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ABSTRACT

Effects of Angiotensin Receptor Blocker and Dapagliflozin on Blood

Pressure Control, Vascular and Renal Function

Yoon-A Jeon

Department of Veterinary Medicine
The Graduate school

Jeju National University

Hypertension and diabetes are chronic conditions that share various complications and
frequently cooccur. In clinical stages, monotherapy is insufficient to control blood pressure
and blood glucose depending on the severity of symptoms, and combination therapy is used.
Nevertheless, numerous challenges exist, including drug-induced disruptions in glucose
metabolism or ionic imbalances and vascular and renal dysfunctions that remain unmitigated
by controlling blood glucose and blood pressure. Given these unresolved challenges, we
investigated the potential of a novel combination: an angiotensin receptor blocker (ARB) used
as a primary hypertension treatment and a sodium-glucose cotransporter 2 inhibitor (SGLT2
inhibitor) used in diabetes treatment. Both agents are well known for potent anti-inflammatory

and renoprotective effects, and they possibly have the counteraction effects on glucose



imbalance induced by ARBs and elevation of the renin-angiotensin-aldosterone system
(RAAS) instigated by SGLT2 inhibition. Therefore, our research aimed to compare the effects
of ARBs on blood pressure, vascular function, and renal outcomes when monotherapy and
combined with dapagliflozin. Our study measured blood pressure, vascular function, blood
glucose levels, and renal injury indices, including sodium-hydrogen exchanger-1 (NHE-1) and
urinary protein, following a short-term administration of drugs in spontaneously hypertensive
rats (SHR). Furthermore, to elucidate the mechanism underlying the improvement of vascular
function, evaluated the expression of molecules associated with inflammation, oxidative stress,
and autophagy in EA. hy926 cells exposed to low-grade inflammation and aortic tissue of aged
SHR. Consequently, dapagliflozin synergistically enhanced the blood pressure regulatory
effects of fimasartan and telmisartan, resulting in a more significant reduction in blood
pressure and prolonged maintenance of the achieved levels. The combination of telmisartan
with dapagliflozin also exhibited a synergistic effect on glucose and sodium excretion through
common inhibition of SGLT2; however, it led to increased renal NHE-1 expression compared
to the group treated with telmisartan alone. Fimasartan and candesartan exhibited an
augmented acetylcholine response in the aorta by activating autophagy, inhibiting
inflammation, and reducing oxidative stress. Moreover, this enhancement was further
potentiated through co-administration with dapagliflozin. Fimasartan and candesartan also
demonstrated a reduction in NHE-1 expression and proteinuria, indicating the renoprotective
effects of these drugs. In summary, the combination of telmisartan with dapagliflozin shows
the most pronounced effects in lowering blood pressure and blood glucose levels; however,
potential side effects can be exercised when using this combination due to overlapped
mechanisms of SGLT2 inhibition. The combination of candesartan and dapagliflozin
demonstrated superior vascular and renal protection; however, it exhibited fewer synergies in

reducing blood pressure than other ARBs. The combination of fimasartan and dapagliflozin
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showed synergistic effects in reducing blood pressure and enhancing vascular and renal
protection; these findings indicate the strength of this combination as a multifaceted
therapeutic approach for managing hypertension and diabetes. As our results are derived from
a short-term preclinical trial, further investigations are required to fully comprehend the
interplay between the two drugs and potential side effects. Despite this, results show that the
combination of ARB and SGLT2 inhibitors can be used as various selections contingent upon
individual characteristics, and it may serve as a novel alternative, providing substantial
advantages not only in managing blood pressure and blood glucose but also imparting vascular

and renal protection.



INTRODUCTION

1. Hypertension and Diabetes

1.1. Hypertension

Hypertension is a debilitating condition characterized by uncontrolled high blood pressure.
Diagnostic criteria for hypertension typically involve a systolic blood pressure (SBP) of 140
mmHg or higher and a diastolic blood pressure of 90 mmHg or higher [1] (Figure 1).
Hypertension can be categorized into two types: essential and secondary hypertension.
Essential hypertension accounts for over 90% of cases [2]. Hypertension affects approximately
25% of the global adult population, and management is complex due to its multifactorial
involving the heart, blood vessels, kidneys, and central nervous system [3]. While the exact
cause of hypertension is challenging to ascertain, it is influenced by genetic factors and
lifestyle, including a high-salt diet, smoking, alcohol consumption, and stress [4, 5]. In
genetics, essential hypertension is strongly associated with the angiotensinogen and
angiotensin-converting enzyme (ACE) genes [4, 6]. Initially, hypertension is often
asymptomatic. However, management and treatment are highly recommended because as it
progresses, it can lead to severe complications such as cardiac hypertrophy, stroke, heart

failure, atherosclerosis, renal dysfunction, and diabetes [7, 8].

The treatment of hypertension involves various drug classes, including beta-receptor blockers,
calcium channel blockers (CCBs), diuretics, renin-angiotensin-aldosterone system (RAAS)
inhibitors, and vasodilators [9, 10]. The drug and dosage selection depends on the individual's
heart, kidney, and cerebrovascular disease risk factors. Generally, to minimize the risk of side
effects, recommended to initiate treatment with a low dose of monotherapy [9]. However, due

to the complexity of hypertension, monotherapy has limitations in controlling the progression
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and severity of the condition. Consequently, approximately 75% of patients with stage 2
hypertension require combination therapy involving two or more drugs to achieve the target

BP[11].

.LJi.SQ Stages of Hypertension

Pre- Stage 1 Stage 2 ertensive
(LOW) (NormaD Gpertenmo) (pertean (pertensm-n chr|5|s

120 140 180 180+
60 80 80 100 110 110+
mmHg mmHg mmHg mmHg mmHg mmHg

Figure 1. Classification of hypertension stages.

Classification of hypertension stages according to the ‘2017 Guideline for the Prevention, Detection, Evaluation,
and Management of High Blood Pressure in Adults’ by ‘The American College of Cardiology’ (ACC) / ‘The

American Heart Association’ (AHA).



1.2.Renin-angiotensin-aldosterone system

The RAAS is a critical regulatory mechanism that maintains systemic blood pressure by
regulating ECV [12, 13] (Figure 2). When the baroreceptors detect a decrease in renal arterial
pressure and sodium content, renin secretion is stimulated, leading to the angiotensinogen
being cleaved to angiotensin-I (Angl) [14, 15]. Angl is subsequently converted to
angiotensin-II (Ang2) by ACE and binds to receptors to exert various functions [16]. The Ang2
receptor is a G-protein-coupled receptor with seven transmembrane domains, and clinically
significant isoforms include angiotensin receptor type 1 (AT1) and type 2 (AT2) [17]. Upon
binding of Ang2 to AT1 receptors, it induces smooth muscle contraction, stimulates sodium
channels in the renal proximal tubule, and stimulates the secretion of aldosterone and
vasopressin in the adrenal cortex [18, 19]. Aldosterone promotes sodium reabsorption in the
collecting duct, and vasopressin increases blood pressure by preserving body fluid volume
through water reabsorption [20, 21]. Like this, RAAS plays a central role in regulating blood
pressure; however, excessive activation can lead to hypertension and its severe complications,
such as cardiovascular diseases, diabetes, kidney diseases, and even neurodegenerative

diseases [22, 23].

Excessive RAAS also associated with chronic inflammation and oxidative stresses. Ang2
stimulates the production of reactive oxygen species (ROS) by increasing the activity of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), leading to the
generation of inflammatory mediators [22, 24, 25]. Additionally, uncontrolled Ang2 disrupts
the physiological regulation of water, sodium, and potassium homeostasis through excessive
aldosterone production [26]. Indeed, primary aldosteronism, accompanied by hypokalemia, is
the most common cause of secondary arterial hypertension [24, 27]. At the vascular level,

excessive aldosterone also stimulates endothelial dysfunction, infiltration of inflammatory



cells, and atherosclerotic plaque development [26, 27]. Consequently, several antihypertensive
drugs are being developed to inhibit excessive activation of the RAAS. However, it is essential
to note that RAAS inhibitors, including ACE inhibitors, angiotensin receptor blockers (ARB),
aldosterone receptor antagonists, and direct renin inhibitors, carry an increased risk of
hyperkalemia (serum potassium > 5.5 mmol/L), particularly in patients with chronic Renal
failure [28, 29]. The reported incidence rate of hyperkalemia with ACE inhibitors or ARB-
treated patients is up to 10% [28]. Therefore, when initiating therapy with a RAAS inhibitor,
must be considered to glomerular filtration rate, serum potassium level, and potassium intake

level of the patient [29].

Lung

Vaso-contraction

00
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Figure 2. The renin-angiotensin-aldosterone system and target of anti-hypertensive

drugs.

ACE, Angiotensin Converting Enzyme; ARB, Angiotensin Receptor Blocker; AT1: Angiotensin Receptor Type 1;

DRI, Direct Renin Inhibitor; MRA, Mineralocorticoid Receptor Antagonist.



1.3. Diabetes mellitus

Diabetes mellitus is characterized by chronic hyperglycemia resulting from impaired insulin
production [30]. Diabetes global prevalence has been escalating because of aging populations,
changes in lifestyle, and obesity. The latest report indicates that diabetes affects over 400
million individuals worldwide [31]. The diagnostic criteria for diabetes, as defined by the
‘American Diabetes Association’, include a fasting plasma glucose level > 126 mg/dl (7.0
mmol/l), a 2-hour plasma glucose level > 200 mg/dl (11.1 mmol/l) during an oral glucose
tolerance test, or a Hemoglobin Alc level > 6.5% [32]. Despite advances in therapeutic
strategies, diabetes remains a significant cause of severe complications such as kidney,
microvasculature, and macro vasculature. Macrovascular complications involve
cardiovascular diseases, including coronary artery disease, peripheral arterial disease, and
stroke [33]. Microvascular complications, such as retinopathy, nephropathy, and neuropathy,
can result in disabilities such as blindness, kidney failure, and non-traumatic lower-limb

amputations [34].

Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes and a
cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD) [35]. DKD is
characterized by albuminuria and a progressive decline in glomerular filtration rate (GFR) [36].
DKD burdens patients significantly due to morbidity, mortality, and economic costs associated
with dialysis and transplantation. Both type 1 and type 2 diabetes have the risk of DKD, and
the risk is notably higher in individuals with impaired glycemic control, hypertension, and
specific genetic predispositions [35, 37]. Moreover, DKD is associated with cardiovascular
disease, further complicating management and contributing to worse outcomes [38]. Despite
efforts to understand the pathophysiology of DKD, it remains only partially understood;

hyperglycemia-induced metabolic and hemodynamic changes, inflammation, oxidative stress,



and the activation of RAAS have been implicated [39, 40]. The management of DKD focuses
on controlling blood glucose and blood pressure using anti-diabetic agents and RAAS
inhibitors [41]. Novel therapeutic strategies targeting inflammation, fibrosis, and other

mechanisms are under investigation [41, 42].

Hypertension and diabetes are chronic diseases that coexist and share several underlying
causes; they share risk factors such as obesity, insulin resistance, inflammation, and lifestyle,
including diet and physical inactivity [43, 44]. Also, as previously described, hypertension and
diabetes collaboratively contribute to the progression of their common complications, renal
and vascular dysfunction (Figure 3). Upregulation of the RAAS, oxidative stress instigated by
the advanced glycation end-product (AGE)/receptor for AGE (RAGE) axis, inflammation, and
activation of the immune system mediate these [45, 46]. Inflammation-driven macrovascular
dysfunction accelerated in diabetes, and it can lead to myocardial infarction, stroke, and
peripheral arterial disease [47]. Moreover, vascular aging, a characteristic of hypertension
signified by arterial wall thickening and collagen deposition, also contributes to these changes
[48]. Indeed, compared to either disease alone, metabolic disease patients have a significantly
increased risk of complications, including coronary artery disease, renal failure, and
congestive heart failure [49]. These risk factors also contribute to the aggravation of both
diseases; hypertension incidence in individuals with diabetes is twice higher than in non-
diabetic individuals [43, 50]. Additionally, essential hypertension is often accompanied by
insulin resistance and hyperinsulinemia, which can further exacerbate hyperglycemia [51]. In
the United States, approximately 60 million people have hypertension, 10 million have
diabetes, and around 3 million individuals have both [50]. To reduce morbidity and mortality,
novel blood pressure management guidelines have been developed for diabetic patients, and

monitoring of blood glucose and insulin levels is recommended for hypertensive patients.
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2. Endothelial dysfunction and inflammation

The ‘American Society of Hypertension (ASH)’ and the ‘Korean Society of Clinical
Hypertension (KSH)’ have recently issued recommendations for chlorthalidone [52, 53]. This
recommendation is due to chlorthalidone's benefit in protecting the vascular and decreasing
cardiovascular risk [52]. Like this, enhancing vascular function is considered as critical as
managing blood pressure when selecting therapeutic options in clinical practice. The vascular
system plays a crucial role in preserving homeostasis in the body, mediating essential functions
such as blood flow regulation, oxygen delivery, and nutrient exchange [54]. Endothelial cells
located within the inner lining of blood vessels significantly regulate vascular tone. These cells
release various substances, including endothelin and endothelial-derived relaxing factors, such
as nitric oxide (NO), for managing vascular tone [54]. Consequently, disturbances in
endothelial function precipitate and accelerate hypertension, along with several cardiovascular
and metabolic diseases [55, 56]. During the initiation and progression phases of the immune
response, nuclear factor kappa-B (NF-xB) is released from the inhibitor of NF-kB (IxB). It
translocates to the nucleus, binds to specific DNA sequences such as the activator protein 1
(AP-1) site, and induces gene expression of various inflammatory molecules [57]. One of them,
intercellular adhesion molecule 1 (ICAM-1), is an adhesion molecule that plays essential roles
in the recruitment of leukocytes and regulation of adhesion to the endothelium, which is
essential for immune surveillance and inflammation [58, 59]. Overexpression of adhesion
molecules promotes the adhesion of leukocytes and monocytes to the endothelial surface,
resulting in endothelial dysfunction and vascular damage [60]. Furthermore, the accumulation
of leukocytes and monocytes on the endothelial surface can lead to pro-inflammatory
cytokines, oxidative stress, and further immune system activation, causing vascular damage

and inflammation [61].

11



As another inflammatory factor, inflammasome, a pattern-recognition receptor (PRR), is a
protein that regulates innate immune responses and inflammation [59]. Among them, the
NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3), is a multimeric
protein complex with a relatively well-known structure and function. It is mainly found in
immune cells such as macrophages and is activated by various stimuli such as microbial
components, stress, and cell damage [62]. Once activated, NLRP3 forms an inflammasome
complex and mediates the activation of caspase-1, which promotes the production and release
of pro-inflammatory cytokines [63]. NLRP3 activation plays a vital role in the immune
response to infection and injury, but excessive or prolonged activation contributes to chronic
inflammation and tissue damage [62]. Various studies have shown that NLRP3 inflammasome
activation is associated with several chronic inflammatory diseases and metabolic disorders,
including obesity, hypertension, diabetes, atherosclerosis, neuroinflammation, retinopathy,
stroke, and cancer [64, 65]. It is widely recognized that NLRP3 and NF-kB exhibit a close,
reciprocal relationship in their functional activity and expression levels for the progression of

inflammation.

In hypertension, excessive Ang2 reduces the activation of endothelial NO synthase (eNOS)
through the AT1/NOX/ROS/PP2A pathway and induces endothelial damage via oxidative
stress [22, 23]. Oxidative radicals play an essential role in the development and progression of
various cardiovascular diseases, and antioxidants have been reported to reduce atherosclerotic
plaques and improve vascular function decline [58, 66]. Simultaneously, the increased
production of ROS in endothelial cells sets off inflammatory pathways, amplifying cell
damage; it suggests a complex interaction between oxidative stress and inflammation [67].
The inflammatory cascade depletes tetrahydrobiopterin (BH4), an essential eNOS cofactor,
and curtails NO bioavailability [68]. This phenomenon also initiates the process of endothelial

dysfunction and cell death by inducing damage to organelles such as mitochondria and
12



membranes. Inflammation also can cause acute or chronic oxidative stress directly or
indirectly through ROS sources like NOX and the mitochondrial electron transport chain [69].
These integrated pathways trigger the formation of atherosclerotic plaques and exacerbate
vascular dysfunction [68, 70, 71]. Therefore, many researchers focus on inflammation and

ROS to mitigate endothelial damage (Figure 4).

Autophagy is a protective cellular mechanism that facilitates the removal of damaged
organelles and proteins. Autophagy activation has multiple advantages, such as inhibiting
apoptosis in pulmonary arterial hypertension and reducing ischemia/reperfusion-induced
endothelial damage [72, 73]. The activation of autophagy in the vascular endothelium can
decrease the expression of cell adhesion molecules and the infiltration of monocytes, thereby
mitigating excessive inflammation and offering protection against atherosclerosis [74-76].
Indeed, autophagy is well known to be a negative regulator of NLRP3 inflammasome.
Meanwhile, impaired autophagy increases cellular stress by exacerbating inflammation and
deficient cellular repair mechanisms [75, 76]. For this reason, autophagy has emerged as a

target for vascular protection in various chronic diseases, especially diabetes, and hypertension.
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NADPH, Nicotinamide Adenine Dinucleotide Phosphate; ROS, Reactive Oxygen Species; TLR, Toll-like Receptor;
NF-«B, Nuclear Factor Kappa-B; IkB, Inhibitor of NF-kB; AP-1, Activator Protein 1; NLRP3, NOD-Like Receptor
Family, Pyrin Domain Containing Protein 3; LC3, Microtubule-Associated Protein 1A/1B-Light Chain 3; ATG4,

Autophagy-Regulating Protease 4; P62, Sequestosome-1.
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3. ARBs and SGLT?2 inhibitors

3.1. Angiotensin receptor type 1 blocker

ARB, a class of RAAS inhibitors, is widely used as a first-line prescription drug. Various ARBs
with different molecular structures have been developed [77, 78] (Table 1). ARBs are
alternatively used for patients resistant to ACE inhibitors or who experience cough,
angioedema, or other side effects; ARBs are known to have excellent tolerability with few side
effects. The first ARB developed was losartan, which has been widely used in basic and
clinical research since its inception in 1986 [79]. Since then, valsartan, candesartan,
telmisartan, eprosartan, and olmesartan have been developed in the 1990s, with fimasartan and

azilsartan emerging since the 2000s [80, 81].

Table 1. Pharmacokinetic characteristics of ARBs.

Bioavailability Urinary

1) 2)
Dmgs Dose (mg) Tmax (h) T1/2 (h) (% ) elimination (% )
Losartan 25,50, 100 34 2 33 35
Valsartan 40, 60, 80, 320 24 6-9 10-35 13
Irbesartan 75, 150, 300 1.5-2 11-15 60-80 20
Eprosartan 400, 600 1-2 5-9 13 7
Olmesartan 5,20, 40 1-2 13 26 35-50
Telmisartan 20, 40, 80 0.5-1 24 42-58 <1
Candesartan 4, 8, 16, 32 34 5-9 15 33-359
Fimasartan 60, 120 0.5-3 7-10 3040 <3

D Timax, time to maximum plasma concentration

2 Tip, half-life
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We selected fimasartan, telmisartan, and candesartan for our research; based on molecular
structures, documented efficacy, and pharmacokinetic characteristics. Fimasartan, an oral
antihypertensive drug developed by Korea's Boryung Pharmaceutical, is an AT1 selective
antagonist approved and used in Korea, China, India, Singapore, and Russia. The
recommended daily dose is 60-120 mg, with a Tmax 0f 0.5 - 3 hours and a relatively long half-
life of 7 - 10 hours [82, 83]. Fimasartan is a derivative of losartan in which the imidazole ring
is replaced, a non-biphenyl ARB with a benzimidazole structure, and IUPAC name is 2-[2-
butyl-4-methyl-6-oxo0-1-[[4-[2-(2H-tetrazol-5-yl)phenyl|phenyl |methyl|pyrimidin-5-yl]-

N,N-dimethylethanethioamide [82]. The tetrazole group is a shared characteristic of many
ARBs, which binds to AT1, replacing Ang2 [84]. Fimasartan contains a tetrazole group, but

unlike the others, it includes a thiocarbonyl group, which is unique to its structure.

Telmisartan is prescribed in 20-80 mg doses once daily and has a 0.5 to one-hour Tmax. Half-
life is 24 hours, the most prolonged among ARBs; it can effectively address the rise in blood
pressure in the morning, known to cause acute myocardial infarction and stroke. Telmisartan
possesses a biphenyl-imidazole structure, and its [UPAC name is 2-[4-[[4-methyl-6-(1-
methylbenzimidazol-2-yl)-2-propylbenzimidazol-1-ylJmethyl]phenyl]benzoic acid [85, 86].
Unlike fimasartan, telmisartan has a carboxylic acid group instead of a tetrazole group.
Telmisartan is also known to activate peroxisome proliferator-activated receptor gamma
(PPARY), a therapeutic target for hyperlipidemia and diabetes; therefore, telmisartan has

beneficial for not only hypertension but also diabetes [87, 88].

