treatments.
Light Rep. Min Max  Median Mean sd Range cv
B 8 0.73 0.82 0.78 0.77 0.04 0.09 0.05
B3R7 8 0.73 0.84 0.79 0.79 0.04 0.11 0.05
R 8 0.61 0.78 0.72 0.71 0.06 0.17 0.09
W 8 0.63 0.79 0.69 0.70 0.06 0.16 0.08
Table 3.11 The statistical analysis of maximal electron transfer rate (ETR) of Mentha

arvensis L. leaves, after 4 weeks grown under different LED light treatments.

Light Rep. Min Max  Median Mean sd Range cv
B 8 28.57 3497  30.61 31.21 233 6.40 0.07

B3R7 8 3022 3594 3291 3281 1.98 5.72 0.06
R 8 23.03  30.53  26.55  26.77 2.69 7.50 0.10
Y 8 25.15  32.09 2823  28.25 2.69 6.94 0.10
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Figure 3.10 The maximal quantum yield of PSII (A), non-photochemical fluorescence

quenching coefficient (B), photochemical fluorescence quenching coefficient (C), and electron

transport rate (D), were measured in the fifth leaves of Mentha arvensis L. plants after 4 weeks

grown under different LED light treatments, at the same PPFD 150 umol.m2.s™". ns: non-

significant at P < 0.05;* ** and *** Significant at the 0.05, 0.01 and 0.001 probability level.
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4. Discussion

Research on photosynthesis is crucial for gaining insights into the physiological responses
of crops and for accurately predicting the degree of dry matter accumulation in crop plants
(Hind, 1985, 1985; Rabinowitch and Livingston, 1946; Stirbet et al., 2020). In indoor
cultivation, the process of leaf photosynthesis is influenced not only by environmental factors
like light, temperature, nutrition, and water availability but also by plant-related factors such as
leaf age, leaf position, sink effects, and mutual shading (Dwyer and Stewart, 1986; Hardwick
et al., 1968; Jewiss and Woledge, 1967; Peat, 1970; Wang et al., 2023). This raises an essential
question in agricultural research: How can we precisely control the photosynthetic traits of

crops based on their physiological characteristics?

In higher plant species, it is well-known that photosynthetic rates change with leaf age and
leaf position on the main stem. A distinct “old and new alternation” behavior pattern is observed
in the photosynthetic rates of individual leaves within a crop canopy (Zhang et al., 2020a). As
new leaves in a plant canopy grow and develop into functional leaves, there is an increase in
the photosynthetic rate in the growing leaf, typically reaching its peak at the time of full leaf
expansion. Subsequently, there is a descent in photosynthetic rate that accompanies leaf
senescence (Dwyer and Stewart, 1986; Peat, 1970). The leaf growth curve of Wild Mint plants,
after being exposed to white LEDs for four weeks, followed a similar pattern. Leaf area,
chlorophyll content index, and leaf biomass increased with leaf position, reaching their
maximum in the 4" and 5™ leaf groups, and decreased in the following leaves. Therefore, 5™
leaves were chosen for further experiments to establish which LED light was more effective in

photosynthesis and the growth of the Wild Mint plants.

Red (600-700 nm) and blue (400-500 nm) LED lights are widely employed as light

sources in plant factories (Fang et al., 2021; Kozai et al., 2016; Mickens et al., 2018). Light
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energy is mainly absorbed by plant leaves, making leaf area and the plant canopy key traits that
correlate with photosynthesis, respiration, and transpiration in plants (Morisette et al., 2006;
Zhao et al., 2012). Both monochromatic red and blue LEDs led to a reduction in the maximum
leaf area of Mentha arvensis L when compared to B3R7 and white LEDs in controlled
cultivation. Furthermore, in the blue-light treatment, the reduction in leaf size led to a
significant decrease in total leaf area (Table 3.3). Excessive exposure to blue light caused
reduced leaf expansion, stem elongation, and plant growth (Craver et al., 2020; Fan et al., 2013;
Hernéndez and Kubota, 2016; Kusuma et al., 2020). In contrast, under red light, there was no
reduction in the total leaf area, likely due to an increase in the total number of leaves and
branches. Consequently, plants grown without blue light exposure showed a tendency towards
bolting (Karimi et al., 2022; Rehman et al., 2020). The absence of blue light in the combined
spectrum led to a substantial increase in total leaf and plant area. Increasing the red ratio in
supplementary light had a significant impact on the plant area and the plant's convex hull,
highlighting the influence of the LED light spectrum on these plant traits. This has particular
significance for assessing matter and energy exchange between crops and the environment and

for designing plant density to manipulate crop production in plant factories.

