
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


석사학위논문

Impacts of river-discharged freshwater 

on surface ocean environments revealed 

by multi-satellite measurements

강 소 영

제주대학교 대학원

지구해양융합학부 지구해양전공

2023년 8월



Impacts of river-discharged freshwater on surface 
ocean environments revealed by multi-satellite 

measurements

지도교수 문재홍

강 소 영

이 논문을 이학 석사학위 논문으로 신청함

2023년 8월

강소영의 이학 석사학위 논문을 인준함

심사위원장       송 상 근       ○印

위      원       김 정 현       ○印

위      원       문 재 홍       ○印

제주대학교 대학원

지구해양융합학부

지구해양전공

2023 년 8 월



i

Index

Index ........................................................................................................................................................ⅰ

List of Figures ..........................................................................................................................................ⅱ

List of Tables.....................................................................................................................ⅴ

Abstract .............................................................................................................................ⅵ

1. Introduction .............................................................................................................................................1

2. Data and methods.............................................................................................................5

2.1 Datasets................................................................................................................5

2.2 Methods ...............................................................................................................9

3. Validation and Correction for SMAP SSS ......................................................................11

4. Interannual variability of SSS in the northern ECS .........................................................22

5. Impacts of freshwater on surface ocean environments.....................................................27

5.1 Enhancement of SST warming............................................................................27

5.2 High concentration of chl-a ................................................................................34

5.3 Reduction of surface pCO2..................................................................................39

6. Conclusion and Discussion.............................................................................................43

7. List of References ..........................................................................................................45



ii

List of Figures

Figure 1. Geographic map of the East Asian marginal seas (inserted map) and enlarged map 

of the Yellow Sea (YS) and East China Sea (ECS) with bathymetry (meter). Hydrographic 

stations provided by the Korea Oceanographic Data Center of the National Institute of 

Fisheries Science (NIFS) are marked by blue, red and green dots for the western sea of the 

Korean Peninsula (WSK), eastern sea of the Korean Peninsula (ESK), and northern East 

China Sea (NECS), respectively. The orange dashed box indicates the northern ECS region 

where the environmental variables are averaged in section 5. Seven rivers are marked by 

yellow triangle with their names. The insert time series indicates the annual discharge of the 

Changjiang, which contributes about 90% of the whole river discharge into the ECS. The 

Changjiang discharge was monthly averaged from 2015–2022, and the shaded area denotes 

one standard deviation around the mean. ..............................................................................4

Figure 2. Scatter plots of monthly SMAP SSS versus in situ SSS data from 2015 to 2021 for 

(a) the western sea of Korean Peninsula (WSK), (b) eastern sea of Korean Peninsula 

(ESK), and (c) northern ECS (NECS). ........................................................................ 13

Figure 3. Time series of area-averaged bias between SMAP and in situ SSS for (a) WSK, (b) 

ESK, and (c) NECS from 2015 to 2021. The shaded areas denote one standard deviation 

around the mean................................................................................................................. 14

Figure 4. Comparisons of SMAP SSS bias with (a) sea surface temperature (SST), (b) wind 

speed (WS), and (c) rainfall averaged for the WSK (red), ESK (blue), and NECS (green) 

from 2015 to 2021. The shaded area denotes one standard deviation around the mean of each 

data.................................................................................................................................... 15

Figure 5. Scatter plot of monthly area-averaged SSS bias (black) and (a) SST, (b) wind 

speed, and (c) rainfall for the WSK (red), ESK (blue), and NECS (green) from 2015 to 2021. 



iii

.......................................................................................................................................... 16

Figure 6. Comparisons of SMAP SSS bias with (a) sea surface temperature (SST), (b) wind 

speed (WS), and (c) rainfall averaged for all regions from 2015 to 2021. The shaded area 

denotes one standard deviation around the mean of each data. .. ......................................... 18

Figure 7. Time series of SMAP SSS bias, estimated bias based on multiple linear regression 

(MLR) model and corrected bias using the MLR model for (a) WSK, (b) ESK, and (c) 

NECS from 2015 to 2021. The shaded area denotes one standard deviation around the mean 

of SMAP bias. .................................................................................................................. 20

Figure 8. Histograms of SMAP SSS bias and corrected SSS bias for (a) WSK, (b) ESK, and 

(c) NECS. Vertical dashed lines present the bias mean (�) for each bias. � and rmse indicate 

standard deviation and root mean square error, respectively. ............................................... 21

Figure 9. (a) Sequential loading vector (LV) and (b) the corresponding PC time series (solid 

black line) for the first CSEOF mode of SMAP SSS anomaly from 2015 to 2021. The 

contour interval is 1.0 with positive and negative values are presented as dashed and solid 

contours, respectively. ...................................................................................................... 23

Figure 10. Comparison of corresponding PC time series (solid black line) and the area-

averaged SSS (blue line) for the northern ECS (orange dashed box in Fig. 1) in August 

and the discharge of the Changjiang in July (green bar) .................................................... 25

Figure 11. Spatial patterns of SMAP SSS anomaly in August from 2015 to 2022. The 

contour interval is 1.0 with positive and negative values presented as dashed and solid 

contours, respectively. ........................................................................................................ 26

Figure 12. Spatial patterns of SST anomaly (color) averaged for three satellite SST products 

(OSTIA, OISST, GHRSST) superimposed with SMAP SSS anomaly (contours) in August 

from 2015 to 2022. The contour interval is 1.0 with positive and negative values presented as 



iv

dashed and solid contours, respectively. ............................................................................ 29

Figure 13. Same as Fig. 12 except for solar radiation anomaly (color) derived from ERA5. 