Candesartan cilexetil is a highly effective orally administered antihypertensive drug that
selectively binds to and inhibits the AT1 with high affinity and slow dissociation. It is
prescribed at doses ranging from 4 to 32 mg once daily, has a Tmax of 3 - 4 hours, and a half-

life of 5 - 9 hours [89, 90]. By blocking the RAAS, candesartan has significantly reduced
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cardiovascular mortality and morbidity in hypertensive patients and is known to prevent heart
failure [91]. Candesartan features a biphenyl-tetrazole structure, and IUPAC’s name is 1-
cyclohexyloxycarbonyloxyethyl 2-ethoxy-3-[[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]methyl]
benzimidazole-4-carboxylate [92]. These structural differences may give rise to differences in

pharmacokinetics, pharmacodynamics, and side effect profiles [93, 94].

Although ARBs are drugs with relatively few side effects, hyperkalemia is possible, which is
a chronic problem with the RAAS inhibitors, as mentioned above. In addition, overdoses of
ARBs typically present symptoms such as hypotension, dizziness, and bradycardia, which
could result from parasympathetic stimulation [95]. These drugs are not approved for use in
children younger than one year of age and are contraindicated during pregnancy due to their
direct action on the RAAS, which could affect the development of immature kidneys [96].
They are also associated with serum aminotransferase elevations [97]. Also, relatively recently,
losartan, the 9th most prescribed drug in the US, has been found to contain nitrosamine
impurities that are potential carcinogens. Due to these findings, losartan has been subject to
widespread recalls since 2018, with the synthesis of its tetrazole ring structure implicated as
the likely source of contamination [98]. However, it is worth noting that, unlike valsartan and
irbesartan, which also contain tetrazole rings, candesartan, and fimasartan has not been
associated with nitrosamine impurities and remains a safe and effective option for

hypertension treatment [99, 100].

As mentioned above, ‘The Seventh Report of the Joint National Committee (JNC-7)’ and 2007
‘European Society of Hypertension/European Society of Cardiology (ESH/ESC)’ recommend
combination therapy of two or more agents in patients with stage 2 or higher hypertension.
ARBs are mainly combined with a CCB or a thiazide diuretic. These combinations can provide

additive antihypertensive effects and offset some side effects of the individual drugs.
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Specifically, CCB excites RAAS and sympathetic nerves along with vasorelaxation to induce
reflex vasoconstriction and tachycardia, and ARB inhibits them; therefore, the
antihypertensive effect can be increased when combined. [101]. Indeed, combining an ARB

and amlodipine can offer substantial blood pressure-lowering effects [102].

Thiazide diuretics are another kind of drug that reduces blood pressure by promoting sodium
excretion and reducing fluid volume [103]. Thiazide diuretics have the side effect of exciting
the RAAS by increasing sodium excretion and decreasing circulating volume [104]. Since
ARB blocks this, the antihypertensive effect is enhanced when combined [105]. In addition,
since thiazide diuretics can reduce hyperkalemia, a chronic side effect of ARB, combining the
two drugs can improve antihypertensive effects and prevent side effects [106]. Recent studies
have confirmed that combining fimasartan with hydrochlorothiazide (HCTZ), a diuretic,
shows excellent blood pressure-lowering efficacy, leading to the development and sale of
combination preparations [107]. In addition, candesartan, combined with HCTZ and
amlodipine, can effectively lower blood pressure in patients with inadequate response to initial
therapy and clinical utility as a second-line agent [108, 109]. In some cases, triple therapy
(ARB, CCB, and Thiazide diuretics) might be necessary for patients with high cardiovascular
risk or with poor dual treatment. These combinations have shown efficacy in lowering blood
pressure in numerous clinical trials. Still, studies of these treatments considering their lifestyle,
potential for drug interactions, comorbidities, and possible side effects must be investigated

more.
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3.2. SGLT2 inhibitor

In a healthy adult, the kidneys filter approximately 180 g of glucose and reabsorb daily [110].
Sodium-glucose cotransporter (SGLT) mediates this process in the proximal tubule. SGLT is
an ion exchanger that reabsorbs glucose and sodium in a 1:1 ratio and is responsible for 90%
of glucose reabsorption at normal blood glucose levels [110, 111] (Figure 5). SGLT1 is

distributed in the S2 and S3 segments, and SGLT?2 is distributed in the S1 and S2 segments.

SGLT2 inhibitors are antidiabetic agents that reduce blood glucose by inhibiting glucose
reuptake by SGLT2 [112]. Clinical studies have demonstrated that SGLT2 inhibitors can
decrease Hemoglobin Alc by 0.6-0.9% and fasting blood glucose by 18-36 mg/dL [113].
Furthermore, SGLT2 inhibitors promote weight loss by reducing calories through increased
glucose excretion and can lower SBP by 3-5 mmHg through increased sodium and water
excretion [114, 115]. In addition to promoting diuresis and reducing blood glucose, SGLT2
inhibitors have been reported to have various protective effects on the cardiovascular and renal

systems [116, 117].
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Figure 5. The distribution and function of renal sodium-glucose cotransporters.
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Dapagliflozin is the kind of SGLT2 inhibitor with a Tmax of 2.5 hours and a half-life of
approximately 13 hours (Table 2). Dapagliflozin is a highly potent (inhibitory constant 0.55
nmol/L) and reversible SGLT2 inhibitor that is more selective for SGLT2 than SGLT1 [118].
Dapagliflozin increased the amount of glucose excreted in the urine and reduced fasting and
post-prandial plasma glucose levels in patients with type 2 diabetes [119]. Dapagliflozin-
induced glucose diuresis in patients with type 2 diabetes was associated with caloric loss, a
modest reduction in body weight, mild osmotic diuresis, and transient natriuresis [120].
Dapagliflozin is also known to reduce the risk of kidney failure and prolonged survival in

patients with CKD with or without type 2 diabetes [118, 121]. Indeed, patients with stage 4
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CKD randomized to dapagliflozin experienced a 27% reduction in the primary composite
endpoint [121]. Furthermore, several studies also reported reductions in SBP and
cardiovascular morbidity and protection of vascular endothelial cells in dapagliflozin-treated

patients [122-125].

Table 2. Pharmacokinetic characteristics SGLT?2 inhibitors.

Bioavailability Elimination
Drugs Dose (mg) Tpae (D) P T,,(h) 2
(%) route (%)
Feces 21
Dapagliflozin 5,10 2 12.9 78
Urine 75
Feces 41
Empagliflozin 10, 25 1.5 12.4 78
Urine 54
Feces 52
Canagliflozin 100, 300 1-2 13.1 65
Urine 33

D Timax, time to maximum plasma concentration

2 T2, half-life

One of the mechanisms is to reduce the sodium-hydrogen exchanger-1 (NHE-1), independent
of SGLT2. NHE-1 is a membrane protein that regulates intracellular ion balance in various
tissues; NHE-1 is primarily involved in maintaining intracellular pH [126]. At the same time,
in the kidney, it reabsorbs Na* filtered in the proximal tubule and regulates body fluid and
electrolyte homeostasis [127, 128]. Several reports have demonstrated that NHE-1 expression
and activity are increased in hypertension, and it can induce vasoconstriction by increasing
intracellular sodium and calcium concentrations [129-131]. Increased NHE-1 is also shown in

diabetic kidneys, which can contribute to diabetic nephropathy by promoting sodium ion
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retention and volume expansion, impairing GFR, and increasing proteinuria [132, 133].
Therefore, NHE-1 is a potential target for treating cardiovascular dysfunction and DKD,

especially using SGLT2 inhibitors [134, 135].

On the other hand, acute renal damage in patients with end-stage renal disease has been
reported when treating SGLT?2 inhibitors, including dapagliflozin. Other side effects, such as
ketoacidosis, increased genital infection, and decreased bone density, are also known [136]. In
addition, natriuresis due to SGLT2 inhibition may cause activation of RAAS, a chronic
problem of diuretics. Indeed, dapagliflozin can increase plasma renin, aldosterone, and

copeptin levels [137].

In this context, infrequent trials combining SGLT2 inhibitors with ARBs are commencing.
This approach hypothesizes that the co-administration of ARBs and dapagliflozin may have
advantageous outcomes by counteracting each drug's adverse effects, such as hyperkalemia
triggered by ARBs and RAAS activation by dapagliflozin. Indeed, in the DAPA-HF trial,
dapagliflozin curtailed the incidence of hyperkalemia among patients concurrently
administered mineralocorticoid receptor antagonist (MRA)s [138]. This strategy may also be
safe against metabolic disorders such as glucose dysregulation and insulin resistance, which
are common side effects of thiazide diuretics. However, there has been a shortage of non-
clinical experiments investigating the response to the ARB and dapagliflozin combination,
especially in drug interaction and its mechanisms. Additionally, research addressing
compensatory reactions, a typical occurrence in the initial stages of patients prescribed

antihypertensive and antidiabetic drugs, is virtually non-existent.
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4. Objective

Combination therapy is a strategic approach widely adopted for efficient blood pressure
management. Hypertension and diabetes commonly coexist, thus leading to investigations on
the co-administration of various antidiabetic and antihypertensive treatments. However,
investigations into the combination of ARB and SGLT?2 inhibitors remain nascent. Therefore,
more research is needed to fully understand the unexpected side effects, compensatory
reactions, the precise actions and mechanisms of each drug, and the benefits of combining

these treatments.

We hypothesized that the co-administration of ARBs and dapagliflozin might have
advantageous outcomes by counteracting each drug's adverse effects and offering benefits
beyond blood pressure regulation, including blood glucose reduction, diuresis, natriuresis,
RAAS inhibition, renal and vascular protection. Therefore, our research investigated the
effects of the short-term co-administration of dapagliflozin and ARBs (fimasartan, telmisartan,
and candesartan) in spontancously hypertensive rats (SHR). In particular, we explored the
enhancement of dapagliflozin in ARB-induced blood pressure control and the effect of ARBs
on dapagliflozin-induced SGLT2 inhibition. We also probed the protective effects and
mechanisms of co-administration on the kidney and vascular for identifying the additional

benefits.
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Part 1. Enhancement of ARB by Dapagliflozin:

Blood Pressure Regulation in SHR
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1-1. Materials and methods

1-1.1. Materials and experimental animals

The ARBs used in this study, including fimasartan, telmisartan, and candesartan cilexetil, were
provided by Dr. Yong-Ha Ji. The SGLT2 inhibitor dapagliflozin, containing 10 mg of the active
ingredient, was obtained as Forxiga™ tablets (AstraZeneca, UK), and HCTZ (Merck,

Germany) was purchased and used according to the manufacturer's instructions.

SHRs were purchased from Charles River (MA, US) and housed at the Jeju National
University animal facility for at least seven days before use in the experiments. Animals were
fasted for four hours before drug administration, and water was provided ad libitum. The
animals were housed under controlled conditions with a temperature of 22 + 5°C, a humidity
of 50 £ 10%, and a 12-hour light/dark cycle. All animal experiments were performed under
the guidelines of the ‘Institutional Animal Care and Use Committee at Jeju National University’

(protocol number: 2018-0019).
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1-1.2. Blood pressure measurement

Experimental animals were acclimatized at 40°C for 15 minutes for blood pressure
measurement, and then tail-cuff and Volume Pressure Recording (VPR) sensors were installed.
Blood pressure was measured using the tail-cuff method (Coda, Kent Scientific Co., CT, US).
The measurement cycle consisted of five preliminary and ten mains, with a time of 15 seconds
per measurement. To get reliable results, values were selected according to the heart rate of
rats (250-450 bpm) and standards of the CODA software (tail volume, systolic and diastolic

measurement time interval, difference between systolic and diastolic blood pressure).

Experimental animals with SBP over 190 mmHg were selected, and measuring blood pressure
once a day for three days before drug administration to acclimate them to the measurement
device. At experimental periods, Blood pressure was measured three times a day at three-day
intervals during drug administration: one hour before administration (-1 h), one hour after
administration (1 h), and three hours after administration (3 h). In addition, blood pressure

changes were tracked for seven days after stopping the administration (Rel-7) (Figure 6).
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Figure 6. The experimental groups and the experimental schedule.

1-1.3. Experimental groups

(1) Combined Administration of ARBs and Dapagliflozin: Male SHR aged 18-36 weeks,

weighing 340-390 g, with a SBP of over 190 mmHg were used. The experimental groups

consisted of a control group, a dapagliflozin single administration group, low and high doses

of ARB single administration groups, and low and high doses of ARB and dapagliflozin

combination groups (Figure 6). All doses were calculated using body surface area conversion

factors from FDA, which provides an equivalent dose relative to clinical applications;

dapagliflozin 1 mg/kg, fimasartan 3 and 12 mg/kg, telmisartan 2 and 8 mg/kg, and candesartan

0.8 and 3.2 mg/kg. All drugs were dissolved in distilled water and administered orally. The

control group received distilled water in the same volume per gram of body weight.

(2) Combined Administration of Telmisartan and HCTZ: Male SHR over 30 weeks,
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weighing 360-410 g, with a SBP of over 190 mmHg were used. Experimental groups consisted
of'a control group, HCTZ single administration group, and telmisartan and HCTZ combination
group. HCTZ was administered at 15 mg/kg and telmisartan at 8 mg/kg. All drugs were
dissolved in distilled water and administered orally every day. The control group received

distilled water at a dose of uL per gram of body weight.

1-1.4. Measuring vascular relaxation

(1) Animals: Wistar Kyoto (WKY) rats were purchased from Charles River and housed at the
Jeju National University animal facility for at least seven days before use in the experiments.
The animals were housed under controlled conditions with a temperature of 22 + 5°C, a
humidity of 50 = 10%, and a 12-hour light/dark cycle. All animal experiments were performed
under the guidelines of the ‘Institutional Animal Care and Use Committee at Jeju National

University’ (protocol number: 2018-0019).

(2) Measuring vasorelaxation: The thoracic aortas of 20-25 weeks old male WKY rats were
harvested immediately after sacrifice using CO» gas. The thoracic aorta was prepared into 3-5
mm sections, suspended to metal rings, and mounted to isometric force-displacement
transducers (FT03, Grass, AD Instruments, New Zealand). Aortas were placed on the organ
bath filled with 37°C Krebs buffer (120 mM NaCl, 4.75 mM KCl, 6.4 mM Glucose, 25 mM
NaHCOs, 1.2 mM KH,PO4, 1.2 mM MgSQs4, 1.7 mM CaCly), which was adjusted to pH 7.4
while supplying 95% O, and 5% CO- gas (Figure 7). The tension of the aorta was adjusted to
1.0 g, and stabilized for two hours with solution changes every 20 minutes. After stabilization,
the vessels were pre-contracted with 1 puM phenylephrine (PE), and the cumulative
concentration of ARBs and dapagliflozin (0-500 uM) were added to measure the level of
vascular relaxation. The changes in vascular tone in response to drug treatment were recorded
using a physiograph recorder (PowerLab/400, AD instrument) and quantified using the Chart7
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program (AD instruments). The levels of vasorelaxation responses by treatment were

calculated based on PE-induced contracted tension.
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Figure 7. Myography system for measuring the vascular reactivity.

1-1.5. Cell culture

EA. hy926 cells, a hybrid cell line between human umbilical vein endothelial cells (HUVEC)
and A549 lung cancer cells, were cultured in Dulbecco's modified Eagle's medium (DMEM,
Gibco, MA, US) supplemented with 10% fetal bovine serum (FBS, Gibco) and 100 U/mL
Penicillin-Streptomycin (P/S, Gibco). Cells were treated with drugs and collected after 24

hours.

1-1.6. Protein Analysis

(1) Protein preparation: EA. hy926 cells were washed with phosphate-buffered saline (PBS,
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pH 7.4) and then lysed with RIPA buffer (Tech & Innovation, Korea) for 30 minutes on ice.
The supernatant was collected after centrifugation at 13,000 rpm, 4°C for 15 minutes. The

protein contents of cell lysate were quantified using the Bradford method.

(2) Western blotting: Equal amounts of protein were mixed with sample buffer and denatured
at 97°C for seven minutes. 20 pg of protein per well was loaded onto 8-12% SDS-PAGE and
electrophoresed at 120-150 V for one hour. The separated proteins were transferred to
polyvinylidene fluoride (PVDF, Bio-Rad, CA, US) membranes at 100 V for two hours using
wet transfer methods. After washing with TBST (200 mM Tris, 1.37 M NaCl, 0.1% Tween-
20), the membranes were blocked with 5% blocking grade buffer (Bio-Rad) for 30 minutes to
prevent nonspecific binding. The membranes were incubated overnight at 4°C with anti-eNOS,
p-eNOS (Cell Signaling, MA, US), and B-actin (Santa Cruz Biotechnology, CA, US)
antibodies. After washing, the membranes were incubated for one hour with a secondary
antibody (GeneTex, CA, USA) conjugated with HRP. The protein was visualized using
electrochemiluminescence (Amersham Biosciences, UK) and detected using Chemi-Doc
molecular imaging system (Fusion Solo S, Vilber Lourmat, France). The expression levels of
each protein were obtained using the Evolution Capt software (Vilber Lourmat), normalized
by B-actin, and further calculated to relative values based on control. The activation level of

eNOS was calculated by the expression level of p-eNOS to the total eNOS protein.

1-1.7. Molecular docking

The structure of AT1 was downloaded in .pdb format from the Protein Data Bank (PDB)
(https//www.rcsb.org/) (Figure 8) [139]. The structures of compounds were downloaded in .sdf

format from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (Figure 9).
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(PDBID: 7INI)

Figure 8. Structures of angiotensin receptor type 1 obtained from Protein Data Bank.
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Figure 9. Structures of dapagliflozin, fimasartan, telmisartan, candesartan, and

angiotensin-1I obtained from PubChem.

To confirm the atomic coordinates of all ligands and the conversion of chemical structures, the
PyRx program (OpenEye Scientific Software, US) was used to transform them into pdbqt
format. Next, the binding affinity values were obtained using PyRx AutoDock Vina to explore
the interaction between the compounds and proteins. The docked forms were then visualized
and converted into PDB format using the PyYMOL program (Schrédinger, NY, US). Finally,
the shape and amino acids of the receptor-ligand interaction site and hydrogen bonds were

confirmed using the Discovery studio program (Dassault Systéemes BIOVIA, US) and LigPlot*
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(European Bioinformatics Institute, UK).

1-1.8. Statistical analysis

All data were presented as mean + SEM. Statistical analyses were performed using GraphPad
Prism 6 (GraphPad Software Inc, CA, US) program, conducting one-way and two-way
ANOVA and using Tukey’s post hoc test for significance verification. A p-value of less than

0.05 was considered significant.
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1-2. Results

1-2.1. Blood pressure

The effects of three types of ARBs and dapagliflozin on SBP in SHR were as follows. The
mean SBP of the dapagliflozin administration group was 222.1 + 14.54 mmHg, exhibiting no
significant differences when compared to 220.4 + 12.95 mmHg in the control group and 222.7

+ 14.35 mmHg before administration (Figure 10).

The average SBP of administered with the fimasartan alone group was 204.4+16.80 mmHg
and 202.9+£19.40 mmHg at low (FL) and high (FH) doses, respectively (Figure 10A). The
combination group with dapagliflozin demonstrated 201.2+19.13 mmHg and 190.5+21.32
mmHg at low (FLD) and high (FHD) doses, which were lower than the same dose of the
erysipelas group. The minimum SBP value was 193.4 mmHg on Day 7 (3 h) and 189.8 mmHg
on Day 13 (3 h) in the FL and FH groups, respectively. The FLD and FHD groups showed
185.9 mmHg and 170.4 mmHg, respectively, on Day 13 (3h), which were lower than the same
dose of the single group. Remarkably, on Day 4 (1h), and Day 7 (3h), FHD showed 184.4
mmHg and 171.5 mmHg, significantly lower SBP than 206.3 mmHg and 199.7 mmHg of the
FH group. Furthermore, FHD exhibited a significant decrease in blood pressure compared to
the control group from Day 1 (3 h) (p < 0.01). The first significant reduction in the FH group
was recorded on Day 7 (1h), signifying that the combination of dapagliflozin induced an earlier
decline in SBP. Post-discontinuation of administration, FHD maintained significantly lower
SBP than the control group at 191.2 mmHg until Rel. On the same day, FL, FH, and FLD
showed an earlier increase of SBP to 215.0 mmHg, 203.0 mmHg, and 209.0 mmHg,
respectively. In conclusion, dapagliflozin amplified the blood pressure-lowering effect of

fimasartan and extended the response duration.