In mature leaves, stomata typically cover only 0.5% to 5% of the leaf's surface.
Nevertheless, stomata have a significant impact on plant photosynthesis, as stomatal
conductance is closely linked to CO» assimilation and helps regulate water loss in response to
changing environmental conditions (Kim et al., 2010; Lawson, 2009; Mott et al., 2008;
Shimazaki et al., 2007). Higher stomatal density facilitates more efficient and rapid gas
exchange between plants and the atmosphere. Stomatal density changes are associated with
phytochrome-based red light receptors, particularly phyB, which plays a dominant role in this

process (Casson et al., 2009; Driesen et al., 2020; Matthews et al., 2020; Roni et al., 2017).
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Research has shown that lettuce exposed to 100% red LED light displayed the highest stomatal
frequency among various treatments involving different red-to-blue (R:B) light ratios, both on
the abaxial and adaxial leaf surfaces (Wang et al., 2016). Furthermore, plants exposed to a
combination of red and blue LEDs or fluorescent light exhibited a greater number of stomata
(Heo et al., 2002; Kim et al., 2004). However, an increase in stomatal density is inversely related
to stomatal size, as documented in previous studies (Camargo and Marenco, 2011; Kim et al.,
2004; Seif et al., 2021). The influence of LED lighting on stomatal development in Mentha
arvensis L leaves is consistent with the findings of these studies. Additionally, stomatal pore
openings are regulated by the light spectrum. Both blue and red light stimulate stomata opening
through distinct pathways (Driesen et al., 2020). Blue light serves as a signaling cue, while red
light functions as both a signal and an energy source (Driesen et al., 2020; Shimazaki et al.,
2007). Plants treated with colored LEDs exhibited increased stomatal openings and well-
organized guard cells (Muneer et al., 2014). This suggests that supplementing blue or red LED
light during plant cultivation will reduce stomatal size while enhancing stomatal opening in

Mentha arvensis L.

Chlorophyll (a+b) plays an important role in light absorption and converts it into chemical
energy during the photosynthetic process; hence, chlorophyll content is directly associated with
the efficiency and capacity of the photosynthetic apparatus (Rabinowitch and Govindjee, 1965).
The CCI (chlorophyll content index) value is measured based on the chlorophyll optical
properties, which are correlated to the photosynthetic pigment concentration in the leaf (Parry
et al., 2014). This value was significantly decreased in leaves of Wild Mint plants grown under
red LEDs, meanwhile, both monochromatic blue and combination LEDs were similarly
effective on leaves chlorophyll content compared to the white LEDs (Table 1). The pigment

synthesis is regulated by various photoreceptors that absorb lighting for different wavelengths.
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A positive correlation between the blue light intensity and the total chlorophyll content in lettuce,
spinach, kale, basil, and sweet pepper was reported (Naznin et al., 2019). Besides that, red light
decreased the chlorophyll content by 45% compared with blue light in Rice leaves, that
consistent with our results (Hamdani et al., 2019). A combination of blue and red light
significantly increased the expression of several genes encoding important enzymes in the
chlorophyll cycle such as Glutamyl-tRNA reductase (HEMA), glutamate-1-semialdehyde
aminomutase 1 (HEML), Chlorophyll oxygenase (CAQO) (Wang et al., 2022). Thus, the R70B30
treatment increased the accumulation of chlorophyll a + b (Zhang et al., 2019). This suggests
that blue light plays a more significant role in inducing the chlorophyll biosynthesis, absent
blue spectrum in supplemental light will reduce chlorophyll content in leaves of Mentha

arvensis L.

Light photons are absorbed by photosynthetic pigments within the light-harvesting
complex (LHC) and subsequently transferred to chlorophyll-a in the photosynthetic system (PS)
(Grouneva et al., 2013). In addition to chlorophylls, plant pigments encompass various
categories, including carotenoids, betalains, and specific flavonoid subclasses like anthocyanins,
anthocyanidins, and anthoxanthins (De Mello et al., 2023). These pigments broaden the
spectrum of light absorption for photosynthesis in plants. On another hand, anthocyanins
possess the capacity to protect photosynthetic tissues from photoinhibition by absorbing blue-
green light, thereby reducing the amount of light reaching chloroplasts (Agati et al., 2021; Dou
et al., 2019; Yang et al., 2016). In the case of Wild Mint leaves, exposure to monochromatic
blue or red LED light significantly boosts anthocyanin content (Figure 3.9B), possibly due to
the prolonged exposure to these LED treatments, resulting in an excess of energy in reaction
centers and triggering the photoinhibition process. More recently, it was pointed out that

anthocyanins act as light attenuators to compensate for inadequate photoprotection in young
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leaves of Acmena acuminatissima (Zhu et al., 2018).

Furthermore, flavonoids, including anthocyanins, exhibit potent antioxidant properties,
suggesting their potential role in scavenging reactive oxygen species (ROS) generated during
photosynthesis, especially under photoinhibition conditions (Albert et al., 2009; Ferreyra et al.,
2021). Blue light, characterized by a short wavelength and high energy, serves as a signal for
inducing photoprotection under similar light intensities (Liu and Van lersel, 2021; Stanford and
Tanner, 1985). As expected, our findings demonstrated higher flavonoid content in the blue
LED treatment, whether in monochromatic blue light or in combination with LED (Figure 3.9C).
Gene structure analyses identified 73 genes involved in flavonoid biosynthesis in Brassica rapa.
These analyses indicated that chalconeisomerase (CHI) serves as the first key enzyme in the
flavonoid metabolic pathway, with chalcone synthase (CHS) being the initiating enzyme in this
pathway (Guo et al., 2014). Notably, these genes exhibited significant up-regulation in all
purple leaves of Brassica under light stress conditions (Zhu et al., 2017). Previous reports
indicated that the expression of CHS and CHI genes in red-leaved lettuce depends on the red-
to-blue light ratio, and the expression of CHS genes increased under monochromatic LED light
compared to the control (Soufi et al., 2023). This implies that the combination of red and blue
light synergistically enhances the production of anthocyanins and flavonoids in Wild Mint

plants.