.......................................................................................................................................... 30

Figure 14. Same as Fig. 12 except for wind speed anomaly (color) derived from ERA5. .. 31

Figure 15. Comparisons of SMAP SSS anomaly with (a) satellite SST anomalies in August 

from 2015 to 2022. The SST anomalies derived from OSTIA, OISST, and GHRSST products 

and their mean were shown. Each data was averaged for the northern ECS region (orange 

dashed box in Fig. 1), and the shaded areas denote two standard deviations around the mean 

of each data. ..................................................................................................................... 33

Figure 16. Same as Fig. 12 except for chl-a concentration anomaly (color) averaged for two 

satellite ocean color products (MODIS/Aqua and VIIRS). ................................................ 36

Figure 17. Comparisons of SMAP SSS anomaly with (a) satellite chl-a anomalies in August 

from 2015 to 2022. The chl-a anomalies derived from MODIS/Aqua and VIIRS products 

and their mean are shown. Each data was averaged for the northern ECS region (orange 

dashed box in Fig. 1), and the shaded areas denote two standard deviations around the mean 

of each data........................................................................................................................ 38

Figure 18. Same as Fig. 12 except for of pCO2 anomaly (color) estimated from the 

combined use of SMAP SSS with satellite SST and chl-a concentration, based on MNR 

method............................................................................................................................... 40

Figure 19. Comparisons of estimated pCO2 anomaly with (a) SMAP SSS anomaly, (b) 

satellite SST anomalies and (c) satellite chl-a concentration anomalies in August from 2015 

to 2022. The chl-a concentration anomalies derived from MODIS/Aqua and VIIRS products 

and their mean were shown in (b). The SST anomalies derived from OSTIA, OISST, and 

GHRSST products and their mean are shown in (c). Each data was averaged for the northern 



v

ECS region (orange dashed box in Fig. 1), and the shaded areas denote two standard 

deviations around the mean of each data............................................................................. 42

List of Tables

Table 1. The main features of satellite products of SSS, SST, and chl-a concentration .........8

Table 2. Summary of the correlation coefficient between the SMAP SSS bias and SST, 

wind speed, and rainfall for each region (WSK, ESK, and NECS) and all regions from 2015 

to 2021. ....................................................................................................................17



vi

Abstract

River discharge forms a plume of low-salinity water that spreads offshore, delivering 

terrestrial substances into the ocean and thus plays a critical role in controlling marine 

environments as well as the carbon cycle. This study investigated how freshwater discharged 

from Changjiang impacts the physical and biological responses and oceanic uptake of carbon 

dioxide (CO2) in the northern East China Sea (ECS) by combining the recently available sea 

surface salinity (SSS) product from the Soil Moisture Active Passive (SMAP) mission with 

other satellite measurements of sea surface temperature (SST) and chlorophyll-a (chl-a) 

concentration. The partial pressure of CO2 (pCO2) and its interannual variability were 

estimated using empirical regression with satellite-derived environmental variables. The 

bias-corrected SMAP SSS revealed that river discharge largely contributed to the distinct 

interannual SSS variations, with a seasonal cycle reaching a maximum in winter and a 

minimum in summer. Compared to the SST and chl-a anomalies, we observed an increase in 

SST and primary production in the region where sea surface freshening was robust. 

Freshwater from rivers contributes to sea surface warming by trapping heat from the 

atmosphere at the surface layer. Nutrient-enriched freshwater within the buoyant plume 

enhances phytoplankton production, which in turn enriches the ocean surface with chl-a. 

Simultaneously, the pCO2 was relatively low in the region where the SST and primary 

production were high, highlighting that the heat and riverine nutrients trapped within the 

buoyant plume contributed to the reduction in pCO2 by promoting the biological uptake of 

CO2. The estimates conducted here illustrate the synergistic utility of multiple satellite 

measurements for the evaluation of CO2 uptake capacity, complemented by in situ 

measurements of river-dominated marginal seas.
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1. Introduction

River discharge forms buoyant freshwater plumes that spread offshore and supply large 

amounts of nutrients and organic matter to the open ocean. The spread of freshwater 

dominates the spatial and temporal structure of sea-surface salinity (SSS) by mixing with 

ambient saline water, which is an important factor in the hydrological cycle and physical 

oceanic processes (Yu, 2011; Moon and Song, 2014). From a physical perspective, low-

salinity water discharged from rivers often drives significant coastal current systems owing 

to buoyancy in the plume, which alters the wind-driven circulation (Whitney and Garvine, 

2005; Wu et al., 2013). Salinity-induced stratification greatly influences heat exchange 

between the surface and subsurface layers, frequently resulting in a significant increase in 

the sea surface temperature (SST) over the freshening area (Foltz and McPhaden, 2009; 

Kako et al., 2016; Fournier et al., 2017; Moon et al., 2019). In addition, enhanced SST 

warming often contributes to the intensification of tropical cyclones that pass over 

freshening regions by exchanging heat and moisture at the air-sea interface (Balaguru et al., 

2012; Hong et al., 2022). Regarding the biological aspects, discharged riverine materials, 

including terrestrial organic carbon, can significantly affect marine environments in response 

to interactions between physical, biological, and chemical processes, thereby playing an 

important role in both the ecosystem and the carbon cycle (Cai and Dai, 2004; Borges et al., 

2015; Bai et al., 2015; Dai et al., 2022; Liu et al; 2022). Therefore, river-driven SSS can be 

an important variable in tracing the transport of riverine materials into the ocean and 

diagnosing ocean mixing and stratification. 

The East China Sea (ECS) is a river-dominated marginal sea located in the northwestern 

Pacific Ocean (Fig. 1). As a major source of freshwater, the Changjiang (also known as the 

Yangtze River), which is the world’s fifth largest river, contributes to ~ 90% of the entire 
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river discharge into the ECS (Beardsley et al., 1985), delivering large amounts of terrestrial 

substances (e.g., nutrients, organic, and inorganic carbon) into the ocean. In summer, the 

outflow of buoyant freshwater remains on top of the shelf water and spreads several 

hundreds of kilometers offshore toward the central ECS shelf, diluting the ambient shelf 

water (Beardsley et al., 1985; Lie et al., 2003), which is called the Changjiang Diluted Water 

(CDW). The offshore spreading of the CDW has been simulated in numerous ocean 

modeling studies (e.g., Chang and Isobe, 2003; Moon et al., 2009a, 2010, 2012; Hong et al., 

2016). Recently, Moon et al. (2019) detected strong SST warming over the northern ECS in 

the summer of 2016, corresponding to a significant freshening area. Based on the results of 

numerical experiments, they showed that the CDW-induced barrier layer formation could be 

attributed to enhanced sea-surface warming over areas where surface freshening was 

significant. A close relationship between river-driven freshening and the partial pressure of 

carbon dioxide (pCO2) was recently reported by Choi et al. (2021), who showed that 

biological processes promoted by nutrient-rich freshwater can contribute to a reduction in 

surface pCO2 uptake based on a shipboard survey in August 2016. However, it is still 

difficult to provide in situ SSS and biological variables at synoptic scales with frequent 

coverage owing to the lack of ship-based measurements.