The mean SBP of the telmisartan alone group was 206.4+19.29 mmHg and 197.3+£25.25
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mmHg at low (TL) and high (TH) doses, respectively (Figure 10B). Meanwhile, the
dapagliflozin combination group demonstrated 192.7+21.97 mmHg and 172.24£25.28 mmHg
at low (TLD) and high (THD) doses, respectively, which were lower than the same dose of the
erysipelas group. The minimum SBP value was 186.9 mmHg on Day 4 (3 h) and 169.8 mmHg
on Day 13 (3 h) in the TL and TH groups. The TLD and THD groups were 171.4 mmHg on
Day 4 (3 h) and 143.9 mmHg on Day 13 (1 h), respectively, lower than the same dose of the
single group. Mainly, the THD group exhibited significantly lower SBP than the TH group on
numerous days; on Day 1 (3 h), Day 4 (1 and 3 h), Day 7 (-1, 1 and 3 h), Day 10 (1 h), and
Day 13 (1 and 3 h). The THD group indicated a significant reduction in SBP compared to the
control group from Day 1 (3 h) (p <0.01). The first significant decrease in the TH group was
recorded on Day 4 (1h), and it was established that the combination of dapagliflozin resulted
in an earlier reduction in SBP. After the cessation of administration, THD sustained a
significantly lower SBP than the control group at 195.9 mmHg until Re5. On the same day,
SBP of TL, TH, and TLD groups were recorded at 216.0 mmHg, 212.7 mmHg, and 213.1
mmHg, respectively, demonstrating an increase earlier. In conclusion, dapagliflozin amplified

telmisartan's blood pressure-lowering effect and extended the maintenance period.

The mean SBP of the administered with candesartan alone group was 205.2+166.98 mmHg
and 194.8423.51 mmHg at low (CL) and high (CH) doses, respectively (Figure 10C). The
dapagliflozin combination group exhibited 204.0+22.45 mmHg and 191.1£22.21 mmHg at
low (CLD) and high (CHD) doses, respectively, analogous to the single group. The minimum
SBP value was 190.8 mmHg on Day 4 (3 h) and 175.6 mmHg on Day 7 (1 h) in the CL and
CH groups. The minimum SBP of the CLD and CHD groups was 183.3 mmHg on Day 10 (3
h) and 171.9 mmHg on Day 13 (3 h), respectively, marginally lower than the single group.
However, no significant difference was observed between the single and combination groups

at the same dosage during the experimental period. CH displayed a significant SBP reduction
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compared to the control group from Day 1 (3 h) (p < 0.05). Conversely, the first decrease in
the CHD group was noted on Day 4 (1 h), establishing that the single group achieved a quicker
reduction in blood pressure than the dapagliflozin combination group. Post-discontinuation of
administration, CH and CHD sustained significantly lower SBP than the control group at 192.5
mmHg and 192.6 mmHg, respectively, until Rel. On the same day, CL and CLD showed an
earlier increase than high dose groups at 221.8 mmHg and 210.1 mmHg, respectively. In
summation, dapagliflozin tended to partially augment candesartan's blood pressure-lowering
efficacy, including diminishing minimum SBP, though the effect was not statistically
significant. In part, dapagliflozin was affecting negatively, such as delaying the reduction

initiation.
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Figure 10. Effects of dapagliflozin and ARBs on systolic blood pressure of SHR.
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All experimental animals received the drug orally once a day for two weeks. Systolic blood pressure (SBP) was
measured one hour before (-1 h), one hour after (1 h), and three hours after (3 h) administration. SBP was
additionally monitored for seven days after the discontinuation of administration to assess blood pressure recovery
(Rel-7). (A) SBP of SHRs administered individually/combined with fimasartan and dapagliflozin. (B) SBP of
SHRs administered individually/combined with telmisartan and dapagliflozin. (C) SBP of SHRs administered
individually/combined with candesartan and dapagliflozin. All data are expressed as mean + standard error mean.
"™ means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to the control group.
% means a significant difference at the p <0.05 and 0.01 levels exist between the same dose of the combined group
and single administration group. *# means a significant difference between the low and high concentration groups
at the p < 0.05 and 0.01 levels. Cont, SHR control group; D, dapagliflozin alone group (1 mg/kg); FL, low-dose
fimasartan alone (3 mg/kg); FH, high-dose fimasartan alone group (12 mg/kg); FLD, low-dose fimasartan (3 mg/kg)
and dapagliflozin (1 mg/kg) combination group; FHD, high-dose fimasartan (12 mg/kg) and dapagliflozin (1 mg/kg)
combination group; TL, low-dose telmisartan alone (2 mg/kg); TH, high-dose telmisartan alone group (12 mg/kg);
TLD, low-dose telmisartan (2 mg/kg) and dapagliflozin (1 mg/kg) combination group; THD, high-dose telmisartan
(8 mg/kg) and dapagliflozin (1 mg/kg) combination group; CL, low-dose candesartan alone (0.8 mg/kg); CH, high-
dose candesartan alone group (3.2 mg/kg); CLD, low-dose candesartan (0.8 mg/kg) and dapagliflozin (1 mg/kg)

combination group; CHD, high-dose candesartan (3.2 mg/kg) and dapagliflozin (1 mg/kg) combination group.
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The blood pressure-lowering effect was compared between the three types of ARBs co-
administered with dapagliflozin (Figure 11). No significant differences in SBP showed
between the same-level group of ARBs, which were determined based on the clinical dosages
(FL, 206.4+16.80; FH, 202.9+19.40; TL, 206.4+19.29; TH, 197.3+25.25; CL, 205.2+166.98;
CH, 194.8423.51 mmHg). On the other hand, when combined with dapagliflozin, the mean
SBP of the low-dose groups were 201.2+19.13 mmHg, 192.7+£21.97 mmHg, and 204.0+22.45
mmHg for FLD, TLD, and CLD, respectively, with telmisartan showing minimum level
(Figure 11A). The high-dose group also had 190.5+21.32 mmHg, 172.2+25.28 mmHg, and
194.8+23.51 mmHg in the FHD, THD, and CHD groups, respectively, and telmisartan was
lowest (Figure 11B). In the case of the low-dose groups, TLD showed a significantly lower
SBP value than others, 178.4 and 181.0 mmHg on Day 4 (-1 and 1 h). At the same time, FLD
was 181.9 and 190.4 mmHg, and CLD was 201.1 and 205.7 mmHg, respectively (Figure 11A).
The high-dose combination groups showed significant differences between drugs in more
numerous time points; Day 4 (-1 and 3 h), Day 7 (-1 and 1 h), Day 10 (-1 and 3 h), and Day
13 (-1 and 1 h) (Figure 11B). In addition, the THD group maintained lower blood pressure

compared to FHD and CHD at Re3 and 5, at 178.1 and 195.9 mmHg, respectively.

In summary, among the three ARBs, telmisartan showed the best blood pressure reduction
when combined with dapagliflozin. In particular, the high-dose group showed an earlier

decline and an increase in the maintenance period compared to fimasartan and candesartan.
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1-2.2. Interaction with angiotensin receptor type 1

A molecular docking study was conducted to determine whether dapagliflozin's additional
blood pressure-lowering effect in combination was due to the interaction with AT1, the target
of ARB. The binding affinities of ARBs were determined to be -10.6, -9.7, and -8.7 kcal/mol
for telmisartan, candesartan, and fimasartan, respectively (Table 3). The binding affinity of
dapagliflozin was -8 kcal/mol. Fimasartan and candesartan formed the same hydrogen bond
with THR88 as Ang2 (Table 4). Telmisartan, in contrast, forms hydrogen bonds with TYR35,
TYR292, and SER109. Dapagliflozin formed a hydrogen bond with ALA21 and demonstrated
van der Waals interactions with THR88 and TYR35, common binding sites of ARB. Notably,
all four drugs exhibited pi-pi stacked binding with TRP84. On the other hand, it is noteworthy
that when dapagliflozin was pre-bound, the binding affinity of telmisartan to AT1 slightly
increased from -10.6 to -10.9 (Table 3). No such change was observed with fimasartan,
whereas Ang2 and candesartan demonstrated a slight uptick to -9.4 and -9.8, respectively. In
contrast, when the binding of dapagliflozin to the AT1 structure, to which each ARB had
already bound, was investigated, the binding affinity did not significantly change from -7.9 to
-8 (Table 3). In the structure where fimasartan and telmisartan were combined, hydrogen bonds
with TYR184 and ARG167 were observed. In addition, hydrogen bonds with PRO95, ASN9S,

and GLU1004 were observed in the candesartan-bound structure (Supplementary Figure 5).

In summary, dapagliflozin exhibited a binding form partially similar to ARBs. When
dapagliflozin was pre-bound, the binding affinity of telmisartan to AT1 was increased. On the
other hand, when AT1 was pre-bound with candesartan, the binding structure of dapagliflozin
showed different patterns with other ARBs. In the context of these results, it was substantiated
that the enhancement in blood pressure regulation attributable to dapagliflozin could be

partially ascribed to interaction with AT 1.
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Table 3. Binding affinities of angiotensin receptor type 1 with ARBs and dapagliflozin.

Binding affinity (kcal/mol)
Pre-bonded Pre-bonded

ATl with dapaglifiozin  with ARBs
Angiotensin-II 93 94 -
Dapagliflozin -8 - -
Fimasartan -8.7 -8.7 7.9
Telmisartan -10.6 -10.9 7.9
Candesartan 9.7 9.8 -8

Table 4. Interactions of angiotensin receptor type 1 with angiotensin-1I, ARBs and

dapagliflozin.
AT1 Hydrogen bond Hydrophobic interaction
LEU13, SER15, CYS18, PRO19, ARG23, TYR35, PHE77,
Angiotensin.II SER16, TRP84, THRSS, LEUS1, TYR87, TYR92, VAL108, LEU112, VAL179,
g SER109, ARG167 ALAI81, TYR184, LYS199, TRP253, ASP263, TLE266,
GLN267, ASP281, MET284, [LE288, TYR292
o TYR35, TRP84, TYR87, THR88, TYR92, VALI0S,
Dapagliflozin ALA2l PRO285, TLE288, TYR292
PRO19, ALA21, ARG23, ILE31, TYR35, TRP84, TYRS7,
Fimasartan THRS8 TYR92, ARG167, ILE172, VAL179, CYS180, PRO28S,

ILE288

PHE77, LEUSI, TRP84, TYR87, THR88, VAL108,
Telmisartan TYR35, SER109, TYR292 LEU112, ARG167, VAL179, ALA181, TRP235, HIS256,
THR260, ILE288

TYR35, TRP84, TYR87, VAL108, VAL179, ALA181,

Candesartan THRES, ARGI67, CYSI80 by 00 TYRIS4, ASP281, MET284, PRO285, ILE288
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1-2.3. Vasorelaxation

As another mechanism of SBP-control improvement, the vasorelaxation effects of three types
of ARBs and dapagliflozin were investigated in the thoracic aorta of WKY rats. Aortas were
constricted with 1 uM of PE, and drugs were treated in a concentration-dependent manner. All
four drugs showed vasorelaxation effects in the aorta over 50% at the final concentration of
500 pM, and there was no significant difference between the drugs and single and combined
treatments. Dapagliflozin had an ECso of 0.17 pM and 77.2+10.49% of vasorelaxation at a
concentration of 500 uM (Figure 12). Although not significant, dapagliflozin exhibited
superior vasorelaxation activity compared to ARBs. The ECsy of fimasartan was 0.9 uM, the
combination treatment was 0.41 pM, and the vasorelaxation rate was 58.1+24.86% at a
concentration of 500 uM when treated alone and 58.7+22.07% when combined with
dapagliflozin (Figure 12A). The ECso of telmisartan was 0.35 pM in the single group and 0.16
UM in the combination group. At a concentration of 500 puM, the vasorelaxation rate was
67.5+£6.92% in the single group and 75.0+16.12% in the combination treatment (Figure 12B).
The ECso of candesartan was 0.49 uM in the single treatment and 0.23 uM in the combination
treatment. The vasorelaxation at 500 uM was 64.0+12.34% in the single treatment and
73.6£5.43% in the combination treatment, appearing at a higher level (Figure 12C). Although

not significant, dapagliflozin exhibited superior vasorelaxation activity compared to ARBs.

Since NO, an endothelial-derived vasodilator that controls the relaxation of the aorta, is
produced by eNOS activation, the phosphorylation level of eNOS after treatment with ARB
and dapagliflozin was examined in the EA. hy926 cell line (Figure 12D). The activation level
of eNOS, as indicated by the ratio of phosphorylated eNOS to eNOS, increased approximately
1.8-fold compared to the control group when dapagliflozin was treated. The co-treatment of

dapagliflozin with either fimasartan or candesartan led to a significant increase of 1.6 times
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relative to the control group. Meanwhile, the single treatment of ARBs increased than control
at 1.4, 1.2, and 1.4 times for fimasartan, telmisartan, and candesartan, respectively. In summary,
results confirmed that dapagliflozin and three types of ARBs showed direct vasorelaxation
effects. In addition, when combined treatment of fimasartan and candesartan with

dapagliflozin showed an increased level of eNOS activation compared to alone.
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Figure 12. Effects of vasorelaxation and eNOS activation of ARBs and dapagliflozin.

Male Wistar Kyoto rats were euthanized using CO2 gas, and the thoracic aorta was excised. Then, the aorta was
placed in an organ bath with Krebs solution for measuring the contractile and relaxation using a myograph. The
responses to drug treatments were calculated based on phenylephrine (PE) induced contracted tension. EA. hy926
cells were treated with drugs for 24 hours and extracted protein. The expression levels of eNOS and p-eNOS were
performed by western blotting. To investigate the activation level of eNOS, we normalized the expression level of
p-eNOS to the total eNOS protein. The relative ratio was calculated using the control (-/-). (A) vasorelaxation
effects of fimasartan and dapagliflozin. (B) vasorelaxation effects of telmisartan and dapagliflozin. (C)
vasorelaxation effects of candesartan and dapagliflozin. (D) eNOS activation in ARBs and dapagliflozin-treated

s

EA. hy926 cells. All data are expressed as mean + standard error mean. ™ ** means a significant difference at the p
< 0.05 and 0.01 levels compared to the control group. Cont, normal control; D, dapagliflozin; F, fimasartan; FD,

fimasartan with dapagliflozin combined treatment; T, telmisartan; TD, telmisartan with dapagliflozin combined

treatment; C, candesartan; CD, candesartan with dapagliflozin combined treatment.
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1-2.4. Combination with hydrochlorothiazide

During the experimental period, all the dapagliflozin-administrated groups showed increased
water intake (Supplementary Figure 1 to 3). Therefore, alterations in fluid volume could be an
additional mechanism underlying the synergistic effect of dapagliflozin on blood pressure
reduction. Consequently, we selected telmisartan as the representative ARB to compare the
results of dapagliflozin and HCTZ, the most frequently used diuretic in combination with

ARBs.

The mean SBP during the experimental period in the hydrochlorothiazide-administrated group
(TZ) was 202.74+4.11 mmHg, which showed a decrease compared to 220.1+1.41 mmHg in the
control group and 220.6=0.95 mmHg in the dapagliflozin group, but not significant (Figure
13A). The mean SBP of the combination of telmisartan with the dapagliflozin (TelD) group
was 166.4+4.61 mmHg, and the telmisartan and HCTZ combination group (TelTZ) was
144.7+£9.49 mmHg, indicating that TelTZ reduced blood pressure better. On the other hand,
TelD showed significantly lower SBP than the control group from Day 1 (3h), and the TelTZ
group showed from Day 4, confirming that the TelD group has an earlier reduction. The hourly
mean SBP values of the telmisartan alone group (Tel) and the combination groups were
significantly lower than the control group at -1 h, 1 h, and 3 h (Figure 13B). The TZ group
showed a significant decrease compared to the control group only at -1 h. On the other hand,
the mean SBP of the TelTZ group at -1h and 3h was significantly lower than the TelD group,

but there was no significant difference at 1h.

The amount of water intake investigated before administration, on the 14th day of
administration, and on the seventh day after the end of administration was as follows (Figure
13C). On Day 14, the water intake volume in the dapagliflozin and the TelD groups
significantly increased compared to the control group. Increased water intake of the
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dapagliflozin-administrated groups was returned to normal value on Re7. On the other hand,
the TZ and TelTZ groups did not show significant changes in water intake. In summary, the
combination of dapagliflozin and telmisartan resulted in less SBP reduction than HCTZ and

telmisartan, but a significant decrease was observed earlier.
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1-3. Discussion

In this study, we investigated the blood pressure-lowering effects of dapagliflozin in
combination with fimasartan, telmisartan, and candesartan. Our results demonstrate that
dapagliflozin enhances the blood pressure-lowering effect of ARBs, with telmisartan
exhibiting particularly notable effects. This enhancement is attributed to several factors,
including the interaction with the AT1 and renal pumps, vasorelaxation through eNOS

activation, and regulation of body fluid volume.

Hypertension is a severe public health issue worldwide. Pharmacological treatments for
hypertension typically include various antihypertensive agents, such as ARBs, CCB, and
diuretics [80]. However, using these agents alone may not adequately control blood pressure
in some patients, necessitating combination therapy [102, 140]. Our study findings also
indicated an insufficient reduction in blood pressure in SHR when administrated with low
doses used in clinical. Dapagliflozin is a type of SGLT2 inhibitor known to positively affect
the cardiovascular system in various clinical trials. Several studies have demonstrated that
dapagliflozin administration can effectively reduce blood pressure in patients with type 2
diabetes [141]. In clinical practice, short-term administration of SGLT?2 inhibitors (12 weeks
or less) has been shown to reduce SBP by 3-5 mmHg, while long-term treatment of more than
one year can decrease SBP by 4-6 mmHg [142, 143]. However, dapagliflozin did not show
significant blood pressure changes in this study. Some studies have reported that canagliflozin,
an SGLT?2 inhibitor, can temporarily increase blood pressure during the first two weeks of
administration and that administering canagliflozin and empagliflozin for eight weeks
increases plasma Ang2 and aldosterone concentrations [144, 145]. In addition, studies have
also shown that dapagliflozin does not affect short-term blood pressure fluctuations in type 2

diabetic patients [146]. As such, short-term administration of SGLT2 inhibitors can activate
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compensatory blood pressure increase mechanisms such as RAAS for preserving body fluid
volume. Therefore, the two-week dosing period in this study may have been insufficient to

demonstrate a significant reduction in blood pressure due to dapagliflozin.

Although dapagliflozin could not reduce blood pressure in this study, it was confirmed that the
combined administration of fimasartan and telmisartan with dapagliflozin significantly
lowered blood pressure and extended the duration of response compared to the same dose of
the monotherapy group. Indeed, some clinical studies reported that combination therapy with
SGLT?2 inhibitors and ACE inhibitors/ARBs reduced SBP and 24 h ambulatory SBP compared
with ACEIs/ARBs alone [42, 147]. Additionally, studies showed that dapagliflozin could be
tolerated and improve BP control in T2DM patients with inadequately controlled hypertension
despite using a therapeutic dose of ACE inhibitor or ARB [142]. One possible mechanism for
this is that dapagliflozin reduces Ang2 by down-regulating the renal RAAS component
expression [148]. Our results show that dapagliflozin has a similar hydrophobic binding with
ARB to AT1. It was confirmed that dapagliflozin could bind to several residues of AT1 that
have been reported in the literature to participate in Ang2 binding, specifically Thr88 and
Tyr92 [149]. In addition, docking results of fimasartan and telmisartan pre-bounded AT1 and
dapagliflozin showed notable interactions with TYR184, known as Ang2's interaction site. On
the other hand, when pre-bounded with candesartan, which did not show a synergistic effect
with dapagliflozin in blood pressure, dapagliflozin showed a completely different binding
form from that of Ang2 and other drugs. It means that TYR184 hydrogen bond with
dapagliflozin, seen when fimasartan and telmisartan were pre-bounded, may affect the
improvement in blood pressure control by dapagliflozin. Our findings also suggested that
drugs exhibit a high binding affinity for sodium/potassium ATPase, aquaporin 2, and MR. This
implies that it not only inhibits AT1 but also influences the subsequent mechanisms of

aldosterone and Ang2, which are known to increase blood pressure [26, 150]. Notably, the MR
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is activated by aldosterone and promotes the reabsorption of sodium ions in the kidneys, thus
water reabsorption [24]. The results that dapagliflozin demonstrated a high binding affinity of
-7.1 with the MR raises the possibility that it can affect the functions of other RAAS

components beyond interfering with AT1.

Indeed, since we observed an increase in water intake by dapagliflozin administration, it was
necessary to compare the effects of dapagliflozin with thiazide diuretics, which are most
commonly used in combination with ARBs (Supplementary Figure 1 to 3). Several clinical
studies have reported that dapagliflozin and thiazide can reduce blood pressure, body weight,
and GFR by reducing body fluid volume by 7% and 8% [144]. When telmisartan, which
demonstrated the highest increase, was administered with thiazide diuretics, blood pressure
was significantly decreased. Meanwhile, the dapagliflozin combination-administered group
exhibited a marked decrease in blood pressure at one and three hours, and the HCTZ
combination group showed at 23 hours. As a basis for these differences in the duration of
action, some studies on the combination of telmisartan and HCTZ reported that more effective
24-hour blood pressure control was possible [104, 105]. On the other hand, an increase in
water intake appeared only in the dapagliflozin-treated group. Several studies have reported
that HCTZ does not affect water intake even though it increases urine volume, and SGLT2
inhibition includes a compensatory increase in water intake as part of a homeostatic
mechanism [151-153]. It may be due to the different diuretic mechanisms of the two drugs;
dapagliflozin has an osmotic diuretic effect by blocking glucose reabsorption in the kidneys to
reduce body fluid volume. On the other hand, HCTZ increases urine volume by inhibiting the
reabsorption of sodium and chloride ions in the kidneys. As a basis for the difference in the
effects, several studies have reported that dapagliflozin decreases plasma volume, which is not
observed with HCTZ and reduces GFR more than HCTZ [144, 154]. Meanwhile, HCTZ can

cause electrolyte imbalances such as hypokalemia and hyponatremia and other side effects
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such as hyperuricemia and glucose intolerance [151, 155]. However, dapagliflozin has been
reported not to affect electrolytes, and since it is a drug that improves glucose imbalance, one

of the most significant risks of thiazide, it can be used as a safer combination drug with ARB.