During plant growth, nitrogen (N) content ranks as the second most important element,
following carbon. Nitrogen plays a crucial role in the formation of proteins, nucleic acids,
enzymes, chlorophyll, and various other cellular metabolites (Y. Fan et al., 2022; Zhang et al.,
2014). To assess the nitrogen status in plants and predict crop yields, the nitrogen balance index
(NBI) is employed. NBI is defined as the ratio of chlorophyll to epidermal flavonoids (Chl/Flav)

and can be rapidly and non-destructively measured using Dualex4 (Cerovic et al., 2015, 2012).
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In our experiment, significantly lower nitrogen balance indexes along with higher flavonol
indexes were observed in plants exposed to blue and B3R7 LED light compared to the control
plants. This suggests reduced nitrogen availability in Wild Mint plant leaves under these LED
conditions. Previous studies have demonstrated that the enzyme nitrate reductase, responsible
for converting nitrate into nitrite, is activated by light and becomes inactive in darkness (Lillo,
1994; Sawhney and Naik, 1972). Activation of this enzyme after exposure to high
photosynthetically active radiation leads to a reduction in nitrate concentration in plants like
Brassica, Rose, and Lettuce (Matysiak, 2021; Matysiak et al., 2021; Trejo-Téllez et al., 2019).
Conversely, inactivation of the enzyme results in nitrate accumulation in plant tissues. In our
study, exposing plants to high light energy conditions (blue LED lights) caused the activation
of the nitrate reductase enzyme, resulting in decreased nitrate concentrations in leaves, which

in turn led to a decrease in the nitrogen balance index.

Various aspects of the photosynthetic apparatus and models for predicting photosynthetic
rates can be explored through the analysis of chlorophyll-a fluorescence parameters (Baker,
2004; Kalaji et al., 2017). Notably, Fv/Fm, qP, and ETR values of Mentha arvensis L. under Blue
LED light were significantly higher than those observed under Red LED light, while the qN
value in all light treatments remained consistent (Figure 3.10). Fu/Fm, in particular, serves as a
critical indicator, representing the maximal quantum yield and the maximum light-capturing
capability of PSII. This observation aligns with the findings in Cucumber plants, which noticed
that the Fy/F, ratio in leaves exposed to monochromatic red light consistently registered lower
values than in plants exposed to blue LED light either alone or in combination with other light
sources (Hogewoning et al., 2010). In addition, prolonged exposure to red LED light at 660 nm
induced a phenomenon known as the "red light syndrome," characterized by a reduction in

photosynthetic ability (Miao et al., 2019, 2016).
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Light energy is transformed by chlorophyll molecules through both the photochemical
quenching (qP) and non-photochemical quenching (qN) processes. There was no significant
variation in the non-photochemical fluorescence quenching coefficient (qN) across different
LED ratios (Figure 3.10B). This uniformity indicates that the protective mechanisms, mitigating
light-induced inhibition of photosynthesis and facilitating the dissipation of excess energy

through heat loss pathways (Baker, 2008), were consistent across all treatments.

The incorporation of additional blue LEDs into the cultivation system enhanced light-
capturing capabilities in Wild Mint leaves, resulting in an increase in the photochemical
fluorescence quenching coefficient (qP) and, consequently, a boost in the electron transfer rate
(ETR) within these treatments (Figure 3.10 C, D). The quantum yield of PSII photochemistry
is inherently linked to the electron transport rate through PSII (ETR) and has direct implications
on photosynthetic products. The results clearly indicated that ETR values were higher when a
substantial proportion of blue LEDs was used compared to those exposed to red LED light,
underscoring the superior efficacy of blue LEDs in promoting photosynthesis in Wild Mint

plant leaves.
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5. Conclusion

This study aimed to investigate high-throughput phenotyping methods to evaluate traits
of Mentha arvensis L. concerning growth and photosynthetic characteristics under various LED
lighting conditions. RGB image-based analysis proved to be a powerful tool for assessing
several significant plant morphology and biomass traits in Wild Mint, such as leaf area, plant
area, plant convex hull, and stomatal characteristics. In addition to that, non-destructive optical
techniques demonstrated efficiency and precision in determining photosynthetic traits in the

leaves of Wild Mint plants.

Based on these measurements, Wild Mint plants grown under blue LED light exhibited
greater effectiveness in the light-dependent stages of the photosynthesis process, including the
maximal quantum yield of PSII, photochemical fluorescence quenching coefficient, and
electron transport rate. Meanwhile, red LED light notably affected plant morphological and
biomass indicators. These findings suggest that high-throughput phenotyping methods could be
valuable tools for plant management and cultivation, significantly reducing the effort, time, and

costs associated with larger-scale assessment of photosynthetic traits.
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Chapter III: Correlation between the conventional and high-throughput phenotyping

analysis traits of Mentha arvensis L. under different combinations of LEDs lights