Traditional in-situ measurements of SSS have been improved by the recent increase in the 

number of observing ships and the development of Argo floats. Owing to uneven and limited 

sampling coverage, in situ SSS is relatively sparse on both spatial and temporal scales. 

Although the Argo arrays provide near-global coverage regularly, the ECS is a river-

dominated marginal sea shallower than 200 m, which is not observed in the Argo floats. 

Measuring SSS from space is an alternative to tracking the spatial and temporal variability of 

SSS governed by freshwater outflow from rivers and routine monitoring over marginal seas. 

With the advent of remote-sensing technology, SSS has been remotely sensed from recently 

launched satellite missions, such as NASA’s AQUARIUS, ESA’s Soil Moisture and Ocean 
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Salinity (SMOS), and NASA’s Soil Moisture Active Passive (SMAP). Considering that SSS 

is a key parameter in tracking physical and biological processes, mapping SSS more 

precisely with satellite observations and combining it with other satellite measurements will 

enable the monitoring of environmental variables in river-dominated marginal seas. In this 

study, we combined recently available SSS products from the SMAP mission with other 

remote sensing measurements to investigate the impact of river-discharged freshwater on 

surface environmental variables. This study focused on how freshwater discharged from 

Changjiang affects the physical and biological responses and oceanic uptake of CO2 in the 

northern ECS shelf. We expect that the ability to more precisely evaluate river-induced 

environmental changes will be further improved by utilizing completely independent satellite 

observations.
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Figure 1. Geographic map of the East Asian marginal seas (inserted map) and 

enlarged map of the Yellow Sea (YS) and East China Sea (ECS) with bathymetry 

(meter). Hydrographic stations provided by the Korea Oceanographic Data Center of the 

National Institute of Fisheries Science (NIFS) are marked by blue, red and green dots for 

the western sea of the Korean Peninsula (WSK), eastern sea of the Korean Peninsula 

(ESK), and northern East China Sea (NECS), respectively. The orange dashed box 

indicates the northern ECS region where the environmental variables are averaged in 

section 5. Seven rivers are marked by yellow triangle with their names. The insert time 

series indicates the annual discharge of the Changjiang, which contributes about 90% of 

the whole river discharge into the ECS. The Changjiang discharge was monthly 

averaged from 2015–2022, and the shaded area denotes one standard deviation around 

the mean.
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2. Data and method

2.1 Datasets

The SMAP SSS L3 version 4 and 5 datasets generated produced by Remote Sensing 

Systems (RSS, Entekhabi et al., 2010; Meissner, 2018) were used in this study to identify 

spatial and temporal SSS variability. Since the RSS version 4 is available from March 2015 

to December 2021, we extended the SSS data length to December 2022 using the RSS 

version 5 product (Table. 1). The L3 products are global and daily dataset using 8-day 

running mean on a spatial grid resolution of 0.25˚ and monthly means were obtained from 

the gridded daily data. Because there was gap in the SMAP product from June to July 2019 

owing to a spacecraft issue (Reichle et al., 2022), we used the climatological monthly means 

over the available period of the dataset to fill the data gap. Remote sensing SSS 

measurements, which are based on L-band radiometer sensitivity, are known to be influenced

by radio frequency interference (RFI) and land contamination (Kolodziejczyk et al., 2016; 

González-Gambau et al., 2017). Recently, the L-band microwave sensor has been improved 

through many efforts in establishing the approaches (Le Vine, 2019). SMAP includes 

additional special hardware and software systems that enable to detect RFI and filter it out 

(Le Vine, 2019). Although RFI and land contamination remain uncertain, recent studies on 

SSS remote sensing have demonstrated the possibility of monitoring regional marginal seas 

up to approximately 40 km from the coast (Grodsky et al., 2019; Vinogradova et al., 2019; 

Akhil et al., 2020; Menezes, 2020; Fournier and Lee, 2021). For example, SMAP has 

improved the understanding of SSS variability in the coastal regions, which are 

predominantly affected by the river plume (Akhil et al., 2020; Menezes. 2020; Fournier and 

Lee. 2021). SMAP can also stably capture SSS signals in regions such as semi-enclosed 

areas (Grodsky et al., 2019; Menezes et al., 2020). 

To validation of satellite SSS measurements, we compare the SMAP SSS with in situ 
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data measured by shipboard CTD casts provided by the Korea Oceanographic Data Center of 

the National Institute of Fisheries Science (NIFS). Since 1961, the NIFS has regularly 

measured various oceanic variables around the Korean Peninsula at bimonthly interval. The 

serial shipboard survey provides in situ hydrographic and other variables profiles, including 

water temperature, salinity, and dissolved oxygen, at hydrographic stations (Fig. 1). Total of 

129 hydrographic stations are used in comparison with SMAP SSS. After the data nearer 

than ~40 km from the coast were removed, the in-situ data are matched with the nearest 

SMAP grid point.

To identify the impact of SSS on SST warming response during study period, three 

SST products based on satellite-observation were used: the Operational Sea Surface 

Temperature and Ice Analysis (OSTIA), The NOAA Optimum Interpolation 1/4-degree daily 

Sea Surface Temperature Analysis Version 2 (OISST), and the Group for High Resolution 

Sea Surface Temperature (GHRSST) (Table 1). OSTIA was generated by the UK Met Office. 

OSTIA analysis combines in situ data from ships and buoys, passive microwave satellite 

SST measurements, and infrared instruments such as the multichannel AVHRR (Donlon et 

al., 2012). This SST product has been providing daily, high spatial resolution (0.05°), global 

analysis since 2006. The monthly SST averaged from the gridded daily data was used from 

2015 to 2022 in this study. NOAA OISST, which uses advanced, high-resolution radiometer 

data is one of the most widely used SST product in various fields and has a spatial resolution 

of 0.25° and has generated daily temporal resolution for the longest period from 1981 to the 

present day. This product includes a large-scale adjustment of satellite biases based on in situ 

from ships and buoys (Reynolds et al., 2007). The monthly mean of SST was used from 

2015 to 2022. Lastly, GHRSST Level 4 SST analysis provided by JPL Physical 

Oceanography DAAC was also used to compare with other two SST products. Spatial 

resolution of the data is 0.01° and the temporal resolution is one day with global coverage 

(Chin et al., 2017). 
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  Ocean color products from the Moderate Resolution Imaging 

Spectroradiometer/Aqua (MODIS/Aqua) and Visible Infrared Imaging Radiometer Suite 

(VIIRS) were also utilized to examine the relationship between SSS and chl-a concentration. 