Our results showed no significant differences in the mean SBP among the three ARB-
administered groups. However, when combined with dapagliflozin, telmisartan showed the
most significant reduction in blood pressure. Specifically, the high-dose group exhibited an
earlier decline in blood pressure and a more extended maintenance period than fimasartan and
candesartan. These differences can be partly due to pharmacokinetic profile differences.
Among the three drugs, the half-life of telmisartan is 24 hours, whereas the half-lives of
fimasartan and candesartan are 7-10 hours and 5-9 hours, respectively, shorter than telmisartan.
Moreover, several studies of concomitant administration have shown that combining
candesartan and thiazide improves candesartan's bioavailability, increasing Cmax and half-life,
while the co-administration of telmisartan and thiazide has not shown significant changes in
pharmacokinetic profile [156, 157]. On the other hand, the combination of telmisartan and
canagliflozin study showed that the tissue concentration of each drug could increase [158]. As
such, pharmacokinetic changes in combination may vary depending on the structure and
characteristics of the drug. In other words, our study's different interactions with dapagliflozin
may be due to pharmacokinetic characteristics, including excretion route and lipophilicity. The
lipophilicity of the three ARBs is significantly higher for telmisartan, with a log P value of 7.1,
compared to fimasartan at 5.8 and candesartan at 3.5. Lipophilicity constitutes the essential
property in drug action, influencing pharmacokinetic and pharmacodynamics processes and
toxicity [159]. Due to this difference in lipophilicity, the excretion route of the three drugs also
differ; telmisartan and fimasartan urinary excretion is less than 1% and less than 3%,
respectively, whereas candesartan is excreted in urine at 33-59% [160, 161]. Lipophilicity is

the fundamental property that is overwhelmingly involved in most antihypertensive agents, so
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in most cases, the hydrophobic interaction plays a significant role in drug action [162]. Indeed,
in our results, telmisartan showed the highest binding affinity and various hydrophobic
interactions. However, further studies are needed to elucidate these differences and their
impact on therapeutic interventions. These differences may be affected by individual patient

characteristics, administration dose, and duration, so a careful approach is required.

As another mechanism, dapagliflozin improves endothelial function via normalizing eNOS
levels in non-diabetic and heart failure animal models; it appeared distinct from its blood
glucose reduction [163, 164]. In our results, dapagliflozin demonstrated superior
vasorelaxation activity compared to ARBs. In addition, when fimasartan and candesartan were
combined with dapagliflozin, they showed increased eNOS activation compared to alone. This
finding suggests that the blood pressure-lowering enhancement effect brought about by

dapagliflozin might be partially attributed to its direct vasorelaxation properties.

In summary, dapagliflozin enhanced the blood pressure-regulating efficacy of ARBs,
especially telmisartan, leading to beneficial outcomes such as reduced blood pressure,
extended blood pressure maintenance, and shortened duration of action. These outcomes are
anticipated to be associated with mechanisms including vasorelaxation, Ang2 receptor
modulation, and diuretic activity. However, it's noted that this study has certain limitations.
While dapagliflozin is an anti-diabetic drug, our study used non-diabetic, hypertensive animal
models. Additionally, more evidence should be given regarding changes in urine volume and
the associated mechanisms. In a subsequent part of our study, we plan to investigate more

specific mechanisms using aged SHR models with coexisting hyperglycemia to address this.
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Part 2. Vascular Protection of ARB and

Dapagliflozin
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2-1. Materials and methods

2-1.1. Materials and experimental animals

The ARBs, including fimasartan, telmisartan, and candesartan cilexetil, were provided by Dr.
Yong-Ha Ji. The SGLT2 inhibitor dapagliflozin was obtained as Forxiga™ tablets containing

10 mg of the active ingredient.

SHRs were purchased from Charles River and housed at the Jeju National University animal
facility for at least seven days before use in the experiments. Animals were fasted for four
hours before drug administration, and water was provided ad libitum. The animals were housed
under controlled conditions with a temperature of 22 + 5°C, a humidity of 50 + 10%, and a
12-hour light/dark cycle. All animal experiments were performed under the guidelines of the
‘Institutional Animal Care and Use Committee at Jeju National University’ (protocol number:

2018-0019).

2-1.2. Experiment

Male SHR rats, 60-65 weeks of age and weighing between 380-420 g, were used in this study
with four to five animals per group. The experimental groups consisted of a control group, a
dapagliflozin single administration group, low and high doses of ARB single administration
groups, and low and high doses of ARB and dapagliflozin combination groups (Figure 6). All
doses were calculated using body surface area conversion factors from FDA, which provides
an equivalent dose relative to clinical applications; dapagliflozin 1 mg/kg, fimasartan 3 and 12
mg/kg, telmisartan 2 and 8 mg/kg, and candesartan 0.8 and 3.2 mg/kg. The animals were

administrated with drugs for one week and euthanized with CO, gas, and aortas were collected.

2-1.3. Measuring vasorelaxation

The thoracic aorta was prepared into 3-5 mm sections, suspended to metal rings, and mounted
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to isometric force-displacement transducers. Aortas were placed on the organ bath filled with
37°C Krebs buffer, which was adjusted to pH 7.4 while supplying 95% O, and 5% CO- gas
(Figure 7). The tension of the aorta was adjusted to 1.0 g and stabilized for two hours with
solution changes every 20 minutes. After stabilization, the aortas were pre-contracted with 1
uM PE. When the contractile response was stabilized, relaxation was evaluated by cumulative
addition of acetylcholine (Ach, 10'° to 10 M). The changes in vascular tone in response to
Ach treatment were recorded using a physiograph recorder and quantified using the Chart7
program. The levels of vasorelaxation responses by treatment were calculated based on PE-

induced contracted tension.
2-1.4. Cell culture

(1) Raw-Blue™ cells: Mouse macrophage reporter cell line, Raw-Blue™ (InvivoGen, CA,
US), was cultured in DMEM supplemented with 10% FBS, 100 U/mL P/S, and 100 pg/mL
Normocin (InvivoGen). Cells were seeded into a 96-well culture plate and treated with drugs

and lipopolysaccharide (LPS, Sigma, MO, US).

(2) Raw264.7 cells: The mouse macrophage cell line, Raw264.7, was cultured in DMEM
supplemented with 10% FBS and 100 U/mL P/S. Cells were seeded into a 90 mm plate and
treated with LPS. After 24 hours, the cell culture supernatant was collected by centrifugation

at 3,000 rpm for 10 minutes and used as an LPS-treated conditioned medium (L/CM).

(3) EA. hy926 cells: EA. hy926 cells were seeded into a 96-well, 6-well plate, or 90 mm plate
and treated with L/CM and drugs. The cells were collected 1 hour and 24 hours after treatment.
All drug doses were selected based on their non-toxic doses, as confirmed by the MTT assay

and aligned with the reported maximum serum concentration (Supplementary Figure 9).
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2-1.5. Nitrite measurement

After the treatment described in 2-1.4(1), nitrite levels were measured using the Griess assay.
The cell culture supernatant was mixed with an equal volume of Griess reagent (sigma) and
incubated for 15 minutes at room temperature. The absorbance was measured at 540 nm. All
results were quantified by drawing a standard curve with sodium nitrite and expressed as a

percentage of the negative control group treated with LPS.

2-1.6. Reporter gene assay

After the treatment described in 2-1.4 (1), Secreted embryonic alkaline phosphatase (SEAP)
levels were measured to evaluate the level of NF-kB activation. Briefly, the cell culture
medium was incubated with QUANTI-Blue™ (InvivoGen) reagent for 1 hour at 37°C, and the
absorbance was measured at 620 nm. The inhibition of NF-xB activation was expressed as a

percentage relative to the LPS-treated control group.

2-1.7. ROS generation

The permeable fluorescent dye, 2',7'-dichlorodihydrofluorescein diacetate (H.DCF-DA), was
used to measure intracellular ROS production. H,DCF-DA reacts quickly with ROS, forming
the fluorescent product 2,7-dichlorofluorescein (DCF), and the intracellular fluorescence
intensity of DCF is proportional to the amount of ROS the cell generates. After treatment,
according to the instructions in section 2-1.4 (3), the cells were incubated with 20 uM H,DCF-
DA (Invitrogen, MA, US) for 30 minutes. After washing with PBS, the intracellular
fluorescence intensity of DCF (excitation 492-495 nm, emission 517-527 nm) was measured
using a plate reader (SynergyHTX, Agilent, CA, US). The results were expressed as a

percentage of the L/CM treatment group.
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2-1.8. Protein Analysis

(1) Protein Preparation: The aortic tissues from experimental animals were disrupted using
RIPA buffer with Tissue Lyser-II (Qiagen, Germany). The homogenate was centrifuged at
13,000 rpm, 4°C for 15 minutes, and the supernatant was collected. The cells were treated
according to 2-1.4, washed with PBS, and then solubilized in RIPA buffer for 30 minutes. The
solution was centrifuged at 13,000 rpm for 15 minutes at 4°C, and the resulting supernatant
was collected. To obtain cytoplasm and the nuclear fraction, cells were first solubilized with
cytoplasmic extraction buffer for 10 minutes on ice and then centrifuged at 3,000 rpm for ten
minutes at 4°C. The resulting supernatant was collected, the residue was solubilized with
nuclear extraction buffer for 30 minutes on ice, and the supernatant was collected after

centrifugation at 13,000 rpm for 20 minutes.

(2) Western Blotting: The protein contents of lysates were quantified using the Bradford assay,
and the same amount of protein was mixed with sample buffer and denatured. 30 pg of protein
per well was loaded onto 8-12% SDS-PAGE and electrophoresed at 120-150 V for one hour.
The separated proteins were transferred to the PVDF membrane at 100 V for two hours using
wet transfer methods. After washing with TBST, the membranes were blocked with 5%
blocking grade buffer for 30 minutes to prevent nonspecific binding. The membranes were
incubated overnight at 4°C with primary antibodies. The following primary antibodies were
used: anti-AMP-activated protein kinase (AMPK), p-AMPK, Microtubule-associated protein
one light chain 3 (MAPILC3B, LC3), and NLRP3 (Cell Signaling); anti-caspase-1,
cyclooxygenase-2 (COX-2), ICAM-1, inducible nitric oxide synthase (iNOS), NF-«kB, p-NF-
kB, nuclear factor erythroid 2-related factor 2 (Nrf2), p47phox, sequestosome-1 (SQSTMI,
p62), B-actin, a-Tubulin, and Lamin A (Santa Cruz Biotechnology). After washing, the

membranes were incubated for one hour with a secondary antibody conjugated with HRP. The
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protein was visualized using electrochemiluminescence and detected using Chemi-Doc
molecular imaging system. The expression levels of each protein were obtained using the
Evolution Capt software and normalized by housekeeping proteins (B-actin, a-Tubulin, and
Lamin A) and further calculated to relative values based on control. The activation level was
calculated by the expression ratio of the active form (p-AMPK, cleaved-caspase-1, and LC3-
1) to the total protein (AMPK, caspase-1, and LC3-I). The activation level of NF-kB and Nrf2

was calculated by the expression ratio of the nucleus to the cytosolic level.

(3) Immunocytochemistry: After treatment as described in section 2-1.4 (3), we performed
immunocytochemistry to detect the p62 protein in the cells. Briefly, treated cells in a 6-well
plate were washed with PBS and fixed with 100% methanol for five minutes. To block the
non-specific binding, the cells were incubated with a solution containing 1% BSA and 22.52
mg/mL glycine in PBST (PBS with 0.1% Tween20) for 30 minutes. Then, the cells were
incubated overnight at 4°C with the primary antibody (anti-SQSTMI1, Santa Cruz
Biotechnology). After washing, the cells were incubated for 1 hour with the secondary
antibody (Goat anti-Mouse IgG Secondary Antibody-FITC, Invitrogen). Then, the cells were
rewashed, and Hoechst was added for 5 minutes during the washing step. To prevent drying,
PBS was added, and the cells were stored at 4°C until measurement. Fluorescence images were

obtained using a real-time cell imaging system (BioTek-CYTATIONS, Agilent, CA, US).

2-1.9. Statistical analysis

All data were presented as mean + SEM. Statistical analyses were performed using GraphPad
Prism 6 program, conducting one-way and two-way ANOVA and using Tukey’s post hoc test

for significance verification. A p-value of less than 0.05 was considered significant.
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2-2. Results

2-2.1. Endothelium-dependent vasorelaxation

The vascular reactivity of the aorta from aged SHR rats was examined seven days after drug
administration to investigate the effect of dapagliflozin and ARB administration on Ach-
induced endothelium-dependent vasorelaxation. All drug-treated groups showed a
significantly increased vasorelaxation compared to 36.6+£9.92% of the control group when
treated with 10 M Ach (Figure 15). In particular, the ECs of the dapagliflozin-administrated
group was 0.17 uM, which was significantly lower than that of the control group, which was
82.98 uM. In addition, when treated with 10> M Ach, the relaxation rate was also 72.1+4.62%,

1.9 times increased compared to the control group.

In the case of fimasartan, the relaxation rate of 10° M Ach treatment in the aortas of the FL
group was 54.7+13.71%, which was significantly increased compared to the control group,
but lower than that of 73.0+6.98% and 72.3£3.27% of the FH and FLD groups (Figure 15A).
Meanwhile, the vascular reactivity of the FLD and FHD groups was not significantly different
from that of the dapagliflozin group, and the ECso was 0.80 uM and 0.35 uM, respectively,
which were higher than those of the dapagliflozin alone group. Fimasartan and dapagliflozin
increased the endothelium-dependent vasorelaxation, and the combined administration

increased relaxation more than fimasartan alone but had no synergistic effect.

In the case of telmisartan, the relaxation rates of the TL and TH groups when treated with 10
5 M Ach were 48.6+3.01% and 50.0+1.07%, respectively, which were significantly increased
compared to the control group (Figure 15B). The TLD group showed the highest relaxation
rate among the telmisartan groups at 53.8+1.19% when treated with 10> M Ach. On the other
hand, the THD group not shown an increase compared to the control group in all

concentrations of Ach. The TLD group showed a significantly higher relaxation rate than the
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THD group when treated with 10® and 107 M Ach. The ECs values of the TL, TH, TLD, and
THD groups were also 4.72, 6.90, 2.81, and 21.10 uM, respectively, with the TLD group
showing the lowest levels. It was confirmed that low-dose telmisartan increased endothelium-
dependent vasorelaxation, but combined administration of high telmisartan and dapagliflozin

reduced the vasorelaxation of the two drugs.

In candesartan groups, the relaxation rate of the aortas of the CH group was significantly
increased by 72.5+8.09% when treated with 10° M Ach, compared to 55.4+3.35% of the CL
group (Figure 15C). Meanwhile, the CLD group showed 68.84+7.03% and the CHD group
67.7+5.63%, displaying increased relaxation rates similar to dapagliflozin alone. However, the
CLD group showed a significantly increased relaxation response compared to the CL group
when treated with 10, 10”7, and 10° M Ach. In addition, the ECso of the CL, CH, CLD, and
CHD groups were 2.44, 0.41, 0.41, and 0.34 uM, respectively, showing a significant decrease
in the combination group compared to the single group. In other words, candesartan and

dapagliflozin enhance endothelium-dependent vasorelaxation.
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Figure 15. Effects of ARBs and dapagliflozin on acetylcholine-induced vasorelaxation in

the aorta of aged SHR.

Male SHRs over 60 weeks of age received oral administration of the drugs for one week, and the aorta was excised

after being euthanized using CO2 gas. Aortas were placed in Krebs’s buffer, and the vascular activity was measured
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using a myograph. The responses of acetylcholine treatments in the aortas were calculated based on phenylephrine
(PE) induced contracted tension. (A) Acetylcholine responsiveness of the aorta when administered with fimasartan
and dapagliflozin alone and in combination. (B) Acetylcholine responsiveness of the aorta in administered with
telmisartan and dapagliflozin alone and in combination. (C) Acetylcholine responsiveness of the aorta in
administered with candesartan and dapagliflozin alone and in combination. All data are expressed as mean +

s ok ok

standard error mean. means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to the
control group. & 4&& means a significant difference at the p < 0.05 and 0.001 levels compared to the dapagliflozin
alone group. *## means a significant difference between the low and high concentration groups at the p < 0.05 and
0.001 levels. ® means a significant difference at the p < 0.05 level exists between the same dose of the combined
group and the single administration group. Cont, SHR control group; D, dapagliflozin alone group (1 mg/kg); FL,
low-dose fimasartan alone (3 mg/kg); FH, high-dose fimasartan alone group (12 mg/kg); FLD, low-dose fimasartan
(3 mg/kg) and dapagliflozin (1 mg/kg) combination group; FHD, high-dose fimasartan (12 mg/kg) and
dapagliflozin (1 mg/kg) combination group; TL, low-dose telmisartan alone (2 mg/kg); TH, high-dose telmisartan
alone group (12 mg/kg); TLD, low-dose telmisartan (2 mg/kg) and dapagliflozin (1 mg/kg) combination group;
THD, high-dose telmisartan (8 mg/kg) and dapagliflozin (1 mg/kg) combination group; CL, low-dose candesartan
alone (0.8 mg/kg); CH, high-dose candesartan alone group (3.2 mg/kg); CLD, low-dose candesartan (0.8 mg/kg)

and dapagliflozin (1 mg/kg) combination group; CHD, high-dose candesartan (3.2 mg/kg) and dapagliflozin (1

mg/kg) combination group.
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2-2.2. NOX/ROS and Nrf2

We examined molecules linked with oxidative stress to investigate the mechanisms of
increased endothelium-dependent vasorelaxation. Dapagliflozin did not significantly affect the
Nrf2 expression in both aortic and endothelial cells (Figure 16A and B). However,
dapagliflozin significantly decreased aortic p47phox expression compared to the control group
by 1.85-fold and significantly inhibited the inflammation-induced ROS generation in

endothelial cells (Figure 16C and D).

Fimasartan also did not affect aortic Nrf2 expression, but notably, when combined with
dapagliflozin, significantly elevated nuclear translocation of Nrf2 in endothelial cells to 2.11
+ 0.15 compared to L/CM controls (Figure 16A and B). Aortic p47phox expression
significantly decreased in all fimasartan-treated groups, particularly in the FHD group, which
showed a 1.84-fold decrease compared to the control group (Figure 16C). The inflammation-
induced intracellular ROS generation in EA. hy926 cells were also significantly reduced at all

concentrations (Figure 16D).

In summary, dapagliflozin and fimasartan exhibited ROS-reducing effects via decreasing NOX
expression. Notably, although individual treatments did not affect Nrf2 activation, but when

combined, Nrf2 activation in endothelial cells was synergistically increased.
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Figure 16. Effects of fimasartan and dapagliflozin on NOX/ROS and Nrf2 in the aorta of

aged SHR and L/CM treated EA. hy926 cells.