1. Introduction

Photosynthesis is the entry point of carbon into vegetation and therefore is a critical
determinant of crop production, as well as food security. The photosynthetic process consists
of two interconnected sets of phases: the light reactions, which produce energy-rich molecules
like NADPH and ATP, and the carbon fixation reactions, known as the Calvin-Benson cycle,
which utilize these products (Cardona et al., 2018; Kitao et al., 2021). Most of the plant's
biomass consists of carbon, hydrogen, and oxygen percentage, which essentially depends on
the photosynthetic synthesis activities of mature green leaves (Bowyer and Leegood, 1997;
Johnson, 2016). Photosynthetically reduced carbon products are transported from sources (plant
leaf), and sites of production, to sinks, sites of use, and storage. There, photoassimilates support
the maintenance of tissue growth and development. Photoassimilates in excess of growth and
maintenance requirements are accumulated in parenchyma storage tissues of organs (Van Bel
et al.,, 2003; Yahia et al., 2019). Many studies have shown a close connection between
photosynthetic activity and biomass accumulation, metabolism of primary and secondary
substances, as well as growth and development in plants (Fang et al., 2021; Jung and Arar, 2023;

Jung et al., 2021; Maddison et al., 2017).

Light wavelengths, perceived through plant photoreceptors, represent significant
environmental factors influencing the regulation of photosynthesis and the photomorphogenesis
of plants. These factors affect various aspects, including shoot elongation, antioxidant enzyme
activities, leaf anatomy, chlorophyll content, and chlorophyll fluorescence (Dueck et al., 2016;
Hu et al., 2016; Liu and Van Iersel, 2021). Red light initiates the photosynthetic process (Meng

et al., 2019; Rahman et al.,, 2021), while blue light enhances photosynthetic activity
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(Hogewoning et al., 2010; Miao et al., 2019, 2016). A consistent trend of increased biomass and
secondary metabolite production has been demonstrated when a combination of red and blue
LEDs is utilized (Li and Kubota, 2009; Ma et al., 2021; Park et al., 2019). The number of studies
exploring the effects of different LED light spectra on plant photosynthesis is continuously
growing, providing valuable insights into various impact mechanisms and measurement
approaches. However, it is important to note that photosynthetic characteristics can vary
significantly among different plant species, light intensities, treatment durations, and
environmental conditions (Fan et al., 2013; Lejeune et al., 2022; Son et al., 2012; Zheng and

Van Labeke, 2017).

So far, research has explored the connection between photosynthesis and plant growth
traits. This study aimed to investigate the correlations between plant traits, particularly their
relation to photosynthetic characteristics and production in Wild Mint, based on both
conventional and high-throughput phenotyping methods. These findings could prove
instrumental in developing screening methods and evaluating the impact of LED light on

modeling the growth and development of Wild Mint in controlled environments.
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2. Statistical analysis

Statistical analysis was conducted using R software (Version 4.3.1, the R Foundation for
Statistical Computing, Vienna, Austria). The normality of the data sets was assessed using the
Shapiro-Wilk test. Since some data sets did not exhibit a normal distribution, the nonparametric
Kruskal-Wallis’s rank sum test was used to compare measured Wild Mint plant traits under
different LED lights. Similarly, the Spearman rank correlation test was conducted to compare
the measurements of 22 traits of the Wild Mint plants under different light sources. Correlation

plots were generated using the "ggcorrplot" R package.

For a more comprehensive description of the results, principal component analysis (PCA)
was employed to summarize the relationship among the measure traits. PCA plots were

generated by using the "factoextra" R package.
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3. Result

The result indicates that there are no significant differences between replications, but the
traits exhibit significant variations among different light treatments, with the exceptions being
stomatal density (SD) and the non-photochemical fluorescence quenching coefficient (qN)
(Table 4.1). When conventional and phenomics-based evaluations were combined to assess the
growth and photosynthetic traits in Mentha arvensis L. under various LED lighting conditions,
a high degree of variance was observed, and the distribution pattern also varied, as depicted in

the box plot (Fig. 4.1).

Spearman's rank correlations among CCI, Flav, Anth, NBI, SD, GCW, GCL, GCA, SPA,
Fu/Fm, gN, gP, ETR, LA, TLA, PA, PCH, FW, DW, Suc, and Sta in Mentha arvensis L. plants
grown under supplementary LED light are detailed in Table 4.2. The correlation visualization
plot is available in Figure 4.2. The correlation analysis revealed distinct clusters of relationships

among the observed traits.

In the first group, chlorophyll content index (CCI) exhibited a strong positive correlation
with the maximal quantum yield of PSII (Fv/Fm) (rho: 0.85), and a low positive correlation with
electron transport rate (ETR) and the flavonol index (Flav). These three traits also showed

moderate positive correlations with each other.

The second group displayed a robust positive correlation among stomatal guard cell
characteristics, including guard cell width (GCW), guard cell length (GCL), and guard cell area
(GCL) (rho>0.7). Among these, guard cell width displayed a low positive relationship with
stomatal pore apertures (SPA). However, no significant relationship was found between these

traits and stomatal density or the traits in the first group.

In the third group, a strong positive correlation between plant biomass and plant

metabolites, including fresh weight (FW), dry weight (DW), sucrose content (Suc), starch
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content (Sta), and total phenolics content (TPC) were observed. These traits also demonstrated
moderate positive correlations with the maximum leaf area (LA) and total leaf area (TLA), and
low positive relationships with plant area (PA) and plant convex hull (PCH). However, no
significant relationships were observed between the traits in the third group and the stomatal

traits.