MODIS/Aqua is the primary instrument for NASA’s Earth Observing System, and the chl-a

concentration is derived from NASA’s ocean color satellite sensors (Moore et al., 2009). 

MODIS/Aqua provides a spatial resolution of 0.04° and a monthly temporal resolution for 

the period 2015-2022. MODIS/Aqua has 36 spectral channels. The primary bands for ocean 

color measurements of them are nine channels covering the 400-900 nm spectrum, and the 

chl-a concentration is derived from empirical algorithms using reflectance ratios (Franz et al., 

2005). Similar to MODIS/Aqua, VIIRS is a multispectral imaging sensor capable of 

obtaining global thermal data, and chl-a concentration is measured through three imaging 

bands at the wavelengths of 638, 862, and 1600nm (Wang et al., 2018). VIIRS provides 

various oceanic products, including chl-a concentration, on a spatial resolution of 0.04° from 

2015-2022 (Wang et al., 2014; Wang et al., 2016). Monthly chl-a concentrations products for 

both MODIS/Aqua and VIIRS were used. Satellite altimetry products from 1993 to 2020 

were used in this study.
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Table 1. The main features of satellite products of SSS, SST, and chl-a concentration.
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2.2 Method

The accuracy of the satellite SSS is influenced by sea-surface roughness caused by wind 

and precipitation conditions as well as SST condition (Grodsky et al., 2018; Qin et al., 2020). 

Recently, Qin et al. (2020) proposed a multiple linear regression (MLR) method adopting 

wind speed, precipitation, and SST data to correct the bias between SMAP and in situ SSS. 

In this study, the bias, defined as the SMAP minus in situ SSS, is corrected in the same way 

as the following of Qin et al. (2020). 

�� = �� + �� × ��� + �� ×�� + �� × � + � (1)

where �� is the intercept, ��, ��, �� are the regression coefficients with respect to the 

SST, wind speed (WS), and precipitation (P), respectively, and ε is the error. The variables 

used in this regression model were obtained from ECMWF ERA5 reanalysis monthly dataset 

(Hersbach et al., 2023). The original SMAP SSS is regionally corrected by subtracting the 

biases (��) obtained from the linear regression model as the following equation.

���� ��������� ��� = �������� ��� − �� (2)

The sea surface pCO2 plays an important role in the ocean carbonate system and the global 

carbon cycle. They also mainly controlled by physical and biological processes, which are 

related to oceanic environments, such as SST, SSS and chl-a concentration (Takahashi et al., 

2002; Sarma et al., 2006). Nevertheless, in situ data of the surface pCO2 are insufficient on 

the global ocean scale, and even more lack in the marginal sea. Therefore, several previous 

studies have been attempted to estimate the surface pCO2 using from various methods such 

as MLR, MNR, and machine learning with satellite data, in situ, and climatological 

observation data (Chen et al., 2016; Bai et al., 2015; Chen et al., 2019; Liu et al., 2023). We 

here estimate the sea surface pCO2 by combining SMAP SSS with satellite-based SST and 

chl-a concentration, based on multiple nonlinear regression (MNR) method which was 

successfully applied to the ECS shelf region by Liu et al. (2023). They have shown that the 

best performance was obtained when SST, SSS, chl-a concentration, Julian Day (JD), 
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longitude, and latitude were given as the independent parameters. Therefore, the same MNR 

approach and variables as in Liu et al. (2023) was applied in our estimation as follows.          

pCO2 = 1614.69x1 + 203.92x2 – 260.69x3 – 9793.60.x4 + 98.93x5 – 1364.95x6 + 3.23x1x2

+ 0.89x1x3 + 7.53x1x4 – 13.99x1x5 + 0.09x1x6 + 0.91x2x3 – 29.68x2x4 – 4.86x2x5

+ 8.33x2x6 – 14.49x3x4 – 0.15x3x5 + 7.28x3x6 + 86.04x4x5 + 4.78x4x6 + 8.17x5x6

– 0.24x1
2 + 1.27x2

2 + 0.13x3
2 – 15.01x4

2 + 0.07x5
2 + 1.61x6

2 + 2.49(year-2006), 

γ = 255

(3)

where, x1 = SST, x2 = SSS, x3 = chl-a concentration, x4 = cos(2�(JD- γ)/365), x5 = longitude, 

and x6 = latitude. JD indicates Julian day, which is normalized to represent the seasonal cycle. 

A detailed description of the parameters is described in Liu et al. (2023). 

To investigate the spatiotemporal behavior of freshwater discharged from Changjiang, a 

cyclostationary empirical orthogonal function (CSEOF) analysis was performed on the bias-

corrected monthly SMAP SSS gridded data (Kim and North, 1997). In recent years, CSEOF 

has been widely used to extract internal variability in a wide range of climate signals (Yeo 

and Kim, 2015; Zhi et al., 2020; Scanlon et al., 2022). In CSEOF analysis, space-time data 

(T(r, t)) are decomposed into cyclostationary loading vectors (LVn(r, t)), and their 

corresponding principal component (PC) time series (PCn(t))

�(�, �) = ∑ ���(�, �)���(�)� (4)

where, r, t, and n denote the space, time, and the mode number, respectively (Kim and North, 

1997; Yeo and Kim, 2013). CSEOF loading vectors are periodic in time:

���(�, �) = ���(�, � + �) (5)

where d is a specific period, called the “nested period”. Because the dominant mode of SSS 

in study area is seasonal variation, the nested period was set to be 12 months. These 

equations above indicate that each LV represents a set of spatial patterns that evolve within 
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the nested period, and the periodic LV’s amplitude is changed by the PC time series. In other 

words, in CSEOF analysis the physical variation during the nested period is captured in the 

resulting the LV (i.e., spatial patterns), and the corresponding PC time series depicts the 

amplitude of the variation of the physical process (Yeo and Kim, 2013). Unlike EOF analysis, 

the CSEOF LVs enable to capture the physical evolution of an inherent physical process in a 

given dataset. Further details on the CSEOF decomposition are provided by Kim et al. 