Male spontaneously hypertensive rats (SHRs) over 60 weeks of age received oral administration of the drugs for
one week. After one week of drug administration, the experimental animals were euthanized using CO2 gas, and
aorta proteins were extracted for performing western blotting. EA. hy926 cells were treated with drugs and L/CM
for one or 24 hours, and protein was extracted for performing western blotting. Western blot images were visualized
using the Chemi-Doc system. The expression levels of Nrf2 and p47phox in the aorta were normalized by B-actin.
The expression levels of Nrf2 in the cytosol and the nucleus of EA. hy926 cells were normalized by a-tubulin and

Lamin A. The intracellular ROS level was measured by HDCFDA assay. The relative ratio and percentage were
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calculated based on the control and L/CM group. (A) The expression levels of Nrf2 in the aorta of SHRs
administered with fimasartan and dapagliflozin alone and in combination. (B) The activation of Nrf2 in the EA.
hy926 cells treated with fimasartan and dapagliflozin alone and in combination. (C) The expression levels of
p47phox in the aorta of SHRs administered with fimasartan and dapagliflozin alone and in combination. (D) The
intracellular ROS levels in the EA. hy926 cells treated with fimasartan and dapagliflozin alone and in combination.

s ok ok

All data are expressed as mean + standard error mean. means a significant difference at the p < 0.05, 0.01,
and 0.001 levels compared to the control and L/CM group. ® means a significant difference at the p < 0.05 level
exists between the same dose of the combined group and the single group. % & means a significant difference at
the p <0.05 and 0.01 levels compared to the dapagliflozin alone group. Cont, SHR control group; D, dapagliflozin
alone group (1 mg/kg); FL, low-dose fimasartan alone (3 mg/kg); FH, high-dose fimasartan alone group (12 mg/kg);
FLD, low-dose fimasartan (3 mg/kg) and dapagliflozin (1 mg/kg) combination group; FHD, high-dose fimasartan
(12 mg/kg) and dapagliflozin (1 mg/kg) combination group; D, dapagliflozin; F, fimasartan; FD, fimasartan 10 pM
with dapagliflozin 10 uM combined treatment; F+DL, fimasartan with 0.01 uM of dapagliflozin; F+DH, fimasartan

with 10 uM of dapagliflozin; L/CM, Raw264.7 cells culture media with LPS; CM, Raw264.7 cells culture media

without LPS.
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Telmisartan individual groups not shown significant effects on aortic Nrf2 expression, but the
THD group significantly increased aortic Nrf2. Additionally, combined treatment significantly
increased the nuclear translocation of Nrf2 also in endothelial cells, to 2.40 + 0.22, compared
to the L/CM control group (Figure 17A and B). This was significantly higher than observed in
treatment with dapagliflozin alone (p < 0.01). In contrast, aortic p47phox expression decreased
only in the telmisartan-alone group; a p47phox level of the THD group showed as 0.97 £ 0.09,
which was significantly higher than the TH group (p < 0.001) (Figure 17C). Telmisartan
significantly reduced the inflammation-induced increase in ROS across all concentrations in
endothelial cells, with the reduction being particularly significant at a concentration of 10 uM

(Figure 17D).

In summary, telmisartan showed the reduction of ROS by inhibiting NOX, but this effect was
attenuated when administered in combination with dapagliflozin. In contrast, Nrf2 expression

and activation synergistically increased when combined with dapagliflozin.
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Figure 17. Effects of telmisartan and dapagliflozin on NOX/ROS and Nrf2 in the aorta

of aged SHR and L/CM treated EA. hy926 cells.

Experimental progress is the same as described in Figure 16. (A) The expression levels of Nrf2 in the aorta of SHRs
administered with telmisartan and dapagliflozin alone and in combination. (B) The activation of Nrf2 in the EA.
hy926 cells treated with telmisartan and dapagliflozin alone and in combination. (C) The expression levels of
p47phox in the aorta of SHRs administered with telmisartan and dapagliflozin alone and in combination. (D) The
intracellular ROS levels in the EA. hy926 cells treated with telmisartan and dapagliflozin alone and in combination.
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All data are expressed as mean + standard error mean. means a significant difference at the p < 0.05, 0.01,

and 0.001 levels compared to the control group. % means a significant difference at the p < 0.001 level exists
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between the same dose of the combined group and the single group. & 4% means a significant difference at the p <
0.05 and 0.01 levels compared to the dapagliflozin alone group. Cont, SHR control group; D, dapagliflozin alone
group (1 mg/kg); TL, low-dose telmisartan alone (2 mg/kg); TH, high-dose telmisartan alone group (12 mg/kg);
TLD, low-dose telmisartan (2 mg/kg) and dapagliflozin (1 mg/kg) combination group; THD, high-dose telmisartan
(8 mg/kg) and dapagliflozin (1 mg/kg) combination group; D, dapagliflozin; T, telmisartan; TD, telmisartan 2.5 uM
with dapagliflozin 10 pM combined treatment; T+DL, telmisartan with 0.01 pM of dapagliflozin; T+DH,
telmisartan with 10 uM of dapagliflozin; L/CM, Raw264.7 cells culture media with LPS; CM, Raw264.7 cells

culture media without LPS.
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When administrated alone, candesartan did not affect the aortic Nrf2 (Figure 18A). In EA.
hy926 cells, candesartan alone treatment increased change Nrf2 levels to 1.80 + 0.27 relative
to the L/CM control group, but not significant. However, when combined with dapagliflozin,
it significantly increased the nuclear translocation of Nrf2 in endothelial cells to 2.08 £ 0.19,
compared to the L/CM control group (Figure 18B). Aortic p47phox showed a significant
decrease in all groups treated with candesartan; the CHD group showed a 1.31-fold decline
compared to the CLD group (Figure 18C). Interestingly, the CL group exhibited a 1.36-fold
reduction in p47phox levels compared to the CH group. In addition, the CHD group showed
significantly lower p47phox levels than the dapagliflozin alone group (p < 0.05).
Inflammation-induced ROS increase in endothelial cells was significantly reduced at all
concentrations. Notably, at a concentration of 10 uM, both the C+DL and C+DH groups
showed a significant reduction compared to dapagliflozin treatment alone (p < 0.05 and p <

0.001) (Figure 18D).

In summary, candesartan exhibited a ROS-reducing function by inhibiting NOX. Additionally,

it demonstrated a synergistic interaction with dapagliflozin, enhancing Nrf2 activation.
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Figure 18. Effects of candesartan and dapagliflozin on NOX/ROS and Nrf2 in the aorta

of aged SHR and L/CM treated EA. hy926 cells.

Experimental progress is the same as described in Figure 16. (A) The expression levels of Nrf2 in the aorta of SHRs
administered with candesartan and dapagliflozin alone and in combination. (B) The activation of Nrf2 in the EA.
hy926 cells treated with candesartan and dapagliflozin alone and in combination. (C) The expression levels of
p47phox in the aorta of SHRs administered with candesartan and dapagliflozin alone and in combination. (D) The
intracellular ROS levels in the EA. hy926 cells treated with candesartan and dapagliflozin alone and in combination.
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All data are expressed as mean =+ standard error mean. ***** means a significant difference at the p <0.01 and 0.001

levels compared to the control group. $ means a significant difference at the p < 0.05 level exists between the same
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dose of the combined group and the single group. & %%% means a significant difference at the p < 0.05 and 0.001
levels compared to the dapagliflozin alone group. Cont, SHR control group; D, dapagliflozin alone group (1 mg/kg);
CL, low-dose candesartan alone (0.8 mg/kg); CH, high-dose candesartan alone group (3.2 mg/kg); CLD, low-dose
candesartan (0.8 mg/kg) and dapagliflozin (1 mg/kg) combination group; CHD, high-dose candesartan (3.2 mg/kg)
and dapagliflozin (1 mg/kg) combination group. D, dapagliflozin; C, candesartan; CD, candesartan 5 uM with
dapagliflozin 10 uM combined treatment; C+DL, candesartan with 0.01 uM of dapagliflozin; C+DH, candesartan
with 10 uM of dapagliflozin; L/CM, Raw264.7 cells culture media with LPS; CM, Raw264.7 cells culture media

without LPS.
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2-2.3. Regulation of Inflammatory Pathways

Inflammation is closely related to endothelium-dependent vasorelaxation and NOX activation.
Therefore, we investigated the effect of dapagliflozin and ARBs on various inflammatory

molecules in the aged SHR’s aorta and L/CM-exposed EA. hy926 cells.

Dapagliflozin significantly reduced the expression of ICAM-1, NLRP3, caspase-1, and NF-
kB in aortic tissue (Figure 19A, C, and E). In addition, dapagliflozin decreased NLRP3
expression in EA. hy926 cells that were exposed to L/CM, and activation of caspase-1 and

NF-xB were also diminished to 0.68 £+ 0.07 and 0.59 + 0.12, respectively (Figure 19D and F).

In the fimasartan groups, FH and the dapagliflozin combined groups demonstrated a
significantly reduced ICAM-1 compared to the control group (Figure 19A). The ICAM-1
expression in endothelial cells showed a significant decrease only in the combined group (p <
0.05) ( Figure 19B). Aortic NLRP3 showed a significant reduction only in the FH group, and
caspase-1 was significantly decreased in all groups except FLD (p < 0.01 and 0.001) (Figure
19C). In endothelial cells, NLRP3 and c-caspase-1 were significantly decreased only in the
dapagliflozin combined group (Figure 19D). Aortic NF-kB expression decreased in all groups,
with a more significant decrease in the dapagliflozin combination groups (Figure 19E). The
nuclear translocation of NF-kB in the endothelial cells was decreased to 0.56+0.13 in the
fimasartan alone group and 0.57+0.08 in the combination group, but no significant (Figure
19F). In conclusion, fimasartan and dapagliflozin possess inhibitory efficacy against a series
of inflammatory molecules leading to NF-kB/NLRP3/ICAM-1 and confirming a synergistic

effect on inhibition of NLRP3/ICAM-1, particularly in endothelial cells.
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Figure 19. Effects of fimasartan and dapagliflozin on inflammatory molecules in the

aorta of aged SHR and L/CM treated EA. hy926 cells.

Experimental progress and groups are the same as described in Figure 16. (A) The expression levels of ICAM-1,
(C) NLRP3/caspase-1, and (E) NF-kB in the aorta of SHRs administered with fimasartan and dapagliflozin alone
and in combination. (B) The expression levels of ICAM-1 and (D) NLRP3/caspase-1, (F) activation level of NF-
kB in the EA. hy926 cells treated with fimasartan and dapagliflozin alone and in combination. All data are expressed
as mean + standard error mean. " *** means a significant difference at the p < 0.05, 0.01, and 0.001 levels
compared to the control group. $* means a significant difference at the p <0.01 level exists between the same dose

of the combined group and the single group.
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In the aortas of telmisartan-administrated SHR, ICAM-1 expression was significantly reduced
except for the TLD group (Figure 20A); conversely, I[CAM-1 expression in endothelial cells
did not show significant alterations in all groups (Figure 20B). Aortic NLRP3 did not exhibit
significant differences in all groups compared to the control group; furthermore, the THD
showed significantly higher levels than the dapagliflozin group (p < 0.05) (Figure 20C). The
caspase-1 expression significantly decreased in all groups except the THD group. Conversely,
endothelial NLRP3 exhibited a significant decrease in all telmisartan-treated groups; however,
as observed in the aorta, the combined group showed significantly higher levels than the alone
group. c-caspase-1 showed no significant changes in all groups (Figure 20D). Aortic NF-xB
expression also significantly decreased, excluding THD (Figure 20E). The nuclear
translocation of NF-kB in EA. hy926 cells showed no significant difference, but it appeared at
a higher level of 0.76+0.10 in the combined group compared to 0.68+0.09 in the single group
(Figure 20F). In conclusion, telmisartan decreased the expression of inflammatory molecules
leading to NF-kB/NLRP3/ICAM-1 but showed reduced anti-inflammatory effects when

combined with dapagliflozin.
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Figure 20. Effects of telmisartan and dapagliflozin on inflammatory molecules in the

aorta of aged SHR and L/CM treated EA. hy926 cells.

Experimental progress and groups are the same as described in Figures 16 and 17. (A) The expression levels of
ICAM-1, (C) NLRP3/caspase-1, and (E) NF-kB in the aorta of SHRs administered with telmisartan and
dapagliflozin alone and in combination. (B) The expression levels of ICAM-1 and (D) NLRP3/caspase-1, (F)
activation level of NF-«xB in the EA. hy926 cells treated with telmisartan and dapagliflozin alone and in combination.
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All data are expressed as mean =+ standard error mean. means a significant difference at the p < 0.05, 0.01,

and 0.001 levels compared to the control group. %% means a significant difference at the p < 0.001 level exists

&

between the same dose of the combined group and the single group. & & means a significant difference at the p <

0.05 and 0.01 levels compared to the dapagliflozin alone group.
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In candesartan-administrated SHR, aortic ICAM-1 expression was significantly reduced in
low-dose groups of both single and combination (Figure 21A). Conversely, ICAM-1
expression in endothelial cells did not show significant changes by all treatments (Figure 21B).
Aortic NLRP3 was significantly decreased in all groups compared to the control group (Figure
21C). On the other hand, caspase-1 expression exhibited a decrease in all groups, particularly
the CHD group, which showed a significant decrease compared to the dapagliflozin group (p
< 0.05). In endothelial cells, NLRP3 showed a significant decrease in all groups, but the
expression level in the combination group was 0.83 £ 0.04, significantly higher than
dapagliflozin (p <0.05) (Figure 21D). The c-caspase-1 did not show significant changes across
all groups. Aortic NF-kB expression was significantly reduced in all groups; it was lower in
low-dose groups, similar to ICAM-1 (Figure 21E). The nuclear translocation of NF-kB in EA.
hy926 cells were significantly reduced only in the combined treatment group (p < 0.05) (Figure

21F).

In summary, candesartan showed anti-inflammatory mechanisms leading to NF-
kB/NLRP3/ICAM-1 exhibiting different patterns depending on doses and cell types.
Particularly in the aorta, NLRP3/caspase-1 inhibition was effective at high doses and enhanced
by combination with dapagliflozin, while NF-kB/ICAM-1 was more suppressed at low doses
independently of dapagliflozin. On the other hand, endothelial NF-kB activation was reduced
only in the combined group, confirming a synergistic interaction of candesartan and

dapagliflozin.
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Figure 21. Effects of candesartan and dapagliflozin on inflammatory molecules in the

aorta of aged SHR and L/CM treated EA. hy926 cells.

Experimental progress and groups are the same as described in Figures 16 and 18. (A) The expression levels of
ICAM-1, (C) NLRP3/caspase-1, and (E) NF-kB in the aorta of SHRs administered with candesartan and
dapagliflozin alone and in combination. (B) The expression levels of ICAM-1 and (D) NLRP3/caspase-1, (F)
activation level of NF-kB in the EA. hy926 cells treated with candesartan and dapagliflozin alone and in

kR kokk

combination. All data are expressed as mean + standard error mean. """ means a significant difference at the p

<0.05,0.01, and 0.001 levels compared to the control group. € means a significant difference at the p < 0.05 level

compared to the dapagliflozin alone group.
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When inflammation contributes to vascular dysfunction, it is well-known that the recruitment
and activation of macrophages can exacerbate this process. In this, we investigated the effects
of dapagliflozin and ARB on the inflammatory pathway of macrophages. Dapagliflozin
showed decreased expression of NLRP3 and COX-2 but was insignificant (Figure 22 A and B).
iNOS expression significantly decreased to 1.46+0.07 compared to the 2.28+0.11 of LPS
control (Figure 22C). Although nitrite production was not reduced significantly, it decreased
to 80.4+10.6% (Figure 22D). SEAP production, an indicator of NF-kB activation, showed a

significant reduction to 82.1+3.10% at a concentration of 10 uM (p < 0.05) (Figure 22E).

Fimasartan also did not affect NLRP3 expression (Figure 22A), but COX-2 expression was
significantly decreased with combined treatment, even significantly lower than dapagliflozin
alone (Figure 22B). iNOS expression was decreased in all groups, while nitrite production was
only reduced in the combined treatment group with dapagliflozin (Figure 22C and D).
Combined treatment with 0.01 uM and 10 pM of dapagliflozin (F + DL and F + DH)
significantly decreased the nitrite to 92.21 + 5.4 and 76.0 + 4.59%, respectively, at a
concentration of 10 uM compared to the LPS control (Figure 22D). 0.01, 1.0 uM of F + DL,
and all concentrations of the F + DH group showed significantly lower nitrite levels than the
dapagliflozin alone group. SEAP production significantly decreased at 0.01, 0.1, and 10 uM

concentrations in the F + DH group (Figure 22E).

In summary, dapagliflozin suppresses LPS-induced inflammation by inhibiting NF-xB/iNOS
in macrophages. Furthermore, fimasartan showed potent anti-inflammatory effects in the
macrophage by inhibiting NF-kB/iNOS/COX-2 and confirmed synergistic effect with

dapagliflozin, particularly in inhibiting NO production.
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Figure 22. Effects of fimasartan and dapagliflozin on inflammatory molecules in the

Raw264.7 cells.

Raw264.7 and Raw-Blue™ cells were treated with drugs and LPS for 24 hours. The Raw264.7 cells were extracted
for performing western blotting. Western blot images of proteins in Raw264.7 cells were visualized using the
ChemiDoc system. The expression levels were normalized by B-actin. The relative ratio was calculated using the
control (-/-/-). The cultured media from treated Raw-Blue™ cells were used to measure nitrite content using the
Griess assay and SEAP content using the QUANTI-Blue™ assay. The relative percentage was calculated using the
LPS control (+/-/-). (A) The expression levels of NLRP3, (B) COX-2, and (C) iNOS in Raw264.7 cells treated with
fimasartan and dapagliflozin alone and in combination. (D) The nitrite production and (E) the activation level of
NF-«B in the Raw-Blue™ cells treated with fimasartan and dapagliflozin alone and in combination. All data are
expressed as mean =+ standard error mean. > *** means a significant difference at the p < 0.05 and 0.001 levels
compared to the control group. & && &&& means a significant difference at the p < 0.05, 0.01, and 0.001 levels
compared to the dapagliflozin alone group. * %% %% means a significant difference at the p < 0.05, 0.01, and 0.001
levels exist between the same dose of the combined group and the single group. The experimental groups name and

treated concentrations are the same as described in Figure 16.
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All telmisartan groups have not significantly affected NLRP3 expression (Figure 23A), but
COX-2 expression was significantly decreased with combined treatment (Figure 23B). iNOS
expression was decreased in all groups, while nitrite production was only reduced in the
combined treatment group with dapagliflozin (Figure 23C and D). Combined treatment with
0.01 uM and 10 uM of dapagliflozin (T + DL and T + DH) significantly decreased to
70.2247.95 and 54.0+11.6%, respectively, at a concentration of 10 uM compared to the LPS
control (Figure 23D). T + DH significantly reduced compared to the dapagliflozin alone group
at 1.0 uM. The T + DH group demonstrated significantly lower levels of nitrite at all
concentrations than the dapagliflozin and telmisartan alone groups. SEAP production did not

significantly change in all groups (Figure 23E).

In summary, telmisartan demonstrated anti-inflammatory effects by inhibiting iNOS/NO and
has a synergistic effect with dapagliflozin, particularly in inhibiting COX-2 and nitrite

production.
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Figure 23. Effects of telmisartan and dapagliflozin on inflammatory molecules in the

Raw264.7 cells.

Experimental progress is the same as described in Figure 22. (A) The expression levels of NLRP3, (B) COX-2, and
(C) iNOS in Raw264.7 cells treated with telmisartan and dapagliflozin alone and in combination. (D) The nitrite
production and (E) the activation level of NF-kB in the Raw-Blue™ cells treated with telmisartan and dapagliflozin
alone and in combination. All data are expressed as mean + standard error mean. ™ *** means a significant difference
at the p <0.05 and 0.001 levels compared to the control group. & &&& means a significant difference at the p < 0.05
and 0.001 levels compared to the dapagliflozin alone group. 55¥ means a significant difference at the p <0.001 level
exists between the same dose of the combined group and the single group. The experimental group’s name and

treated concentrations are the same as described in Figure 17.
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In macrophages, candesartan showed a significant reduction in NLRP3 and no change in COX-
2 expression, unlike the previous two ARBs (Figure 24A and B). iNOS expression decreased
in all groups, and nitrite production also decreased in all treatment groups (Figure 24C and D).
The single treatment group showed a significant reduction compared to the LPS control at 0.1
and 1.0 uM, by 81.7+4.61 and 65.3+9.68%, respectively. When combined with 0.01 and 10
puM dapagliflozin (C + DL and C + DH), the nitrite production significantly decreased to
69.4+9.24 and 55.0+12.4% respectively, at a concentration of 10 uM. There was a significant
reduction for the C + DH group compared to the dapagliflozin alone group at concentrations
of 0.01 and 1.0 uM. The C + DH group showed significantly lower levels than the
dapagliflozin alone group at all concentrations except for 1.0 uM were significantly lower than
the candesartan alone group. SEAP production was significantly reduced in the 10 uM

combined treatment group (Figure 24E).

In summary, candesartan may exert anti-inflammatory effects by inhibiting NF-
kB/NLRP3/iNOS/NO pathways, with particularly potent NLRP3 inhibition observed.
Additionally, like the other two ARBs, candesartan exhibited a synergistic effect with

dapagliflozin in NO production.
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Figure 24. Effects of candesartan and dapagliflozin on inflammatory molecules in the

Raw264.7 cells.

Experimental progress is the same as described in Figure 22. (A) The expression levels of NLRP3, (B) COX-2, and
(C) INOS in Raw264.7 cells treated with candesartan and dapagliflozin alone and in combination. (D) The nitrite
production and (E) the activation level of NF-kB in the Raw-Blue™ cells treated with candesartan and dapagliflozin

Kok ok

alone and in combination. All data are expressed as mean + standard error mean. means a significant
difference at the p < 0.05, 0.01, and 0.001 levels compared to the control group. & && &&& means a significant
difference at the p < 0.05, 0.01, and 0.001 levels compared to the dapagliflozin alone group. % %% means a

significant difference at the p < 0.01 and 0.001 levels exists between the same dose of the combined group and the

single group. The experimental groups name and treated concentrations are the same as described in Figure 18.
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2-2.4. Regulation of autophagy

As an additional mechanism, we probed the effects of each drug on autophagy, a cellular
recuperative process that counters excessive inflammation and oxidative stress. Dapagliflozin
has not shown any significant changes in the expression of autophagy-related molecules in

both the aortas and inflammation-exposed endothelial cells of aged SHRs (Figure 25).