Conversely, the first group displayed a moderate negative correlation with the third group.
Notably, there was a strong negative correlation between the flavonol index and the nitrogen
balance index (NBI). The NBI also exhibited a moderate negative relationship with the maximal
quantum yield of PSIIL, photochemical fluorescence quenching coefficient (qP), and electron

transport rate.
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Figure 4.2 Visualization plot showing the correlation between various traits of Mentha
arvensis L. plants grown under supplementary LED light. CCI: Chlorophyll content index, Flav:
Flavonol index, Anth: Anthocyanin index, NBI: Nitrogen balance index, SD: Stomatal density,
GCW: Guard cell width, GCL: Guard cell length, GCA: Guard cell area, SPA: Stomatal pore
apertures, Fv/Fm: Maximal quantum yield of PSII, gN: Non-photochemical fluorescence
quenching coefficient, gP: Photochemical fluorescence quenching coefficient, ETR: Electron
transport rate, LA: Maximum leaf area, TLA: Total leaves area, PA: Plant area, PCH: Plant

convex hull, FW: Fresh weight, DW: Dry weight, Suc: Sucrose content, Sta: Starch content,

TPC: Total phenolics content.
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Principal component analysis (PCA), a statistical method, helps identify the contribution
of each variable to the overall variance along the principal axes. Eigenvalues obtained from
PCA are typically employed to select the most influential factors among the variables. In this
study, PCA revealed that the first two components explained 52.4% of the variance in all

Mentha arvensis L. plant traits grown under LED light (Table 4.3, Figure 4.3).

The first component was primarily characterized by plant biomass and plant metabolites,
including fresh weight (FW), dry weight (DW), sucrose content (Suc), starch content (Sta), total
phenolics content (TPC), chlorophyll content index (CCI), and maximal quantum yield of PSII

Fv/Fm). This component accounted for 36.9% of the variation (Table 4.3, 4.4, Figure 4.3, 4.4).
g

The second component was largely influenced by the flavonol index (Flav),
photochemical fluorescence quenching coefficient (qP), electron transport rate (ETR), and
nitrogen balance index (NBI), contributing to 15.4% of the total variation (Table 4.3, 4.4, Figure

43,4.4).

The PCA biplot illustrated the positioning of Mentha arvensis L. plants grown under blue
LED in the upper right quadrant of the PCA score plot, exhibiting higher values of CCI, Flav,
Fu/Fm, gP, and ETR. Conversely, those cultivated under red LED located in the lower left
quadrant and characterized by higher NBI, stomatal density (SD), guard cell width (GCW)),
plant area (PA), plant convex hull (PCH), non-photochemical fluorescence quenching
coefficient (qN), and anthocyanin content (Anth). This indicated the distinct effects of
monochromatic LED lights on the growth and development of Mentha arvensis L. Red LED
had a similar effect to white LED, while mono-blue LED show a more contribution in combined

B3R7 LED.
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Table 4.3 Eigenvalues and percentage of variances explained by each principal

component.

Variables eigenvalue  percentage of variance = cumulative percentage of variance

Com 1 8.1290 36.9502 36.9502
Com 2 3.3893 15.4058 52.3560
Com 3 2.9263 13.3014 65.6575
Com 4 2.1294 9.6790 75.3364
Com 5 1.9155 8.7068 84.0432
Com 6 0.9010 4.0956 88.1388
Com 7 0.7963 3.6194 91.7582
Com 8 0.5629 2.5585 94.3167
Com 9 0.3783 1.7197 96.0364
Com 10 0.2652 1.2056 97.2420
Com 11 0.1761 0.8004 98.0424
Com 12 0.1385 0.6296 98.6720
Com 13 0.1092 0.4963 99.1683
Com 14 0.0700 0.3183 99.4866
Com 15 0.0438 0.1990 99.6856
Com 16 0.0257 0.1170 99.8026
Com 17 0.0242 0.1101 99.9127
Com 18 0.0124 0.0565 99.9691
Com 19 0.0045 0.0204 99.9896
Com 20 0.0015 0.0069 99.9964
Com 21 0.0006 0.0028 99.9993
Com 22 0.0002 0.0007 100.0000
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Figure 4.3 Scree plot illustrates the percentage of variances explained by each principal
component.
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Table 4.4 The contribution of a variable to a given principal component.

Variables Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
CCI 7.843 0.988 1.179 0.510 7.178
Flav 5.295 10.466 0.017 0.145 1.263
Anth 0.013 0.591 3.340 17.410 10.354
NBI 4.157 9.438 0.733 5.199 2.498

SD 1.405 0.452 3.979 0.629 13.287
GCW 0.068 5.970 22.326 0.120 3.806
GCL 1.300 5.253 20.435 0.823 0.061
GCA 0.122 6.330 24.582 0.429 1.069
SPA 0.015 0.032 1.858 0.107 33.557
Fy/Fm 7.496 3.154 1.876 4.907 0.984

gN 0.137 2.971 2.698 14.244 3.258

qP 0.107 18.136 4.620 1.783 1.981
ETR 1.817 17.499 6.102 0.842 0.045

LA 7.341 0.031 0.278 6.951 0.255
TLA 9.405 0.566 1.443 3.269 0.243

PA 1.689 2.935 0.322 28.160 3.187
PCH 1.424 0.096 0.205 12.663 15.223
FW 9.954 3.607 1.414 0.167 0.396
DW 10.800 0.941 0.383 0.298 0.357
Suc 10.164 3.551 1.113 0.059 0.159