(2015).

3. Validation and Correction for SMAP SSS

Although advances in remote sensing technologies have greatly improved the capability 

of SSS measurements from space, SSS retrieval in marginal seas is still challenging due to 

water temperature and land effects (Dinnat et al; 2019; Le vine and Dinnat; Reul et al., 2020). 

Therefore, SSS retrieved from SMAP is needed to validate against in situ measurements and 

further bias corrected using reanalysis products. The data nearer than ~ 40 km from the 

coasts were removed from the validation to minimize the influence of land effects 

(Vinogradova et al., 2019). Because several water masses were distributed in the study area, 

we grouped three regions: the western sea of Korean peninsula (WSK), the eastern sea of 

Korean peninsula (ESK), and the northern East China Sea (NECS). 

Fig. 2 presented the validation results based on seven years of SMAP SSS in the three 

regions. Overall, SMAP SSS was in good agreement with the in-situ measurements for all 

regions, and the correlation coefficient, bias, and RMSE were 0.76, -0.64, and 0.73, 

respectively (Fig. 2). For all regions, SMAP SSS shows a conspicuous freshening bias, 

ranging from -0.75 to -0.42. The lowest bias occurred in the NECS with warmer SST 

throughout the year, and SMAP SSS in the NECS had a high correlation of 0.93 with in situ 

data. The negative SMAP biases for all regions had a distinct seasonal variability with high-
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frequency variability, increasing in the cold season and decreasing warm season (Fig. 3). The 

relatively strong freshening biases of SMAP during cold season were consistent with 

previous studies that have identified an inherent retrieval bias related to seasonal changes in 

ocean surface conditions (Tang et al., 2017; Boutin et al., 2018; Grodsky et al., 2018; Dinnat 

et al., 2019; Qin et al., 2020). To identify variables affecting the seasonal bias, we examined 

the relationship between SST, wind speed and rainfall over the study areas. The time series 

of the regional monthly average SSS bias, SST, and wind speed was presented in Fig. 4. The 

correlation between the SSS bias and the variables had the highest correlation of 0.60 for 

SST, followed by -0.35 for wind speed, and 0.34 for rainfall (Fig. 6 and Table. 2). Regionally, 

the correlation coefficients between SMAP SSS and SST were 0.72 in WSK, 0.73 in ESK, 

and 0.56 for NECS (Fig. 5 and Table. 2). These results suggest that the bias of SMAP SSS is 

predominantly affected by seasonal variability of SST, but it has relatively weak correlation 

with wind speed and rainfall. In particular, the correlation between the bias and SST is 

relatively higher in WSK and ESK, where the SSTs drop below 5°C in winter. The bias in 

both two regions have stronger negative values in cold season, indicating that the seasonal 

bias in the study region is related to the decrease in the sensitivity of the SMAP microwave 

sensor to cold water (Grodsky et al., 2018). 
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Figure 2. Scatter plots of monthly SMAP SSS versus in situ SSS data from 2015 to 2021 for 

(a) the western sea of Korean Peninsula (WSK), (b) eastern sea of Korean Peninsula (ESK), 

and (c) northern ECS (NECS).
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Figure 3. Time series of area-averaged bias between SMAP and in situ SSS for (a) the 

western sea of Korean Peninsula (WSK), (b) eastern sea of Korean Peninsula (ESK), and (c) 

northern ECS (NECS). The shaded areas denote one standard deviation around the mean.
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Figure 4. Comparisons of SMAP SSS bias with (a) sea surface temperature (SST), 

(b) wind speed (WS), and (c) rainfall averaged for the WSK (red), ESK (blue), and 

NECS (green) from 2015 to 2021. The shaded area denotes one standard deviation 

around the mean of each data.
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Figure 5. Scatter plot of monthly area-averaged SSS bias (black) and (a) SST, (b) 

wind speed, and (c) rainfall for the WSK (red), ESK (blue), and NECS (green) from 

2015 to 2021.
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**Correlations (R) were statistically significant (P < 0.01).

Regions SST WS Rain

WSK 0.72** -0.55** 0.44**

ESK 0.76** -0.49** 0.50**

NECS 0.55** -0.19 0.11

All regions 0.61** -0.35** 0.37**

Table 2. Summary of the correlation coefficient between the SMAP SSS bias and SST, wind 

speed, and rainfall for each region (WSK, ESK, and NECS) and all regions from 2015 to 
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Figure 6. Comparisons of SMAP SSS bias with (a) sea surface temperature (SST), (b) wind 

speed (WS), and (c) rainfall averaged for all regions from 2015 to 2021. The shaded area 

denotes one standard deviation around the mean of each data.
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Based on the validation results mentioned above, the seasonal bias of SMAP SSS was 

corrected by conducting MLR with SST, wind speed, and rainfall. The results are shown in 

Figs. 7 and 8, which present the SMAP SSS bias explained by MLR model and the bias-

corrected SSS results. The MLR model generally explained the seasonal variability of the 

SMAP SSS bias over the period of 2015–2022 (Fig. 7), indicating that the variables used in 

the regression model captured well the seasonal dependence of the SMAP bias. The bias-

corrected SSS improved the RMSE and bias by more than 0.3 and 0.6 for the WSK and the 

ESK in which the correlation between the bias and the SST was high (Figs. 8a and b). 

Although the bias of NECS showed a relatively low correlation with SST, the RMSE and 

bias of the bias-corrected SSS improve to 0.48 and 0.02, respectively (Fig. 8c). These results 

suggest that the correction using the MLR method effectively controls the seasonal bias 

depending on the sensitivity of the SSS measurement radiometer sensor affected by cold 

temperature. However, this correction method is ineffective in eliminating the high 

frequency of bias shorter than the seasonal cycle, particularly in the NECS region where 

high-frequency bias had a larger amplitude. In addition, the high-frequency may be 

associated with signals interfering with SSS measurement of remote sensing, such as RFI 

and land contamination. The biases associated with RFI or land contamination require 

further correction in the future. Nevertheless, bias-corrected SMAP SSS has shown 

significant reductions in bias and RMSE, suggesting sufficient accuracy for the mechanism 

analysis of the study regions.
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Figure 7. Time series of SMAP SSS bias, estimated bias based on multiple linear regression 

(MLR) model and corrected bias using the MLR model for (a) WSK, (b) ESK, and (c) NECS 

from 2015 to 2021. The shaded area denotes one standard deviation around the mean of 

SMAP bias.
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Figure 8. Histogram of the bias-corrected SSS (blue) and the bias SSS (red) at three regions, 

(a) WSK, (b) ESK, and (c) NECS. �, �, and rmse are standard deviation, mean, and root 

mean square error, respectively.