Although fimasartan didn't show a significant difference compared to controls in the aorta, it
exhibited elevated AMPK and LC3 activation levels at lower concentrations under individual
and combined administration (Figure 25A). Conversely, the reduction of p62 was most
significant in the dapagliflozin combination group, particularly in the FHD group. Fimasartan
did not affect AMPK activation in induced endothelial cells but demonstrated a significant
increase in LC3 activation in the combined group (Figure 25B). P62 reduced by 0.80+0.05
and 0.81+0.05 in single and combined treatments, respectively, compared to the L/CM control
group, though the difference was not statistically significant. Upon examination of the
intracellular distribution morphology of p62, a distinct dot-like distribution was evident in both

the fimasartan alone and combined groups (Figure 25C).

In summary, while dapagliflozin showed no impact on autophagy activation, fimasartan
elevated LC3 activation, reduced p62, and amplified autophagosome formation. These effects

were particularly pronounced in the combination treatment with dapagliflozin.

8 6



LcM CM D

Cont D FL FH FLD FHD

AMPE [55 5 S S |

AMPK
P-AMPK |

=

P2[— — == —— =]

—r W
(1514 N e r———

LC31
LC31

10

4+ 1
¢« & % = % % % % = £ % =043
- = [} [} ] - - o= [} - = cn—l"’"s'
(Pio3) o1 IJNVAIdNV (proj)opel III€D01 (proy) 12431 zod £
@ AN EYVLIEM EYUTIE) | E %

i‘t‘ i)
[a]

(A) 5201

lq Q. o L ¢} = i -]
-y - ] v - =] -]
[0)) ORI INVIAV  (plo)) opea /II-€D
ETV LGy | AN

2
H K
Hi =
o I
I
(;[01) l°A°l=ZBd °

aAneRy

8 7



8 8

"dnoi3 [01u00 dy} 03 paredwiod [9A9] [(°(Q PUB G0°0 > d Y} J& SOUSIYIP JUBOYIUSIS B SUBDW . "UBIW JOLID PIEPUE)S F UBSW SB PassaIdxo

QIe ®JEp [[V "UOIRUIQWOD Ul pue ouole uizofjiSedep pue uepesewy Ym pajean s[[ed 9764y "vH ur z9d Jo soSewn Ansmusyooifoounww] (D) "UOHBUIQUOD Ul pue duofe uizofjiSedep
pue UeMBSEWI YIM PaJedl) S[[90 976AY "o Ul 79d Jo s[oad] uolssaidxe ‘¢ pue JJINV JO S[OAJ] uoneAnoe oyl (g) 'UONBUIqUIOd UI pue duole uizo[jrSedep pue uenesewy ym

paidsturupe SYHS Jo vroe oy} ur 79d Jo s[oAs] uorssaidxa ‘€T pue SJINV JO S[9Ad] uoneanse Ay (V) (enjq) 1syodoy pue (ud13) 1D[4-79d 01 paurels a1om s[[9)) ‘AnsruaydojLoounuu

Kq payodjep sem urdjoxd god oy pue ‘sioy 47 10} ND/1 Pue SSMIp Yim pajedn 91om S[[99 976AY "VH "9 2In3I] ur paquosap se dwes dy) are sdnoid pue ssaiford jejuowodxy

*S[199 976AY VA Paied.) JAD/ T Pue YHS Pade Jo eyioe ul ASeydoine uo uizopjisedep pue ueyaesewyy Jo $399JJ9 S 2131



Telmisartan did not induce significant changes in markers of autophagy activation within the
aorta (Figure 26A). However, in contrast, in endothelial cells exposed to inflammation
significantly increased LC3 activation when combined with dapagliflozin (Figure 26B). In
addition, the reduction in p62 shows in both the single treatment and combination groups.
Especially, combined treatment showed significantly lower levels than dapagliflozin alone.
Examination of the intracellular distribution morphology of p62 confirmed a dot-like

distribution in both the single and combination treatment groups (Figure 26C).

In summary, telmisartan enhanced the activation of LC3, reduced p62 levels, and increased
autophagosome formation in inflammation-damaged endothelial cells. These effects were

particularly pronounced in combination treatment with dapagliflozin.
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Candesartan significantly amplified aortic AMPK activation in the CHD group compared to
the control group (p < 0.05) (Figure 27A). While LC3 activation didn't exhibit a significant
difference, p62 expression also decreased in the CHD group. Contrarily, candesartan showed
no appreciable impact on AMPK activation in endothelial cells but demonstrated increased
LC3 activation and decreased p62 expression in both the single and dapagliflozin combined
treatment (Figure 27B). In addition, the subcellular distribution morphology of p62 confirmed

a distinct dot-like pattern in both the single and combined groups (Figure 27C).

In conclusion, candesartan influences AMPK and p62 in the aorta and LC3 and p62 in
endothelial cells. Especially within the aorta, the combination treatment with dapagliflozin

exhibited a synergistic effect.
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2-3. Discussion

In this result, dapagliflozin enhanced Ach response in the aorta of aged SHR and improved
vasorelaxant effects of ARBs when combined. Telmisartan and dapagliflozin combination
significantly enhanced Nrf2 expression and activation in aortic and endothelial cells. Co-
administration of candesartan and dapagliflozin reduced NOX expression and ROS production.
NF-«B levels were decreased by dapagliflozin in the aorta, macrophages, and endothelial cells
when combined with candesartan. Fimasartan and candesartan combined with dapagliflozin
showed the most significant decrease in NF-kB, while telmisartan exhibited an increase.
ICAM-1 levels were lowest in the fimasartan and dapagliflozin combination group in the aorta
and endothelial cells. The expression of NLRP3 was least at the aorta of the dapagliflozin
group, endothelial cells of the telmisartan and fimasartan combined group, and the
macrophages of the candesartan combined group, respectively. Caspase-1 was significantly
reduced in the aorta of candesartan alone and combination groups and in endothelial cells of
fimasartan and dapagliflozin co-treatment. Autophagy activity, indicated by LC3 activation
and p62 reduction, increased significantly in the aorta with the candesartan and dapagliflozin

combination and in endothelial cells with telmisartan and dapagliflozin co-treatment.

In diabetes and hypertension conditions, the blood vessels are exposed to continuous and
excessive stresses, leading to endothelial dysfunction and complications [45]. In diabetes,
hyperglycemia is associated with inflammatory mediators, including the production of AGEs,
activation of protein kinase C (PKC), overactivity of the hexosamine pathway, and increased
flux through the polyol pathway [165]. Endothelial dysfunction can lead to many vascular
complications, including retinopathy, nephropathy, and neuropathy, and increases the risk of
atherosclerosis [34, 166, 167]. Similarly, in hypertension, elevated blood pressure causes

mechanical stress on the blood vessel walls leading to endothelial injury [168]. It also leads to
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vascular remodeling, including hypertrophy and hyperplasia of the vascular smooth muscle
cells, which can further elevate blood pressure [169]. It is well known that damage to the
endothelium caused by various stresses in hypertension and diabetes leads to disorders in the
contraction and relaxation of blood vessels [170, 171]. For this reason, we investigated the
effects of ARB and dapagliflozin on Ach-induced vasorelaxation in aged SHR accompanied
by hyperglycemia. In the hypertensive state, it has been reported that the vasodilatory response
is reduced due to the reduced production of vasodilators, such as NO, and increased
constrictive substances, such as endothelin-1 [172]. As well as it has been confirmed that
hypertensive patients have a reduced vasorelaxation response to bradykinin and Ach, the
potent vasodilators [173, 174]. Our results showed that all four drugs increased the
endothelium-dependent relaxation and enhanced it when fimasartan and candesartan were
combined with dapagliflozin. On the other hand, the group receiving high-concentration
telmisartan and dapagliflozin did not show a significantly increased response compared to the
control group. Indeed, several studies have shown that the administration of dapagliflozin
improves vascular endothelial function in type 2 diabetic patients and endothelial function in
non-diabetic heart failure model rats [163, 175]. Fimasartan and candesartan have also been
reported could effectively prevent vascular aging caused by Ang2 and improves peripheral
vascular function in hypertensive patients [176, 177]. Meanwhile, some studies have reported
that telmisartan improves endothelial function in hypertensive patients only when
administered with amlodipine and has no effect when administered alone [178]. Conversely,
considering the reports that demonstrate the effects of telmisartan on improved vascular
function in various animal models, we have to recognize that the vascular improvement effects
of telmisartan can vary depending on the animal model and administered dose [179]. Although
this study has a limitation as short-term administration, it is noteworthy that these results are

the first to identify the increase of ARB's Ach response following co-administration with
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dapagliflozin.

Excessive oxidative stress plays a significant role in the development and progression of
various cardiovascular diseases, and antioxidants have been reported to reduce atherosclerotic
plaques and improve vascular function decline [58, 66]. In addition, because Ang2 activates
NOX, it is known that ARB can effectively suppress the increase in oxidative stress caused by
RAAS [25, 180]. Indeed, various studies have shown that candesartan and telmisartan reduce
NOX activity [181, 182]. In addition, as one of the mechanisms underlying the cardiovascular
benefits of dapagliflozin, its antioxidant properties have been widely studied. It has been
reported that dapagliflozin down-regulates oxidative stress and DNA damage biomarkers,
including NOX, and up-regulates antioxidants in H9C2 cells [183]. Our results also showed

that all four drugs have ROS-reducing effects functionality by inhibiting NOX.

This study's distinctive finding is a synergistic increase of Nrf2 expression and activation when
ARBEs, particularly telmisartan, combine with dapagliflozin. Nrf2, a representative regulator
of the endogenous antioxidant system, is a transcription factor that regulates the expression of
a wide range of genes involved in the clearance of ROS and maintenance of cellular redox
balance [184]. Indeed, several studies have shown that Nrf2 activation increases the expression
of antioxidant enzymes such as HO-1 and catalase, which can clear ROS and reduce oxidative
stress [185, 186]. In addition, activation of Nrf2 can protect endothelial cells from oxidative
stress and reduce endothelial dysfunction [187, 188]. Various studies have indicated that
dapagliflozin, fimasartan, and telmisartan activate the Nrf2/HO-1 pathway [182, 189, 190].
Yet, the explicit mechanism underpinning Nrf2 activation in dapagliflozin combination
therapy remains elusive; only one report suggests a synergistic effect with the combination of
dapagliflozin [191]. Hence, our findings provide valuable insights, but further investigation is

needed into the interaction mechanism between ARBs and dapagliflozin on Nrf2 activation.
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Meanwhile, acute or chronic oxidative stress through NOX and the mitochondrial electron
transport chain can induce Inflammation [69]. In addition, NOX promotes the release of
adhesion molecules and pro-inflammatory mediators by activating NF-kB signaling through
ROS generation, eNOS decoupling, and antioxidant scavenging [192, 193]. Nrf2 activation
also reduces the expression of pro-inflammatory cytokines and can inhibit activation of the
NF-xB/AP-1 pathway [186]. In other words, the decrease in ROS seen in our results can partly

influence inflammation.

Inflammation is an essential mechanism of endothelial dysfunction, which plays a crucial role
in the development of cardiovascular disease. In our results, ARBs and dapagliflozin exhibited
inhibitory efficacy against inflammatory molecules leading to NF-xB/NLRP3/ICAM-1 in the
aorta of aged SHR and endothelial cells. Furthermore, we have also demonstrated potent anti-
inflammatory effects by inhibiting NF-xB/iNOS/COX-2 in macrophages. Fimasartan and
candesartan showed an even more significant reduction in the combination therapy with
dapagliflozin. One peculiarity of our cell experiment was that endothelial cells were treated
with an LPS-stimulated macrophage culture medium to simulate a state of low-grade
inflammation. These macrophages secrete classic cytokines that, in various diseases, vascular
endothelial cells are usually exposed [194, 195]. It investigated the response to L/CM, not by
Ang2, suggesting that the inflammation-reducing effect of ARB and dapagliflozin may partly

act in a form independent of Ang?2 inhibition.

Indeed, ARBs and dapagliflozin have individually shown potential for improving vascular
function and exerting anti-inflammatory effects in various studies [196-199]. Like us,
dapagliflozin is reported to reduce acetic acid-induced colitis by inhibiting the NF-
kB/AMPK/NLRP3 axis and inhibiting NF-kB in endothelial cells and macrophages [186, 187].

Mainly, dapagliflozin attenuates the ICAM-1 and NF-kB expression, improving endothelial
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function [200]. Various papers also reported that telmisartan reduced pro-inflammatory
cytokines and oxidative stress in the heart, kidney, and other tissues [201, 202]. In addition,
telmisartan inhibits NF-kB phosphorylation in a PPARy-independent manner under high
glucose conditions [203]. In addition, compared to olmesartan, telmisartan reduces the
expression of VCAM-1, IKKp, and inhibits the phosphorylation of NF-kB p65-Ser (536)
[203]. Fimasartan also downregulates the NF-kB and MAPK pathways and has been reported
to prevent inflammation-related cell death [198, 204-206]. Similar to our results on ICAM-1,
fimasartan reduced the levels of inflammatory cytokines, including ICAM, in Apolipoprotein
E knockout mice. In diabetic patients, candesartan lowered circulating ICAM-1 level and
VCAM-1 compared to enalapril [204, 207]. On the other hand, candesartan and telmisartan
are known to suppress p38MAPK in various tissues [208, 209], but our results did not show
significant changes (Supplementary Figure 10); it may be attributable to an insufficient
experimental duration or dosage. Activation of inflammatory pathways contributes to vascular
dysfunction and further development of atherosclerosis [15, 18, 210]. Although it was not
confirmed whether atheromatous lesions were present in the blood vessels of the experimental
animals used in this study, the molecular reduction indicates that the combined administration

of ARB and dapagliflozin could contribute to the prevention of atherosclerosis.

ICAM and VCAM promote the adhesion of leukocytes and monocytes to the endothelial
surface, resulting in endothelial dysfunction and vascular damage [60]. The endothelium and
macrophages have diverse and interdependent effects compared to other immune cells. For
example, endothelial cell dysfunction caused by an increase in LDL leads to increased
expression of macrophages, and macrophages directly transfer from endothelial to
mesenchymal cells, increasing cell metastasis [211, 212]. In our results, ARBs and
dapagliflozin also inhibited inflammatory molecules such as COX-2, iNOS, and NO in

macrophages. In particular, a significant level of NO reduction was shown in the combined
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treatment at concentrations that did not show NO reduction alone. Similar to our results, it has
been reported that dapagliflozin reduces the increased iNOS after myocardial ischemia-
reperfusion injury and induces the differentiation of M1 macrophages into M2 cells, thereby
having a direct anti-inflammatory effect in macrophages [213, 214]. Fimasartan also reduces
iNOS and NO in LPS-stimulated Raw264.7 cells, and it has been reported that it acts by
inhibiting the transcriptional and DNA binding activities of NF-xB and AP-1 [206].
Telmisartan showed a superior reduction of COX-2 in neuroblasts compared to candesartan
and losartan, and fimasartan is also known to reduce COX-2 expression by hemolysate in
astrocytes [215, 216]. In other words, it has been confirmed that ARBs and dapagliflozin
reduce adhesion molecules, thereby suppressing the recruitment of macrophages and
enhancing vascular reactivity by inhibiting the inflammatory response of macrophages,

specifically the overproduction of NO.

Interestingly, in our results, only candesartan and dapagliflozin reduced NLRP3 expression in
both blood vessels and macrophages. In particular, it confirmed that the NLRP3 inhibitory
activity of the two drugs might have a partial synergistic effect. NLRP3 is upregulated in the
vasculature of hypertensive animals, leading to endothelial dysfunction, vascular
inflammation, and oxidative stress [62, 217]. Various studies have shown that one of the
cardioprotective mechanisms of dapagliflozin is the inhibition of myocardial NLRP3
activation, and inhibition of the AMPK/NLRP3 pathway has been shown to reduce
inflammation [218-220]. In addition, candesartan also inhibits NF-kB in macrophages and
significantly inhibits NLRP3 inflammasome and pyroptosis through the reduction of
activation of the MAPK pathway [221]. Some research has demonstrated that telmisartan can
inhibit NLRP3 in neurovascular units and neural stem cells [222, 223]. Additionally, only one
piece of evidence suggests that low-dose fimasartan can ameliorate NLRP3 inflammasome-

mediated neuroinflammation and cerebral damage following an intracerebral hemorrhage
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[224]. Our results showed that telmisartan and fimasartan reduced NLRP3, specifically in the
aorta and endothelial cells, suggesting that their effects may exhibit a degree of tissue
specificity. NLRP3 inflammasome is known to be negatively regulated by autophagy; In our
results regarding autophagy, ARBs, especially candesartan and dapagliflozin, elevated LC3
activation, reduced p62, and amplified autophagosome formation in EA. hy926 cells and
combined administration with dapagliflozin confirmed a synergistic effect. These findings
suggest that the underlying mechanism behind the enhancement of vascular function by
candesartan and dapagliflozin may involve the inhibition of NLRP3, which is initiated through

the activation of autophagy.

Autophagy, which has recently attracted attention in various diseases, is a process that
degrades and recycles unnecessary proteins in cells and plays an essential role in the metabolic
activity of cells [75, 225]. In addition, autophagy breaks down damaged organelles inside cells
under various stress situations, allowing cells to survive. Activation of autophagy has multiple
advantages, such as inhibition of apoptosis in pulmonary arterial hypertension and inhibition

of ischemia/reperfusion-induced vascular endothelial apoptosis [72, 73].

It has been reported that ARBs, especially fimasartan, have anti-proliferative activity through
the activation of autophagy in cancer cells. On the other hand, telmisartan has been reported
that Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Ppargclo)
inhibits aging indicators through increased autophagy [226]. Conversely, telmisartan has also
been reported that attenuate kidney apoptosis and autophagy-related protein expression levels
in an intermittent hypoxia mouse model [227]. These disparities imply that optimal levels of
autophagy may vary according to tissue type and the stress level to which cells are subjected.
Indeed, according to various reports, Ang2 induces vascular smooth muscle cell hypertrophy

by an autophagy-dependent mechanism, and losartan reduces it [228]. At the same time, some
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studies reported that autophagy activation attenuates Ang2-induced cardiac dysfunction [229].
From a therapeutic perspective, the fact that autophagy can exhibit diverse responses based on
the level of inflammation and cell types can complicate drug selection [230]. However, in our
study, which focused on low-grade inflammatory conditions, it's apparent that autophagy was
reduced, and both ARB and dapagliflozin were observed to enhance it in endothelial cells.
This finding can be proposed as one mechanism of vasoprotective effects through which these

two drugs work synergistically.

In another study, candesartan was reported to enhance AMPK-induced autophagy flux [231].
In addition, dapagliflozin has been reported to boost autophagy through the AMPK/mTOR
pathway in hepatic steatosis and renal injury [232, 233]. AMPK not only activates autophagy
but also improves insulin sensitivity by enhancing the activity of insulin receptors, cellular
energy metabolism and promoting glucose uptake [231, 234]. Our study showed that the co-
administration of candesartan and dapagliflozin enhanced AMPK activation in the aorta.
However, no significant difference in AMPK activation was observed when these drugs were
administered individually. This suggests a synergistic effect between candesartan and
dapagliflozin in stimulating AMPK activity in the aorta. AMPK also reported additional
benefits, including inflammation reduction through NF-xB and STAT3 inhibition and
antioxidative efficacy via Nrf2 activation and glutathione biosynthesis [235-237]. Indeed,
when combined with dapagliflozin, candesartan significantly —decreased NF-
kB/NLRP3/caspase-1 in the aorta and contributed substantially to the reduction of NOX. This

means this combination therapy can have further benefits related to AMPK activation.

In summary, fimasartan increased vasorelaxation by inhibiting inflammation and ROS, also
enhancing autophagy; its effects synergized in specific pathways when combined with

dapagliflozin. Telmisartan shows less increased vasorelaxation than others, and its anti-
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inflammatory effects were reduced when combined with dapagliflozin. Candesartan
demonstrated higher efficacy than the other two drugs in enhancing Ach-response and anti-
inflammatory effects, also lowering NLRP3 and promoting autophagy. Notably, it also
exhibited a synergistic interaction with dapagliflozin in these regards. Interestingly, while the
combination of telmisartan and dapagliflozin demonstrated the most significant synergistic
effect in lowering blood pressure, this combination did not notably enhance vascular function.
In contrast, candesartan, which had a minor interaction with blood pressure control, showed
the most substantial complementary effect on vasoprotection. Therefore, exploring additional
mechanisms for these two drugs' blood pressure regulation effects is crucial; in Part 3 of this

study, we will examine the influence on SGLT2 and renal function.
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Figure 28. The vasoprotective effects of dapagliflozin and ARBs.
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Part 3. Enhancement of Dapagliflozin by ARB:

Hyperglycemia, SGLT2, and NHE-1
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3-1. Materials and methods

3-1.1. Materials and experimental animals

The ARBs, including fimasartan, telmisartan, and candesartan cilexetil, were provided by Dr.
Yong-Ha Ji. The SGLT?2 inhibitor dapagliflozin was obtained as Forxiga™ tablets containing

10 mg of the active ingredient.