Sta 10.225 3.390 1.096 0.138 0.029
TPC 9.224 3.604 0.000 1.148 0.813

CCI: Chlorophyll content index, Flav: Flavonol index, Anth: Anthocyanin index, NBI: Nitrogen balance index, SD:
Stomatal density, GCW: Guard cell width, GCL: Guard cell length, GCA: Guard cell area, SPA: Stomatal pore
apertures, F\/F,: Maximal quantum yield of PSII, gN: Non-photochemical fluorescence quenching coefficient, qP:
Photochemical fluorescence quenching coefficient, ETR: Electron transport rate, LA: Maximum leaf area, TLA:
Total leaves area, PA: Plant area, PCH: Plant convex hull, FW: Fresh weight, DW: Dry weight, Suc: Sucrose
content, Sta: Starch content, TPC: Total phenolics content.
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Figure 4.4 Principal coordinate analysis displays the distribution of 22 traits in Mentha

arvensis L. plants that were cultivated under supplementary LED light, presenting them as
different coordinates. CCI: Chlorophyll content index, Flav: Flavonol index, Anth: Anthocyanin
index, NBI: Nitrogen balance index, SD: Stomatal density, GCW: Guard cell width, GCL:
Guard cell length, GCA: Guard cell area, SPA: Stomatal pore apertures, Fv/Fm: Maximal
quantum yield of PSII, gN: Non-photochemical fluorescence quenching coefficient, qP:
Photochemical fluorescence quenching coefficient, ETR: Electron transport rate, LA:
Maximum leaf area, TLA: Total leaves area, PA: Plant area, PCH: Plant convex hull, FW: Fresh
weight, DW: Dry weight, Suc: Sucrose content, Sta: Starch content, TPC: Total phenolics

content.
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4. Discussion

Artificial light sources are critical components in plant factory systems (Kozai et al., 2016;
Rahman et al., 2021). The growth, morphogenesis, and differentiation of plant phenotypes are
influenced by light quality, intensity, and duration (Burkholder, 1936). Light quality regulates
photosynthetic activities and significantly impacts plant physiological processes, plant biomass
as well as production of secondary metabolites (Hasan et al., 2017; Jung et al., 2021; Ma et al.,
2021; Olle and Virsile, 2013; Paradiso and Proietti, 2022). In this study, different LED light
spectra exhibited a significant effect on the degree of variance and the distribution of growth
and photosynthetic traits in Mentha arvensis L. (Table 4.1, Figure 4.1). This suggests the
potential for using blue and red LED light ratios to optimize Wild Mint cultivation in plant

factories, targeting specific desired traits.

The rate of plant photosynthesis can vary depending on various factors, such as CO»
concentration, water supplementation, or light quality (Jung and Arar, 2023; Xin et al., 2019).
During the initial stage of the photosynthesis process, known as the “light reactions”,
chlorophyll absorbs light energy, conversion, and generation of NADPH and high-energy ATP
molecules. These molecules constitute vital outputs of the light reactions, the synthesis of ATP
and NADPH in linear electron flow through the photosynthetic system (PS) is tightly coupled
(Cardona et al., 2018; Kitao et al., 2021; Kramer and Evans, 2011). In Wild Mint plants, a
significant positive correlation was observed between the chlorophyll content index and the
maximum light absorption capacity of photosystem II (Fv/Fm) (Table 4.1, Figure 4.1). The
enhancement of light absorption in photosystem II exhibited a positive correlation with an
increase in the photochemical fluorescence quenching coefficient (qP), thus increasing the
electron transfer rate (ETR). This finding suggests that an increase in the absorption of light

photons can result in heightened photosynthetic activity in the cultivation of Wild Mint plants
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in a controlled environment.

The high-energy molecules produced during the initial stage are used for CO> fixation in
the Calvin—Benson cycle, resulting in the production of carbohydrates and other assimilatory
processes (Cardona et al., 2018; Kitao et al., 2021). Sucrose is the major organic product of
photosynthesis, which can be stored as starch, transported for metabolic use, or used for
respiration to generate the energy source ATP (W. Patrick et al., 2013). The accumulation of
sucrose and starch directly influences plant biomass (Coleman et al., 2010). Maddison et al.
have shown a positive relationship between carbohydrate metabolism and biomass yield in
Miscanthus (De Vega et al., 2021; Maddison et al., 2017). The same trend was confirmed in
Wild Mint plants, where increased sucrose and starch content have a strong correlation with the
increase in plant fresh weight and dry weight. In addition, sucrose, as a primary metabolite,
serves as a precursor for secondary metabolites such as polyphenols (Feduraev et al., 2019).
The transglycosylation from sucrose to phenolic and related compounds is associated with
sucrose phosphorylase activity (Kitao and Sekine, 1994). This explains the strong positive
correlation observed between sucrose content, starch content, plant biomass, and total phenolics

content in Wild Mint plants.