22

4. Interannual variability of SSS in the northern ECS

CSEOF analysis was performed to understand the spatiotemporal variability of the 

corrected SMAP SSS. Each mode of CSEOF analysis provided 12 sequential spatial patterns 

(LVs) and one PC time series because the nested period was set to 12 months, as shown in 

Eq (5). Fig. 9 showed the LV and the corresponding PC time series for the first CSEOF mode 

of SMAP SSS, which explained 79.16% of the total variance. The LV described a robust 

seasonal cycle in the northern ECS region, with positive anomalies from fall to winter and 

negative anomalies from spring to summer. The negative anomaly began to appear around 

the Changjiang mouth in April, and then it spread northeastward to Jeju Island during 

summer, forming a broad tongue-shaped pattern. The negative anomaly further extended to 

the ESK during fall and disappeared during winter. This seasonal evolution of SSS was 

consistent with the northeastward extension of the CDW reported by previous studies (Lie et 

al., 2003; Moon et al., 2012, 2009), suggesting that the seasonal variation of SSS in the 

northern ECS depends on the seasonal cycle of freshwater discharged from the Changjiang.



23

Figure 9. (a) Sequential loading vector (LV) and (b) the corresponding PC time series (solid 

black line) for the first CSEOF mode of SMAP SSS anomaly from 2015 to 2022. The 

contour interval is 1.0 with positive and negative values are presented as dashed and solid 

contours, respectively.
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However, the amplitude of seasonal SSS evolution varied from year to year as shown in 

the PC time series of the first mode, which indicates an interannual SSS variability (Fig. 9b). 

The PC time series showed a positive value throughout the years, with the maximum in 2016 

and the minimum in 2018. This indicates that a significant sea-surface freshening occurred 

over the northern ECS in the summer of 2016. The comparison between the PC time series 

and area-averaged SSS in August had an evident inverse correlation, with a significant 

correlation coefficient of -0.90 (Fig. 10). The negative relationship was clearly evident in the 

spatial patterns of SSS anomaly (Fig. 11). The SSS negative anomaly was dominated over 

the study region in 2016, whereas the SSS positive anomaly was predominant in 2018. The 

contrasting SSS anomaly patterns in 2016 and 2018 explain the maximum and minimum 

values of the PC time series, respectively (Fig. 11).

The area-averaged SSS in August were also compared with the maximum amount of 

discharge of the Changjiang in July, as freshwater from the Changjiang took a month to 

move from the river mouth to the NECS (Fig. 10). As expected, the area-averaged SSS had a 

significant negative relationship with the discharge of the Changjiang, with a correlation 

coefficient of -0.85. For example, the negative SSS anomalies were dominant over the 

northern ECS in 2016 and 2020, when the river discharges were larger than the other years, 

whereas the positive SSS anomalies prevailed in 2018 (Fig. 11). The interannual mode of 

CSEOF analysis demonstrated that a distinct seasonal cycle in the northern ECS, and 

spatiotemporal variability of SSS depends primarily on the interannual variation of discharge 

of the Changjiang in summer. 
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Figure 10. Comparison of corresponding PC time series (solid black line) and the area-

averaged SSS (blue line) for the northern ECS (orange dashed box in Fig. 1) in August and 

the discharge of the Changjiang in July (green bar)
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Figure 11. Spatial patterns of SMAP SSS anomaly in August from 2015 to 2022. The 

contour interval is 1.0 with positive and negative values presented as dashed and solid 

contours, respectively.
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5. Impacts of freshwater on surface ocean environments

5.1 Enhancement of SST warming

In this section, the physical response of SST due to low SSS induced by river-

discharged freshwater is analyzed by comparing SMAP SSS and satellite SST anomaly 

distributions (Fig. 12). The satellite SST anomalies exhibited three warm years in 2016, 2017, 

and 2022 over the most northern ECS, with the warmest values of more than 2  in 2016. ℃

Interestingly, these warm anomalies of SST were mostly distributed in the regions where the 

negative SSS anomalies clearly occurred. In 2016, when negative SSS anomaly was 

dominant over the northern ECS, the most robust SST warming core was found in the 

freshening area, which is consistent with the low-salinity core observed in SMAP SSS. 

Although the negative SSS anomalies in 2017 and 2022 was relatively weaker than in 2016, 

the evident positive SST anomalies appeared in consistently the low SSS distribution.

Because increased solar radiation in summer heats the ocean surface, the spatial pattern of 

solar radiation anomaly was compared with that of SST and anomaly (Figs. 13). Relatively 

strong positive anomaly of solar radiation was observed in 2016, 2017, and 2022, which is 

generally consistent with the years of the enhancement of SST warming. However, the 

spatial pattern of solar heating showed a distinct difference from the enhanced SST warming 

pattern. For instance, in 2016, the SST warming core was located in the northern ECS, 

corresponding to the region with significant surface freshening, whereas the striking solar 

heating was observed as a zonal band in the northern tip of the ECS. Furthermore, in 2016, 

wind speed wase comparatively weaker in 2016 than other years, which can help further to 

strengthen SST warming by weakening ocean surface mixing. The sea surface freshening 

contributed to the enhancement of SST warming in 2016 which is consistent with the recent 

result of Moon et al. (2019). They demonstrated that substantial low-salinity water induced 
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by riverine freshwater in 2016 causes significant SST warming. The freshwater spreading 

from the Changjiang stratified the surface layer forming a shallow mixed layer, which led to 

a barrier layer formation. The significant enhancement of barrier layer in turn leads to 

increased SST warming by restricting heat exchange between the surface and the sub-surface 

layer over the sea surface freshening areas.
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Figure 12. Spatial patterns of SST anomaly (color) averaged for three satellite SST products 