SHRs were purchased from Charles River and housed at the Jeju National University animal
facility for at least seven days before use in the experiments. Animals were fasted for four
hours before drug administration, and water was provided ad libitum. The animals were housed
under controlled conditions with a temperature of 22 + 5°C, a humidity of 50 + 10%, and a
12-hour light/dark cycle. All animal experiments were performed under the guidelines of the
‘Institutional Animal Care and Use Committee at Jeju National University’ (protocol number:

2018-0019).

3-1.2. Experiment

Male SHR rats, 60-65 weeks of age and weighing between 380-420 g, were used in this study
with four to five animals per group. The experimental groups consisted of a control group, a
dapagliflozin single administration group, low and high doses of ARB single administration
groups, and low and high doses of ARB and dapagliflozin combination groups (Figure 29).
All doses were calculated using body surface area conversion factors from FDA, which
provides an equivalent dose relative to clinical applications; dapagliflozin 1 mg/kg, fimasartan
3 and 12 mg/kg, telmisartan 2 and 8 mg/kg, and candesartan 0.8 and 3.2 mg/kg. The animals
were housed in a metabolic cage and were acclimatized to the cage two days before the
initiation of drug administration. The animals were administered drugs for one week and

euthanized with CO; gas; serum and organs were collected. During experimental periods, urine
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output, water intake, food intake, and body weight were recorded daily. Urine was collected

and stored at -20°C for subsequent analysis.

Aged male SHRs (over 60 weeks of age)

were housed in a metabolic cage Telmisartan
Wi _ 4 _ Control (2 and 8 mg/kg)
‘ Water intake
Dapagliflozin
i " TLD, THD
| Food intake ‘ (1 mg/kg)
i Fimasartan Candesartan
*| Body weight ‘ (3 and 12 mg/kg) (0.8 and 3.2 mg/kg)
| Urine volum FLD, FHD CLD, CHD
Each drugs were administrated daily for 7 days

At the end of the study, animals were euthanized with CO: gas, organs were collected and weighting

Glucose, Sodium, *
-

and protein conc.

Serum and Urine Kidney, Aorta, and Heart SGLT2 and NHE-1
expression

Figure 29. A schematic diagram of the experimental group and the experimental schedule

3-1.3. Urine and blood analysis

All urine samples were centrifuged at 3,000 rpm for five minutes to remove debris. Protein
concentration in urine was measured using the Bradford assay, and glucose concentration was
measured by colorimetry methods using the Glucose-PAP SL reagent (ELITechGroup, France).
Sodium concentration was measured using an electrical conductivity meter (CSF-1000
salinometer, CAS, Korea). Serum glucose and sodium concentrations were determined using

the same methods as for urine.
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3-1.4. Organ weight

Organs, including liver, lung, brain, kidney, heart, and spleen, were collected and weighed.
The organ index was calculated by dividing each organ's weight by the animal's body weight

(mg organ/g body weight).

3-1.5. ACHN cells

ACHN cells, human renal epithelial cells derived from a renal adenocarcinoma, were obtained
from Professor Chang-Hwan Ahn. The cells were cultured in RPMI-1640 medium (Gibco)
supplemented with 10% FBS and 100 U/mL P/S at 37°C in a humidified atmosphere of 5%

COs,. Cells were harvested after 24 hours of drug treatment.

3-1.6. Protein analysis

(1) Protein preparation: The Kidney, heart, and aortic tissues from experimental animals
were disrupted using RIPA buffer with Tissue Lyser II. The homogenate was centrifuged at
13,000 rpm, 4°C for 15 minutes, and the supernatant was collected. ACHN cells were washed
with PBS and then lysed with RIPA buffer for 30 minutes on ice. The supernatant was collected

after centrifugation at 13,000 rpm, 4°C for 15 minutes.

(2) Western blotting: The protein contents of lysates were quantified using the Bradford assay,
and the same amount of protein was mixed with sample buffer and denatured. 20 pg of protein
per well was loaded onto 8-12% SDS-PAGE and electrophoresed at 120-150 V for one hour.
The separated proteins were transferred to PVDF membranes at 100 V for two hours using wet
transfer methods. After washing with TBST, the membranes were blocked with 5% blocking
grade buffer for 30 minutes to prevent nonspecific binding. The membranes were incubated
overnight at 4°C with primary antibodies. The following primary antibodies were used; anti-
SGLT2 (Cell Signaling) and NHE-1 and B-actin (Santacruz Biotechnology). After washing,
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the membranes were incubated for one hour with a secondary antibody conjugated with HRP.
The protein was visualized using electrochemiluminescence and detected using Chemi-Doc
molecular imaging system. The expression levels of each protein were obtained using the
Evolution Capt software and normalized by B-actin and further calculated to relative values

based on control.
3-1.7. Molecular docking

The structure of the SGLT2 protein was downloaded in .pdb format from the Protein Data
Bank (Figure 30) [238]. The structures of compounds were downloaded in .sdf format from

PubChem (Figure 9).

SGLT2
(PDBID: 7VSI)

Figure 30. Structure of SGLT2 obtained from Protein Data Bank.

3-1.8. Statistical analysis

All data were presented as mean = SEM. Statistical analyses were performed using GraphPad
Prism 6 program, conducting one-way and two-way ANOVA and using Tukey’s post hoc test

for significance verification. A p-value of less than 0.05 was considered significant.
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3-2. Results

3-2.1. SGLT2

To examine the effects of ARBs on the target of dapagliflozin, we measured glucose/sodium
and SGLT?2 protein expression in aged SHRs with both hyperglycemia and hypertension.
Administration of fimasartan led to reductions of 3.58 and 6.32 mg/day in the FL. and FH
groups, respectively; notably, urinary glucose in the FH group was significantly lower than in
the FL group (Figure 31A). On the other hand, glucose excretion in all dapagliflozin-
administrated animals showed significantly higher urinary glucose than in the control group.
The glucose excretion of the dapagliflozin group was 0.47+0.01 g/day, a 37-fold increase over
the control group (12.65+0.06 mg/day). Excreted glucose of FLD and FHD groups was
0.49+0.00 and 0.76+0.01g/day, respectively, higher than in the fimasartan alone group, with
FHD showing a significant increase compared to both the dapagliflozin monotherapy and FLD
groups. Blood glucose levels of the dapagliflozin group exhibited a significant decrease
compared to the control group (254.0+7.13 mg/dL vs. 200.2+1.81 mg/dL) (Figure 31B).
However, in single and combination groups, fimasartan did not significantly decrease blood
glucose levels. Daily urine volume was 1.7-fold higher in the dapagliflozin group (34.5+£2.06
mL/day) compared to the control group (Figure 31C). The FLD and FHD groups also increased
to 31.7+£3.38 and 33.7+4.91 mL/day, respectively, although urine output in the FLD group was

significantly lower than in the dapagliflozin group.

Sodium excretion was significantly increased by dapagliflozin, but the FLD group presented
significantly lower values compared to the dapagliflozin group (Figure 31D). The FHD group
had higher levels than the FLD group, but there was no significant difference from the control
group. Blood sodium concentrations did not show significant changes in all fimasartan groups

but were 1.13-fold lower in the dapagliflozin group (122.3+£3.65 mM vs. 138.6+£3.60 mM in
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the control group). SGLT2 expression in the kidney showed a significant decrease in the
dapagliflozin-treated group compared to the control group (Figure 31E). In conclusion,
fimasartan reduced the dapagliflozin-induced urinary excretion of glucose and sodium,

partially attributed to its interfering with the downregulation of SGLT?2 by dapagliflozin.
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Male SHRs over 60 weeks were placed in metabolic cages of age and received oral administration of the drugs for
one week. Urinary and serum glucose concentrations were measured one week after drug administration. The
urinary glucose contents were calculated based on each animal’s basal urinary glucose contents and daily urine
volume. Urinary and serum sodium concentrations were also measured one week after drug administration. After
administration, the experimental animals were euthanized using CO2 gas, and kidney proteins were extracted for
performing western blotting. Western blot images were visualized using the ChemiDoc system. The expression
levels of SGLT2 were normalized by B-actin, and the relative ratio was calculated based on the control group. (A)
The urinary glucose, (B) serum glucose, (C) daily urine output, (D) urinary and serum sodium, and (E) renal SGLT2
expression levels of SHRs administered with fimasartan and dapagliflozin alone and in combination. All data are

s ko sk

expressed as mean + standard error mean. means a significant difference at the p < 0.05, 0.01, and 0.001
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levels compared to the control group. * **# means a significant difference between the low and high concentration
groups at the p < 0.05 and 0.001 levels. 3 %% means a significant difference at the p < 0.05 and 0.001 levels exists
between the same dose of the combined group and single administration group. % &% means a significant difference
atthe p<0.05 and 0.01 levels compared to the dapagliflozin alone group. Cont, SHR control group; D, dapagliflozin
alone group (1 mg/kg); FL, low-dose fimasartan alone (3 mg/kg); FH, high-dose fimasartan alone group (12 mg/kg);
FLD, low-dose fimasartan (3 mg/kg) and dapagliflozin (1 mg/kg) combination group; FHD, high-dose fimasartan

(12 mg/kg) and dapagliflozin (1 mg/kg) combination group.
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Telmisartan administration decreased glucose excretion by 1.93 and 5.86 mg/day in the TL
and TH groups (Figure 32A). The glucose excretion in the TLD and THE groups increased
significantly compared to the control group. Glucose excretion in each group was 0.94+0.01
g/day for TLD and 0.93+0.01 g/day for THD, and both significantly increased compared to
dapagliflozin (p < 0.001). Blood glucose levels significantly declined in all telmisartan-treated

groups compared to the control group (Figure 32B).

Urine volume was 39.0£6.56 and 40.7+£5.78 mL/day for TLD and THD, respectively,

significantly increased compared to the control and dapagliflozin alone groups (Figure 32C).

Sodium excretion did not show a significant change in the telmisartan alone group, and the
TLD group showed significantly higher than the TL group (13.0+£0.24 mM/day vs. 10.4+0.49
mM/day in the TL group) (Figure 32D). The THD group displayed 16.7+0.67mM/day,
considerably higher than the control group, the dapagliflozin alone group, and the TH group.
In addition, blood sodium concentrations were significantly reduced in all groups receiving
dapagliflozin compared to both the control group and the group receiving telmisartan alone
(Figure 32D). Renal SGLT2 expression was significantly reduced in all dapagliflozin-treated

and TH groups compared to the control group (Figure 32E).

In summary, telmisartan lowers blood glucose, partly due to reduced SGLT2 expression; it

also amplifies the urinary excretion of glucose and sodium induced by dapagliflozin.
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Figure 32. Effects of telmisartan and dapagliflozin on glucose/sodium and SGLT?2 in aged

SHR.

Experimental progress is the same as described in Figure 31. (A) The urinary glucose, (B) serum glucose, (C) daily
urine output, (D) urinary and serum sodium, and (E) renal SGLT2 expression levels of SHRs administered with
telmisartan and dapagliflozin alone and in combination. All data are expressed as mean + standard error mean. ***
*** means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to the control group. *# means a
significant difference between the low and high concentration groups at the p < 0.001 level. 3 % %% means a
significant difference at the p < 0.05, 0.01, and 0.001 levels exist between the same dose of the combined group
and single administration group. & &%& means a significant difference at the p < 0.05 and 0.001 levels compared to
the dapagliflozin alone group. Cont, SHR control group; D, dapagliflozin alone group (1 mg/kg); TL, low-dose
telmisartan alone (2 mg/kg); TH, high-dose telmisartan alone group (12 mg/kg); TLD, low-dose telmisartan (2
mg/kg) and dapagliflozin (1 mg/kg) combination group; THD, high-dose telmisartan (8 mg/kg) and dapagliflozin

(1 mg/kg) combination group.
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Candesartan administration alone significantly reduced glucose excretion in the CH group
more than in the CL group (Figure 33A). However, glucose excretion in the CLD and CHD
groups significantly increased compared to the control and individual treatment groups.
Neither the CLD nor CHD group exhibited a significant level difference compared to the
dapagliflozin group. Blood glucose levels did not significantly change across all groups

compared to the control group (Figure 33B).

Urinary volume was 37.3 + 5.70 and 35.3 + 4.37 mL/day for the CLD and CHD groups, an
increase compared to the control and single administration groups but not significantly
different from the dapagliflozin group (Figure 33C). Sodium excretion significantly decreased
in the CHD group compared with the control and CH groups, while blood sodium
concentration showed no significant level differences (Figure 33D). Renal SGLT2 expression
levels did not change significantly in all candesartan-administered groups, with the CLD group

significantly increasing compared to the dapagliflozin alone group (Figure 33E).

In conclusion, candesartan does not significantly affect dapagliflozin-induced glucose and

sodium excretion but interferes with SGLT2 expression.
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Figure 33. Effects of candesartan and dapagliflozin on glucose/sodium and SGLT2 in

aged SHR.

Experimental progress is the same as described in Figure 31. (A) The urinary glucose, (B) serum glucose, (C) daily
urine output, (D) urinary and serum sodium, and (E) renal SGLT2 expression levels of SHRs administered with
candesartan and dapagliflozin alone and in combination. All data are expressed as mean + standard error mean. ™
"™ means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to the control group. * means
a significant difference between the low and high concentration groups at the p < 0.05 level. 3% %% means a
significant difference at the p < 0.01 and 0.001 levels exists between the same dose of the combined group and
single administration group. ¢ means a significant difference at the p < 0.05 level compared to the dapagliflozin
alone group. Cont, SHR control group; D, dapagliflozin alone group (1 mg/kg); CL, low-dose candesartan alone
(0.8 mg/kg); CH, high-dose candesartan alone group (3.2 mg/kg); CLD, low-dose candesartan (0.8 mg/kg) and
dapagliflozin (1 mg/kg) combination group; CHD, high-dose candesartan (3.2 mg/kg) and dapagliflozin (1 mg/kg)

combination group.
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The docking studies investigating the interactions of three types of ARBs and dapagliflozin
with the SGLT2 protein revealed that these drugs' binding affinities and interaction patterns
varied (Table 5 and Supplementary Figure 13-16). This high affinity may be attributed to the
various van der Waals interactions telmisartan forms with the SGLT2 protein and a
conventional hydrogen bond with PHE 504 amino acid. Furthermore, telmisartan displayed a
pi-pi-stacked binding with TYR 455, similar to the interaction between dapagliflozin and
SGLT2. In contrast, fimasartan and candesartan exhibited lower binding affinities than
telmisartan, at -7.3 and -8.5 kcal/mol, respectively. Both fimasartan and candesartan showed

binding with ASP 454 of SGLT2.

When dapagliflozin was already bound to the SGLT2 structure, an increased binding affinity
was observed upon subsequent binding of fimasartan and telmisartan. Telmisartan formed new
hydrogen bonds with GLU503 and GLY507, replacing the previous bond with PHE504. Its
hydrogen bond with SER362 was maintained for candesartan, yet its binding affinity
diminished to -8.4 kcal/mol. Fimasartan and telmisartan binding affinity to SGLT2 increased
when dapagliflozin was pre-bound. All three ARBs demonstrated significant alterations in

their binding form under these conditions.
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Table 5. Binding affinity and interactions of sodium-glucose cotransporter 2 with ARBs

and dapagliflozin.
SGLT2 B“:i:;%xg‘;lty Hydrogen bond Hydrophobic interaction
Dapagliflozin 2.1 GLN451. SER508 PHE152, SER156, TRP440, VAL443, ALA446, ALA447,

GLN448, LEU452, TYR455, PHE504

THRS87, ALA90, SER91, CYS255, ARG336, VAL343,
Fimasartan 273 ASP273 ALA344, CYS345, VAL359, GLY360, SER362, GLY450,
PHE453, ASP454, SER510

SER156, TRP440, VAL443, VAL444, ALA447, GLN451,

Telmisartan 9 PHES04 LEU452, TYR455, GLU503, SER505, GYS507, SER508
ALA90, SER91, PHE254, CYS255, ARG257, LEU274,
Candesartan 8.3 THR87, SER362 ARG336, VAL359, GLY360, GLY450, ASP454, SER510
Binding affini
SGLT2+Dapa “;klcl;%fnol]')nty Hydrogen bond Hydrophobic interaction

THRS87, ALA90, SER91, CYS255, ASP273, LEU274,
Fimasartan -7.8 - ARG336, VAL359, SER362, GLY450, GLN451, ASP454,
SER508, GLY 509, SER510, CYS511

THRS87, ASP273, LEU274, GLN451, ASP454, TYR455,
Telmisartan -9.6 GLU503, GLY507 ALA458, ARG499, PHE504, SER508, CYS522, VAL524,
HISS525, TYRS526

THRS87, ALA90, SER91, PHE254, CYS255, ARG257,
Candesartan -8.4 SER362 LEU274, ARG336, VAL359, GLY360, GLY450, ASP454,
SER510
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3-2.2. NHE-1

We investigated the effects of ARBs on NHE-1, another well-known target molecule of
dapagliflozin. All groups treated with fimasartan, not only dapagliflozin, showed a significant
decrease in renal NHE-1 expression compared to the control group (Figure 34A). The
measurements of urinary protein levels demonstrated a significant reduction in all fimasartan-
treated groups compared to the controls (Figure 34B). Furthermore, the FLD and FHD groups
significantly reduced proteinuria compared to the same concentration-only groups (p < 0.01

and p < 0.05). However, dapagliflozin alone failed to reduce urinary protein.

In summary, dapagliflozin reduced renal NHE-1 but did not decrease urinary protein. On the
other hand, fimasartan synergized with dapagliflozin to reduce urinary protein and lower aortic

and cardiac NHE-1.
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Figure 34. Effects of fimasartan and dapagliflozin on renal NHE-1 expression and

proteinuria in aged SHR.

Experimental progress and groups are the same as described in Figure 31. (A) The renal NHE-1 expression levels
and (B) urinary protein excretion of SHRs administered with fimasartan and dapagliflozin alone and in combination.

Hok ok

All data are expressed as mean + standard error mean. means a significant difference at the p <0.01 and 0.001
levels compared to the control group. * % means a significant difference at the p < 0.05 and 0.01 levels exist between

the same dose of the combined group and single administration group.

120



Telmisartan administration resulted in a significant reduction in renal NHE-1 levels (Figure
35A). However, when co-administered with dapagliflozin, the levels in the TLD group were
0.9740.10 and in the THD group were 1.09+0.08, which were significantly higher than in the

groups treated with telmisartan alone or dapagliflozin alone.

The urinary protein concentration was significantly decreased in all groups treated with
telmisartan compared to the control group (Figure 35B). The urinary protein content of the
TLD and THD groups was higher than that of the telmisartan alone group (p < 0.001). Still,
there was no difference from the single group due to calculating the baseline value, which is

thought to be due to individual differences.

In conclusion, telmisartan decreased renal NHE-1 expression and urinary protein, but these

effects were attenuated when co-administered with dapagliflozin.
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Figure 35. Effects of telmisartan and dapagliflozin on renal NHE-1 expression and

proteinuria in aged SHR.

Experimental progress and groups are the same as described in Figures 31 and 32. (A) The renal NHE-1 expression
levels and (B) urinary protein excretion of SHRs administered with telmisartan and dapagliflozin alone and in

kR kokk
B

combination. All data are expressed as mean + standard error mean. means a significant difference at the p
<0.05, 0.01, and 0.001 levels compared to the control group. * %% means a significant difference at the p < 0.05

and 0.001 levels exists between the same dose of the combined group and single administration group. ¢ means a

significant difference at the p < 0.01 level compared to the dapagliflozin alone group.
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Candesartan reduced the renal NHE-1 expression in both single and combination
administration groups (Figure 36A). However, the CLD group didn't show significant changes
compared to the control group. The difference in urinary protein excretion levels was 5.7+4.90
and 100.6+£9.23mg/day in the CL and CH groups, respectively, with a higher decrease in the
high-concentration group (Figure 36B). In the combined administration groups with
dapagliflozin, the CLD group showed 101.6£9.23mg/day and the CHD group
186.6+£7.95mg/day. The CLD and CHD groups were significantly lower than the control and

single administration groups.

In summary, candesartan reduced renal NHE-1 expression and urinary protein and showed a
synergistic effect with dapagliflozin in reducing urinary protein. Aortic and cardiac NHE-1

expression also decreased synergistically in the combination therapy group.
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Figure 36. Effects of candesartan and dapagliflozin on renal NHE-1 expression and

proteinuria in aged SHR.