In addition to carbon (C), plant nitrogen (N) stoichiometry reflects the relative strength of
metabolism and can be used to predict plant growth and development (Elser et al., 2010; Luo
et al., 2015). Carbon and nitrogen nutrient balance signaling drive the plant's physiological
response to changes in the environment (Luo et al., 2017; Zheng, 2009). Therefore, the nitrogen
balance index (NBI), which is highly correlated with the N content in leaves, has been widely
employed in plant physiology research to determine nitrogen content (Camargo and Marenco,
2011; Cerovic et al., 2015; Deng et al., 2019; K. Fan et al., 2022; Matysiak et al., 2021). The

NBI is positively correlated with the chlorophyll index in cabbage and barley leaves
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(Kaniszewski et al., 2021; O’Neill et al., 1984). However, the opposite trend was observed in
Wild Mint plants. In this study, a negative relationship was found between NBI and
photosynthetic traits such as CCI, Fv/Fm, qP, ETR, and Flav in Wild Mint plant leaves.
Meanwhile, the NBI has a positive correlation with plant biomass, as well as plant area and leaf
area. Flavonoids, as nitrogen-free secondary metabolites, are considered indicators of nitrogen
availability in the plant (Deng et al., 2019). The negative correlation between flavonoid
concentration and NBI value has been reported in various plants (Deng et al., 2019; Liu et al.,
2021; Matysiak et al., 2021). Our results suggest that plants with a high C/N ratio would exhibit
better photosynthetic performance and enhance flavonoid accumulation. In contrast, the plant's
preference for increasing plant biomass and leaf area leads to a reduction in the C content in
leaves, subsequently reducing the C/N ratio. Therefore, changes in NBI values could be an
indicator to indicate the changes in photosynthesis, growth, and canopy development in Wild

Mint plants.

The negative correlation between photosynthetic variables and plant growth traits was
once again confirmed in the PCA analysis. Combining all the trait variances in a PCA score plot
revealed the differential responses of Wild Mint plants to different light spectra. The blue and
red LED lights showed distinct effects on the growth and development of Mentha arvensis L.
Blue LED light had a significant impact on CCI, Flav, F\/Fm, qP, and ETR, consequently
enhancing photosynthetic performance. Meanwhile, the red LED light had a greater effect on
plant growth rate indicators such as NBI, LA, TLA, PA, PCH, and Anth. Both of them had a

significant impact on plant biomass and metabolites, including FW, DW, Suc, Sta, and TPC.
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5. Conclusion

This study established correlations between photosynthetic characteristics and plant
production in Wild Mint, utilizing both conventional and high-throughput phenotyping
techniques. The principal component analysis highlighted the unique responses of Wild Mint
plants to mono-blue and red LED lights as supplementary lighting. A positive relationship was
found between CCI, Flav, Fv/Fm, qP, and ETR traits. Additionally, image-based analysis results,
such as LA, TLA, PA, and PCH, showed strong correlations with photosynthetic production

and plant biomass traits, including NBI, FW, DW, Suc, Sta, and TPC.

The combination of conventional and high-throughput phenotyping techniques allows for
a deeper understanding of the complex interactions between light spectra and photosynthesis in
Wild Mint plants. This study enhances the understanding of how artificial light sources
influence photosynthetic characteristics and plant growth traits, which could significantly
impact crop cultivation and management. By utilizing specific light qualities, farmers can
enhance plant photosynthetic performance, leading to improved plant biomass, metabolite

production, and overall crop yield.
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Figure S1. The quantile-quantile plots of Wild Mint plant height under different LED

sources, over time.

Evidence suggests unequal variances among treatments. Therefore, the non-parametric

Kruskal-Wallis’s test was used to compare the results of LED light treatments. For the post hoc

test, the Dunn test with Benjamini-Hochberg correction was employed.
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Figure S2. The histogram plots of the number of Wild Mint leaves under different LED

sources, over time.

Evidence suggests unequal variances among treatments. Therefore, the non-parametric
Kruskal-Wallis’s test was used to compare the results of LED light treatments. For the post hoc

test, the Dunn test with Benjamini-Hochberg correction was employed.
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Figure S3. The histogram plots of the number of Wild Mint axillary bud under different

LED sources, over time.

Evidence suggests unequal variances among treatments. Therefore, the non-parametric
Kruskal-Wallis’s test was used to compare the results of LED light treatments. For the post hoc

test, the Dunn test with Benjamini-Hochberg correction was employed.
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Table S6. The normality tests of Chlorophyll Content Index (CCI) value in Wild Mint

leaves under different LED sources.

) Shapiro-Wilk test Levene test
Light treatment
W p-value F value Pr(>F)
B 0.96067 0.8165
B3R7 0.97067 0.9032
1.7526 0.1791
R 0.90642 0.3295
A\ 0.89406 0.2552
* Significant at the 0.05 probability level
B B3RT
201 L
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CClobserved value
A
=
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15 10 05 00 05 1.0 1515 1.0 05 00 05 1.0 15
Theoretical

LED light treatment = B = B3R7 = R = W

Figure S4. The quantile-quantile plots of Chlorophyll Content Index (CCI) in Wild Mint

leaves under different LEDs sources.

Since the data satisfy the normal distribution condition, the parametric analysis of variance
(ANOVA) test was used to compare the results of LED light treatments. For the post hoc test,

Tukey's test correction was applied.

136



Table S7. The normality tests of Anthocyanins content in Wild Mint leaves under different

LED sources.