(OSTIA, OISST, GHRSST) superimposed with SMAP SSS anomaly (contours) in August 

from 2015 to 2022. The contour interval is 1.0 with positive and negative values presented as 

dashed and solid contours, respectively.
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Figure 13. Same as Fig. 7 except for solar radiation anomaly (color) derived from ERA5.
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Figure 14. Same as Fig. 12 except for wind speed anomaly (color) derived from ERA5.
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Despite the occurrence of abnormally low-salinity in 2015 and 2020, however, SST 

warming did not appear in these two years, and even coldest in 2015 (Figs. 12a and f). The 

cold surface water in 2015 was influenced by the lowest solar heating, and consequently the 

surface freshening did not contribute to the SST warming pattern. Meanwhile, in 2020, even 

though the low-salinity water extended to the central ECS due to the maximum discharge of 

the Changjiang, the impact of freshening on SST warming was limited owing to 

comparatively strong wind-induced sur face mixing, thereby exhibiting no SST warming in 

the ECS shelf regions (Fig. 14). The connection between SST warming and sea-surface 

freshening was also clearly evident in Fig. 15, which compares the SMAP SSS with the SST 

time series derived three different satellite products. All products for SST presented a similar 

interannual variation over the study period, indicating that the river-influenced SST change 

is reliable. The ensemble mean SST anomaly showed a significant negative relationship to 

the SSS anomaly over the period of 2015–2022, with a correlation coefficient of -0.64 

(above a significant level of 90%). The comparison of SSS with solar radiation and surface 

wind variables reveals that under increased solar heating and calm wind conditions, the 

riverine freshwater can largely enhance the SST warming by trapping heat at the surface 

layer owing to the restriction of vertical heat exchanges.
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Figure 15. Comparisons of SMAP SSS anomaly with (a) satellite SST anomalies in August 

from 2015 to 2022. The SST anomalies derived from OSTIA, OISST, and GHRSST 

products and their mean were shown. Each data was averaged for the northern ECS region 

(orange dashed box in Fig. 1), and the shaded areas denote two standard deviations around 

the mean of each data.
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5.2 High concentration of chl-a

Biological activity is primarily controlled by nutrient levels and physical factors such as 

temperature and salinity. Since chl-a concentration reflects phytoplankton production as it is 

an essential component for producing energy through photosynthesis in phytoplankton, 

numerous previous studies have been used chl-a concentration as an indicator of primary 

production (Zhu et al., 2009; Jiang et al., 2015).    

To understand the spatiotemporal variability of biological activity associated with 

riverine freshwater, the spatial distribution of SMAP SSS and chl-a concentration derived 

from MODIS/Aqua were compared (Fig. 16). The high chl-a concentration was observed in 

2015, 2016, and 2020 over the northern ECS wherein surface freshening was robust. 

Although the discharge of the Changjiang was relatively low in 2015 (Fig. 10), the higher 

chl-a concentrations were observed in the Changjiang mouth and extended to the central 

ECS with low salinity anomaly pattern (depicted by less than -2psu). In both 2016 and 2020 

when the Changjiang discharges were highest, the positive chl-a anomaly was concentrated 

over the freshening areas, which may be related with the inflow of nutrient-rich freshwater 

into the ocean from the river discharge (Fig. 16b and f). However, the pattern of positive chl-

a anomaly showed a distinct difference between the two years. In 2016, high chl-a

concentration distributed from the river mouth toward the northern ECS with a broad tongue-

shaped pattern, which fairly corresponded to the region where substantial surface freshening 

was intensive. Meanwhile, in 2020, despite the largest amount of discharge of the 

Changjiang, the high chl-a concentration was limited to offshore of the Changjiang mouth 

and decreased as the salinity increases towards the central ECS (Fig. 16f). The decreased chl-

a concentration in the central ECS may be associated with wind-induced surface mixing, 

which can prevent the extension of high chl-a concentration (Fig. 14). Furthermore, the 

intensified SST warming in 2016 may have contributed to maintaining the significant 
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primary production in the surface layer by restricting surface mixing.
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Figure 16. Same as Fig. 12 except for chl-a concentration anomaly (color) averaged for two 

satellite ocean color products (MODIS/Aqua and VIIRS).
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The negative relationship is obviously shown in Fig. 17, which compares interannual 

variation of SMAP SSS and chl-a concentration derived from two satellite datasets, with a 

correlation coefficient of -0.63 (above a significant level of 90%). These comparisons 

indicate that the primary production related to high chl-a concentration is attributed to large 

amount of nutrients originated from the Changjiang discharge. As shown in Fig. 16b, the 

highest concentration of positive chl-a was found in 2016, when both the sea-surface 

freshening and SST warming were intensified over the northern ECS. These spatiotemporal 

relationship between the SMAP SSS and chl-a concentration anomalies suggest that high 

nutrient levels released from the Changjiang extends to the ECS shelf region along with the 

buoyant riverine freshwater, resulting in high production of phytoplankton (Fig. 16). In other 

words, the advection of freshwater discharged from the Changjiang promotes the primary 

production of phytoplankton biomass in the surface layer, thereby leading to chl-a

enrichment over the freshening area. In addition to sea-surface freshening, the river-

influenced SST warming can help trap the riverine nutrients in the surface layer, contributing 

to the promotion of biological activity, as clearly shown in the case of 2016. 
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Figure 17. Comparisons of SMAP SSS anomaly with (a) satellite chl-a anomalies in August 

from 2015 to 2022. The chl-a anomalies derived from MODIS/Aqua and VIIRS products 

and their mean were shown. Each data was averaged for the northern ECS region (orange 

dashed box in Fig. 1), and the shaded areas denote two standard deviations around the mean 

of each data.
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5.3 Reduction of surface pCO2

The primary production in the sea surface layer consumes oceanic CO2 that can lead to 

a reduction of the surface pCO2. The biological activity as well as thermodynamic effects is a 

key factor controlling the variability of pCO2 (Takahashi et al., 2002, 2009; Chou et al., 2017; 

Liu et al., 2023). In this section, we identified the spatiotemporal variability of pCO2 and its 

interconnection with SSS, SST, chl-a concentration derived from multiple satellite datasets. 

Fig. 18 shows the spatial patterns of estimated pCO2 anomaly based on the MNR model.  