) Shapiro-Wilk test Levene test
Light treatment
W p-value F value Pr(>F)
B 0.9419 0.6302
B3R7 0.8712 0.1547
1.9866 0.1388
R 0.9471 0.6816
A\ 0.9281 0.4989
* Significant at the 0.05 probability level
B B3RT
0.08 1
0.06 1
o 0.04- /
3
g //
% 0.02
2
° R W
£
[ =
S 0.08
2
E -
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Figure S5. The quantile-quantile plots of Anthocyanins content in Wild Mint leaves under

different LEDs sources.

Since the data satisfy the normal distribution condition, the parametric analysis of variance
(ANOVA) test was used to compare the results of LED light treatments. For the post hoc test,

Tukey's test correction was applied.
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Table S8. The normality tests of Flavonoids content in Wild Mint leaves under different

LED sources.

) Shapiro-Wilk test Levene test
Light treatment

W p-value F value Pr(>F)

B 0.9051 0.3207

B3R7 0.9570 0.7810
2.6353 0.0693

R 0.9442 0.6529

W 0.8018 0.0299

* Significant at the 0.05 probability level

B B3R7
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Figure S6. The quantile-quantile plots of Flavonoids content in Wild Mint leaves under

different LEDs sources.

Evidence suggests that the data did not satisfy the normal distribution condition. As a
result, the non-parametric Kruskal-Wallis’s test was used to compare the results of LED light

treatments. For the post hoc test, the Wilcoxon test with correction was applied.
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Table S9. The normality tests of Nitrogen Balance Index (NBI) value in Wild Mint leaves

under different LED sources.

) Shapiro-Wilk test Levene test
Light treatment

W p-value F value Pr(>F)

B 0.8995 0.2862

B3R7 0.9787 0.9562
2.369 0.0920

R 0.9667 0.8709

W 0.9236 0.4600

* Significant at the 0.05 probability level
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Figure S7. The quantile-quantile plots of Nitrogen Balance Index (NBI) in Wild Mint

leaves under different LEDs sources.

Since the data satisfy the normal distribution condition, the parametric analysis of variance
(ANOVA) test was used to compare the results of LED light treatments. For the post hoc test,

Tukey's test correction was applied.
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Table S10. The normality tests of Fv/Fm value in Wild Mint leaves under different LED sources.

) Shapiro-Wilk test Levene test
Light treatment
W p-value F value Pr(>F)
B 0.9198 0.4283
B3R7 0.8600 0.1199
6.5781 0.0017 **
R 0.8130 0.0394
W 0.7230 0.0041
** Significant at the 0.01 probability level
B B3RT
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Figure S8. The quantile-quantile plots of maximal quantum yield of PSII (Fv/Fm) in Wild
Mint leaves under different LEDs sources.

Evidence suggests that the data did not satisfy the normal distribution condition. As a
result, the non-parametric Kruskal-Wallis’s test was used to compare the results of LED light

treatments. For the post hoc test, the Wilcoxon test with correction was applied.
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Table S11. The normality tests of qP value in Wild Mint leaves under different LED

sources.
) Shapiro-Wilk test Levene test
Light treatment
W p-value F value Pr(>F)
B 0.8846 0.2083
B3R7 0.9551 0.7620
1.1627 0.3415
R 0.89700 0.2713
W 0.9221 0.4470
* Significant at the 0.05 probability level
B B3R7
0.9 1
084 . /
o1 ] |
o 0.6
3
S
b
£ R W
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o
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064 ° ’
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Figure S9. The quantile-quantile plots of photochemical fluorescence quenching

coefficient (qP) in Wild Mint leaves under different LEDs sources.

Since the data satisfy the normal distribution condition, the parametric analysis of variance
(ANOVA) test was used to compare the results of LED light treatments. For the post hoc test,

Tukey's test correction was applied.
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Table S12. The normality tests of gN value in Wild Mint leaves under different LED

sources.
) Shapiro-Wilk test Levene test
Light treatment
W p-value F value Pr(>F)
B 0.9206 0.4345
B3R7 0.9205 0.4337
0.9053 0.451
R 0.9478 0.6886
A\ 0.8920 0.2440
* Significant at the 0.05 probability level
o B3RT
0.7
0.6
0.5 ’
3 -
S 041
So1
=
o
0.6 1
0.5 1
0.4
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Figure S10. The quantile-quantile plots of non-photochemical fluorescence quenching

coefficient (qN) in Wild Mint leaves under different LEDs sources.

Since the data satisfy the normal distribution condition, the parametric analysis of variance
(ANOVA) test was used to compare the results of LED light treatments. For the post hoc test,

Tukey's test correction was applied.
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Table S13. The normality tests of ETR value in Wild Mint leaves under different LED

sources.
) Shapiro-Wilk test Levene test
Light treatment
W p-value F value Pr(>F)
B 0.8730 0.1613
B3R7 0.9348 0.5612
1.2785 0.3009
R 0.9200 0.4301
W 0.9111 0.3622

* Significant at the 0.05 probability level
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Figure S11. The quantile-quantile plots of electron transfer rate (ETR) in Wild Mint
leaves under different LEDs sources.

Since the data satisfy the normal distribution condition, the parametric analysis of variance
(ANOVA) test was used to compare the results of LED light treatments. For the post hoc test,

Tukey's test correction was applied.
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