The SMAP SSS anomaly was also superimposed to identify the relationship between the 

surface pCO2 and SSS. The significant negative pCO2 anomalies were detected in 2016 and 

2020, which corresponded to the years when the river-induced freshening was more 

intensive. In 2016, decreased pCO2 pattern was primarily distributed from mouth to over the 

northern ECS, showing a pattern that obviously matched the spread of low salinity. In 

addition, this pattern of pCO2 reduction was consistent with those of high chl-a

concentration (Fig. 18b). This relationship of pCO2 with SSS and chl-a concentration also 

appears clearly in 2020, however, the significant low pCO2 level in 2020 was only detected 

offshore of the river mouth, and it sharply increases as SSS increased toward the central ECS 

(Fig. 16). The difference in low pCO2 level extension between the two years was linked to 

the pattern of chl-a concentration. In 2016, the large amount of nutrients was advected to the 

northern ECS, forming a broad high production pattern of phytoplankton, which led to the 

reduction of pCO2 over the freshening area. On the other hand, the riverine nutrients were 

only confined offshore of the river mouth due to wind-induced surface mixing effect, 

resulting in sharp increase in pCO2 reduction over the central ECS. 
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Figure 18. Same as Fig. 12 except for of pCO2 anomaly (color) estimated from the 

combined use of SMAP SSS with satellite SST and chl-a concentration, based on MNR 

method.
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There was an evident interconnection between pCO2 and ocean environmental variables, 

as shown in Fig. 20, which indicated the comparison of the time series of pCO2 with SST, 

SSS, and chl-a concentration. The ensemble means of SSS had a significant positive 

relationship with pCO2, with a correlation coefficient of 0.83 (above a significant level of 

99%). chl-a concentration exhibited an inverse correlation with pCO2 (the correlation 

coefficient was -0.56, above a significant level of 90%). The extremely low pCO2 level was 

found in 2016 when the combined effects of maximum riverine freshwater input, the primary 

production of phytoplankton biomass, and SST warming were intensive. These results 

agreed with the consequence of previous in situ observational-based studies (Liu et al., 2022, 

2023), and in particular, the reduction of pCO2 resulting from intensive biological activity in 

2016 can be seen in the observation results (Choi et al., 2021).

These comparisons reveal that the riverine freshwater input containing high nutrient 

levels discharged from the Changjiang contributed to the reduction of surface pCO2 anomaly 

over sea-surface freshening region. High nutrients promote the primary production of 

phytoplankton biomass within the surface layer, thus the enhanced biological activity can 

trigger the biological uptake of CO2, leading to the drawdown of pCO2. As shown in the 

result of 2016, the river-influenced SST warming also can help the biological CO2 uptake in 

the surface layer by trapping primary production and weakening the surface mixing 

potentially. 
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Figure 19. Comparisons of estimated pCO2 anomaly with (a) SMAP SSS anomaly, (b) 

satellite SST anomalies and (c) satellite chl-a concentration anomalies in August from 2015 

to 2022. The chl-a concentration anomalies derived from MODIS/Aqua and VIIRS products 

and their mean were shown in (b). The SST anomalies derived from OSTIA, OISST, and 
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6. Conclusion and Discussion

Monitoring SSS is important not only for the evaluation of ongoing changes in the ocean 

surface but also for providing insight into the ocean’s role in hydrology and the carbon cycle. 

This is especially true in complex and highly dynamic river-dominated marginal seas 

because river discharge delivering terrestrial substances into the ocean plays a crucial role in 

controlling marine environments. In this study, we investigated how freshwater discharged 

from Changjiang affected the physical and biological responses and oceanic uptake of CO2

by combining the recently available SSS product from the SMAP mission with other remote 

sensing measurements. First, an MLR approach with respect to SST, wind, and precipitation 

variables was applied to correct for seasonally dependent SMAP SSS bias and evaluated for 

the ECS, which is a river-dominated shelf region in the East Asian marginal seas. The 

impacts of riverine freshwater on the physicobiochemical ocean processes in terms of sea-

surface warming, phytoplankton production, and oceanic CO2 uptake were investigated by 

combining SMAP SSS with satellite SST and chl-a concentration datasets. 

The primary mode of the bias-corrected SSS via CSEOF analysis represented a seasonal 

evolution of the SSS pattern that varied distinctly from year to year. The peak in the sea-

surface freshening signal with the interannual mode occurred during times of high discharge 

in Changjiang, indicating the crucial role of riverine freshwater in the intensity of sea-surface 

freshening over the ECS shelf region in summer. Compared with SST and chl-a anomalies, 

we found that large amounts of freshwater discharged into the ECS tended to enhance SST 

warming and increase chl-a concentrations in the region where sea-surface freshening was 

robust. Under typical summer conditions with increased solar heating and calm wind states, 

the buoyant freshwater from Changjiang enhanced SST warming by trapping heat from the 

atmosphere in the shallow surface layer. The accompanying nutrient-rich freshwater 

promoted the production of phytoplanktons, which in turn led to chl-a enrichment in the 

ocean surface. A comparison with the estimated pCO2 based on the MNR approach also 
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revealed a relationship between CO2 uptake and satellite-derived environmental variables. 

During 2015-2022, relatively low pCO2 appeared mostly in the region where SST warming 

and high chl-a concentrations were robust, highlighting that heat and riverine nutrients 

trapped within the buoyant plume contributed to the drawdown of pCO2 by triggering the 

biological uptake of CO2 in the surface layer.

Advances in our understanding of the impacts of riverine freshwater on surface 

environments have been demonstrated through the synergistic use of SMAP SSS with other 

satellite observations. While efforts to improve salinity remote sensing have been successful 

regarding spatial patterns, the short period covered by the SMAP record impedes a full 

understanding of the interannual to decadal variability of SSS and its impact on the marine 

environment, which plays a crucial role in both ecosystems and the carbon cycle. In addition, 

the correction of SMAP SSS used in this study effectively attenuated the seasonal 

dependence of SMAP bias due to the SST-related microwave sensor sensitivity for cold 

water conditions; however, it had little effect on the elimination of high-frequency signals, 

which may be associated with contamination by signals from land and RFI (Misra et al., 

2013). Although the retrieval errors of space observations remain a concern, efforts to 

improve both retrieval algorithms and sensor technology and to accumulate a longer satellite 

SSS record will allow for better monitoring of SSS-related climate change and provide 

accurate datasets to estimate the global carbon cycle in the future.
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