Experimental progress and groups are the same as described in Figures 31 and 33. (A) The renal NHE-1 expression
levels and (B) urinary protein excretion of SHRs administered with candesartan and dapagliflozin alone and in
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combination. All data are expressed as mean + standard error mean. means a significant difference at the p
<0.05, 0.01, and 0.001 levels compared to the control group. ® %% means a significant difference at the p < 0.05

and 0.001 levels exists between the same dose of the combined group and single administration group.
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3-3. Discussion

In aged SHR, dapagliflozin increased urine output and water intake. Co-administration of
dapagliflozin with fimasartan or candesartan further increased water intake, while urine
volume was most increased in the telmisartan combination group. Dapagliflozin elevated
urinary glucose and sodium levels while decreasing blood glucose and sodium. When
combined, urinary glucose levels were increased, but blood glucose levels did not differ
significantly from the ARB alone group. Renal SGLT2 expression was reduced by
dapagliflozin, and although candesartan and fimasartan showed a decrease trend, it was not
significant. Telmisartan, both alone and in combination with dapagliflozin, exhibited the
highest affinity with SGLT2 and decreased its expression. Urine protein levels were
significantly decreased in all ARB groups, and combining dapagliflozin with fimasartan or
candesartan further reduced urinary protein. However, telmisartan alone had the lowest urinary
protein levels among the ARBs, and when combined with dapagliflozin, the levels increased
compared to the telmisartan-only group. NHE-1 expression, a marker of renal fibrosis,
decreased with dapagliflozin and ARBs. Candesartan showed a further decrease when
combined with dapagliflozin, while telmisartan increased. In summary, fimasartan and
candesartan showed renoprotective effects when combined with dapagliflozin, while the
combination of telmisartan and dapagliflozin exhibited a potent blood glucose-lowering effect

but lacked a renoprotective effect.

Inhibition of SGLT2 by dapagliflozin increases urinary glucose concentration as a mechanism
for blood glucose lowering. Our results also show an increase in urinary glucose excretion and
a decrease in blood glucose by dapagliflozin. On the other hand, in the ARB-alone group,
urinary glucose excretion decreased, which is thought to be a phenomenon caused by a

decrease in blood pressure. Indeed, the reduction in glucose excretion in the high-dose group,
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which showed higher blood pressure lowering in all three types of ARBs, was greater than that
in the low-dose group. Indeed, several clinical studies have reported that an increase in blood
glucose can be used to predict a rapid reduction in blood pressure [239, 240]. Perhaps for this
reason, although fimasartan and candesartan increased glucose excretion in the combined
administration group, there was no change in blood glucose. Of course, ARBs and ACE
inhibitors are famous for reducing the risk of type 2 diabetes [241]. However, the well-known
common side effects of antihypertensive drugs, such as beta-blockers and thiazide diuretics,
are abnormal glucose and lipid metabolism, which suggests that the drugs' properties and the
reduction in blood pressure may affect blood glucose [240, 242, 243]. Moreover, the duration
of drug administration in our current study was brief, lasting only one week. Based on various
evidence, short-term administration of antihypertensive drugs may elicit compensatory
glucose retention to counteract the reduction in blood pressure. Some reports also suggest
intensive blood pressure management could elevate the risk of fasting blood glucose disorder
[244]. Hence, it is necessary to conduct further experiments to determine how these observed
phenomena change for long-term administration. The critical result is that the combination of
fimasartan and dapagliflozin demonstrated a synergistic effect on blood pressure reduction and
exhibited vasoprotective effects without inducing significant changes in blood glucose. Thus,

it could be proposed as a therapeutic option for hypertensive patients who do not have diabetes.

On the other hand, telmisartan showed a significant decrease in blood glucose in the combined
group with dapagliflozin and the single group, which showed a decrease in urinary glucose
excretion. Telmisartan has been reported to have potential benefits for various diseases and
diabetes, one of which is the well-known effect of improving insulin sensitivity and reducing
blood sugar through the activation of PPARy [245, 246]. In addition, it has been reported that
telmisartan is reported to have a PPARy-agonistic effect while avoiding the safety concerns

found with thiazolidinediones and has an additional mechanism of increasing insulin secretion
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through ion channel stimulation independently of AT1 and PPARy [247, 248]. The blood
glucose reduction effect shown in all telmisartan groups appears to be attributable to this. In
addition, in some studies, telmisartan has been reported to reduce SGLT2 expression in the
kidneys of diabetic rats [249]. Indeed, in our result, dapagliflozin, telmisartan alone, and
combined treatment groups showed a significant decrease of SGLT2 in kidneys and ACHN
cells (Supplementary Figure 17). This contrasts the fact that two other ARBs reversed the
decrease in SGLT2 expression caused by dapagliflozin when combined. On the other hand,
PPARY agonists can increase SGLT2 expression in renal proximal tubular cells and pancreatic
alpha cells [250, 251]. This means, telmisartan inhibits not only PPARy but also SGLT2
independently; it is thought that it may have an additional advantage in controlling blood

glucose.

Given that SGLT2 is a sodium-glucose cotransporter, the increased glucose excretion
associated with SGLT2 inhibition accompanies sodium excretion. Zeng et al., reported that
low-dose empagliflozin significantly reduced blood pressure via sodium excretion in non-
diabetic, high-salt diet-fed rats [252]. Hence, it was inferred that the blood pressure-lowering
synergistic effect of ARB and dapagliflozin resulted from increased sodium excretion. Indeed,
the telmisartan and dapagliflozin combination group showed increased sodium excretion and
decreased blood sodium concentration. In contrast, the combined use of fimasartan and
candesartan did not decrease blood sodium concentration and, in particular, reduced sodium
excretion by dapagliflozin at low concentrations. Assuming the differences among ARBs are
due to differences in binding with SGLT2, a molecular docking study was conducted. The
results showed that telmisartan not only has the highest binding affinity for SGLT2 among the
ARBs but also binds to SER156, TRP440, VAL 443, ALA447, LEU452, TYR455, PHE 504,
and SERS508, which are the dapagliflozin binding sites; suggesting that telmisartan could

provide additional inhibition of SGLT2. Unlike dapagliflozin and telmisartan, candesartan and
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fimasartan were shown to bind commonly to ALA90, SER91, CYS255, ARG336, VAL359,
GLY360, GLY450, ASP454, and SER510. On the other hand, when dapagliflozin was pre-
bound, the three ARBs exhibited significantly different patterns from the essential binding,
making it difficult to ascertain the impact of specific binding changes. Especially when
dapagliflozin was pre-bound, telmisartan formed new hydrogen bonds with the GLY507 and
GLUS503 residues of SGLT2. These molecular interaction changes might contribute to the
altered SGLT2 function, particularly when dapagliflozin and telmisartan are co-administered.
Future research should investigate the impact of these hydrogen bonds between pre-bound

dapagliflozin and telmisartan on SGLT?2 function.

In summary, results showed that fimasartan and candesartan inhibited the dapagliflozin-
induced decrease in SGLT2 expression and the subsequent reduction in blood glucose and
sodium. Although no specific reasoning has been given for this occurrence, it's possible that
there were compensatory changes in blood glucose due to the short-term administration.
Moreover, the distinctive ways these two drugs bind to SGLT2 and dapagliflozin should also
be considered. Conversely, telmisartan not only decreased blood sugar alone, but when
combined, it also demonstrated a synergistic effect on sodium excretion. This effect is partially
due to the efficacy similar to dapagliflozin in inhibiting SGLT2 and reducing its expression.
Considering that telmisartan was the drug that showed the most effective blood pressure
reduction in part 1, the primary mechanism of synergy between these two drugs for blood
pressure reduction may be the excretion of sodium and glucose. However, when choosing the
drug for combination therapy, selecting drugs with a common mechanism of action is typically
avoided. Therefore, these results should be considered when deciding on combining these two

drugs in clinical practice.

As previously mentioned, a significant complication of diabetes is DKD, and its management
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involves controlling blood glucose and blood pressure using RAAS inhibitors [41]. Therefore,
we investigated the effects of the ARBs on the expression of NHE-1, a well-known target
molecule of dapagliflozin, and urinary protein, a representative indicator of glomerular
damage. NHE-1 is the most widely distributed NHEs within the kidney, including plasma
membrane expression in all nephron segments, except for dense plaques and interstitial cells
in the distal nephron [253]. Interestingly, while it's widely recognized that excessive NHE-1
can adversely affect the heart and blood vessels, studies on renal effects are somewhat limited
[254, 255]. The role of renal NHE-1 varies depending on the disease modality. Reports suggest
that NHE-1 inhibitors improve renal blood flow, whereas loss of NHE-1 function exacerbates
apoptosis [256, 257]. This might be partial because NHE-1 activation is responsible for the
initial defense against apoptosis through preserving cell volume. Indeed, proximal tubular cells
exposed to staurosporine-induced apoptotic stress initially show increased NHE-1 activity
[258]. However, in general, NHE-1 is implicated in the pathogenesis of type 1 diabetes [259]
and is known to be significantly increased in models of glomerulosclerosis and fibrosis [260,
261]. There's evidence that NHE-1 inhibitors reduce aldosterone-induced glomerulosclerosis
[262]. Therefore, some reports suggested that NHE-1 can be used to predict renal fibrosis [263].
GFR and urinary protein, markers of glomerular damage, and ion channels primarily involved
in renal fibrosis often precede GFR damage and may not be suitable markers of fibrosis [263,
264]. Hence, in this study, we interpreted changes in NHE-1 expression as an index of renal
fibrosis. Our results show that dapagliflozin significantly reduced renal NHE-1 expression
levels; however, there was no significant effect on the urinary protein. Several studies have
reported that dapagliflozin may improve eGFR but not proteinuria [265, 266]. Conversely, in
animal models of nephropathy with proteinuria, dapagliflozin improved proteinuria at levels
similar to commonly used ACE inhibitors, and glomerular lesions improved [267]. There are

reports that dapagliflozin shows a more remarkable improvement in eGFR in a high sodium
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intake state, suggesting that the decrease in plasma sodium in the previous SGLT2 study might

have influenced these results [268].

On the other hand, fimasartan and candesartan reduced both renal NHE-1 expression and
urinary protein and kidney weight (Supplementary Figure 12F). Fimasartan has been shown
to reduce methotrexate-induced renal toxicity significantly, and according to the K-MetS study,
it resulted in a better albumin-to-creatinine ratio reduction in patients with metabolic syndrome
[269, 270]. Candesartan has also been shown to reduce proteinuria in patients with diabetic
nephropathy [271, 272]. ARBs are primarily used to reduce the risk of CKD by controlling
hemodynamic abnormalities [273]. Moreover, Ang2 has been reported to increase NHE-1
activity, and losartan has been demonstrated to decrease NHE-1 activity [274, 275]. Hence,
the reduction in urinary protein and the decrease in NHE-1 as an index of fibrosis by the ARBs

fimasartan and candesartan are confirmed as inherent effects of these drugs.

Furthermore, our results showed a synergistic effect of fimasartan and candesartan with
dapagliflozin in reducing proteinuria. According to some studies, the combination treatment
of a RAAS inhibitor and SGLT2 inhibitors in albuminuria CKD patients without diabetes is
expected to significantly increase renal failure-free survival [276]. In a study involving 1,757
patients, combination therapy of an SGLT2 inhibitor and ACE inhibitors/ARBs in type 2
diabetes was more effective and better tolerated than monotherapy [42]. It showed better blood
pressure control, improved renal outcomes, and reduced long-term renal function. Therefore,
combining fimasartan and candesartan with dapagliflozin is expected to offer potential

benefits in protecting vascular and renal function.

Meanwhile, when fimasartan and candesartan combined with dapagliflozin, demonstrated a
significant decrease in NHE-1 expression in both the aorta and the heart (Supplementary

Figure 18 and 19). NHE-1 is implicated in IgE-mediated macrophage protease expression,
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extracellular acidification, apoptosis, lesional smooth muscle cell loss, endothelial cell
adhesion molecule expression, and inflammatory cell infiltration in an Ang2-induced
abdominal aortic aneurysm model [277]. Moreover, Ang2 has been reported to increase the
expression of NHE-1 in the cardiovascular system and directly impair vascular function [134,
210]. In atherosclerotic lesions, NHE-1 is reported to promote atherogenesis via acidification
of the lesion [254]. The inhibition of NHE-1 has been associated with potential protective
effects, such as reducing endothelial cell and monocyte adhesion, decreasing ICAM
expression under high glucose conditions, and alleviating Ach-dependent vascular relaxation
disorders in diabetic models [278, 279]. Therefore, dapagliflozin's central cardiovascular
protective mechanism is considered to be its inhibitory effect on NHE-1 across various tissues
[124, 280]. Indeed, dapagliflozin has been reported to reduce myocardial hypertrophy through
NHE-1 inhibition and decrease mortality in patients with chronic heart failure when
administered with valsartan [281, 282]. In other words, the partial synergistic effects on
vascular function protection and inflammation reduction, mainly when dapagliflozin is
combined, may be attributed to the decrease in NHE-1. In contrast, telmisartan decreased renal
NHE-1 expression and urinary protein, but these effects were attenuated when co-administered
with dapagliflozin. A possible mechanism for this is an increase of sodium and water
transporters in diabetic kidneys as a compensatory mechanism for preserving excessive loss
[283, 284]. This means the combined administration of high concentrations of telmisartan and
dapagliflozin can not only inhibit SGLT2 activity but also decrease its expression, and the
excretion of excess glucose and sodium and the increase in urine volume may have increased
the expression of NHE-1. Considering that the imbalance of various ion channels is involved
in the aforementioned renal fibrosis, and an increase in NHE-1 can use to indicator of fibrosis,
this hypothesis gains more clarity [263]. Indeed, the combination of fimasartan and

candesartan, which did not affect SGLT2, reduced NHE-1 expression.
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Another possibility for this is the known side effect of SGLT2 inhibitors, diabetic ketoacidosis
(DKA), which is thought to be due to the decrease in blood glucose caused by SGLT2
inhibition, the decrease in insulin, and increased glucagon levels [285]. Concurrently, some
research indicates that ARBs can modulate the activation or inhibition of renal uric acid
transporter (URAT1)-mediated uric acid uptake differentially, depending on its concentration
[286, 287]. For instance, it has been documented that combining telmisartan with HCTZ can
lead to diminished urate excretion and increased serum urate concentrations [140]. Moreover,
numerous evidences suggest that DKA induces metabolic acidosis, which could, in turn,
influence the activity of NHE-1, and elevated uric acid can affect NHE-1 [130, 288, 289]. This
potential mechanism could contribute to the onset of renal disease in hypertension and diabetes.
Hence, the observed decline in renoprotective efficacy and the upregulation of NHE-1 in the
dapagliflozin-telmisartan combination group could stem from the interaction of the side effects
of both drugs. Nevertheless, a more comprehensive investigation is warranted to elucidate the
direct relationship between DKA, serum urate, and NHE-1 activity or expression. Also, NHE-
1, known to regulate intracellular pH by exchanging extracellular sodium with intracellular
hydrogen ions, operates in a sodium concentration-dependent manner [129]. Consequently, a
reduction in sodium due to SGLT?2 inhibition could compromise the functionality of NHE-1.
Although no direct interaction between SGLT2 and NHE-1 is currently known, the obliteration
of the sodium gradient via Na-K-ATPase disruption could hinder NHE's function, culminating
in renal tubular nephropathy and sodium deficiency [135, 290]. It has also been reported that
this phenomenon can elevate the expression and activity of NHE3 in the intestine [290]. Thus,
the concurrent inhibition of SGLT2 by high concentrations of telmisartan and dapagliflozin
could induce alterations in the body's sodium balance. This change could subsequently

indirectly impact the expression and activity of NHE-1 in the kidney.

In summary, fimasartan and candesartan demonstrated significant renoprotective efficacy, with
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some synergistic effects when used with dapagliflozin. This outcome stems from the
combination of the inherent renoprotective effects of ARBs and the well-documented benefits
of dapagliflozin. Conversely, while telmisartan exhibited exceptional renal protection when
combined with dapagliflozin, it increased kidney weight, urinary protein, and NHE-1
expression compared to the groups receiving individual treatments. This outcome is partially
attributed to the electrolyte imbalance caused by the mutual inhibition of SGLT2 by the two

drugs, which likely affected renal ion channels.
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Figure 37. The glucose/sodium regulation and renoprotective effects of dapagliflozin and

ARBs.
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CONCLUSION

In summary, dapagliflozin demonstrated significant vasorelaxation and eNOS activation,
though it exhibited limited blood pressure reduction and binding affinity to AT1. While the
blood pressure-lowering capacities of the three ARBs investigated were comparable,
telmisartan displayed a notable synergistic effect when combined with dapagliflozin and had
the highest binding affinity for AT 1. Fimasartan shows less than others, but vasorelaxation was
increased in all ARBs when combined with dapagliflozin. Telmisartan demonstrated minor
eNOS activation than other ARBs, and when fimasartan and candesartan upon co-treatment
with dapagliflozin, eNOS activation was increased. These findings suggest that the
enhancement in blood pressure control observed in the combination is likely due to
vasorelaxation effects and eNOS activation by dapagliflozin. By introducing an additional
vasorelaxation mechanism, the combination of these two medications may be beneficial in

controlling blood pressure in patients exhibiting a poor response to RAAS inhibition.

Dapagliflozin enhanced the Ach-induced vasorelaxation in the aorta of aged SHR. While
combination therapy with dapagliflozin improved results over the control group and displayed
a decreased ECso than monotherapy. Regarding the interactions of inflammatory molecules,
fimasartan inhibited the pathway that led to ICAM-1/iNOS/COX-2, whereas candesartan and
dapagliflozin, particularly when combined, reduced the pathway Ileading to NF-
kB/NLRP3/caspase-1. In conclusion, combining fimasartan and candesartan with
dapagliflozin can benefit patients with impaired vascular function and inflammation.
Specifically, fimasartan demonstrated inhibition of inflammatory responses in macrophages,
therefore, may prove beneficial in mitigating various complications associated with
inflammation. Expression and activation of Nrf2 were most significantly enhanced when

treated with telmisartan and dapagliflozin combination in both aortic and endothelial cells.
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Conversely, NOX expression and ROS production most significantly decreased when
candesartan and dapagliflozin were co-administered. Therefore, the combination of
dapagliflozin and ARBs have a synergistic effect on the inhibition of ROS, and it can offer
benefits in preventing various complications associated with oxidative stress. The autophagy
activity, leading to activation of LC3 and reduction of p62, showed the most significant
increase in the aorta of the candesartan and dapagliflozin combination group and endothelial
cells of the telmisartan and dapagliflozin co-treatment group. Therefore, the combination
therapy of dapagliflozin with candesartan or fimasartan would be appropriate for patients with
vascular dysfunction and inflammation. Moreover, combination therapy of dapagliflozin with
either candesartan or telmisartan is more suitable for patients with excessive oxidative stress
and autophagy impairment. In summary, the combination of ARB, specially candesartan and
dapagliflozin, is projected to provide significant benefits as an alternative treatment for

vascular dysfunction that can occur in both hypertension and diabetes.

Dapagliflozin increased urine output and water intake, and conversely, no significant effect
was observed in the ARB alone group; however, when combined with dapagliflozin, water
intake and urine volume were increased. In the context of SGLT2 inhibition, dapagliflozin
elevated urinary glucose and sodium levels while decreasing blood glucose and sodium.
Conversely, the ARB-only group tended to decrease both urinary and blood glucose levels;
however, when dapagliflozin was co-administered with an ARB, urinary glucose levels were
increased beyond those of the dapagliflozin monotherapy group. Nevertheless, blood glucose
levels did not differ significantly from the ARB alone group. This suggests that an additional
blood glucose control mechanism, other than urinary glucose excretion, may be operative. All
ARBs were not markedly affecting urinary and blood sodium levels, but notably, when
telmisartan was combined with dapagliflozin, sodium contents were increased in urine sodium

and decreased in blood. Telmisartan also showed SGLT2 reduction both as a single and in the
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combination group and offered the highest binding affinity with SGLT2. Thus, in patients with
high levels of hyperglycemia and hypertension, the combination of telmisartan and
dapagliflozin may synergistically affect blood glucose control through glucose excretion and
blood pressure control by reducing sodium and fluid. However, drugs with accordant
mechanisms are generally not recommended for combination due to potential risks and side
effects. Therefore, further studies are warranted investigating the risks of combining these two

drugs.

Urinary protein, a key indicator of kidney damage, was not reduced by dapagliflozin but was
significantly decreased in all ARB groups. Notably, combining dapagliflozin with either
fimasartan or candesartan resulted in a considerably lower urinary protein level than each
monotherapy group. In contrast, telmisartan alone demonstrated the lowest urinary protein
levels among ARBs, but when combined with dapagliflozin, these levels increased relative to
the telmisartan-alone group. The expression of NHE-1, another established target protein of
dapagliflozin and an indicator of renal fibrosis, decreased with both dapagliflozin and ARBs.
When combined with dapagliflozin, candesartan exhibited an additional decrease compared to
the monotherapy group, while telmisartan displayed an increase. In summary, fimasartan and
candesartan showed renoprotective effects when combined with dapagliflozin. A combination
of telmisartan and dapagliflozin demonstrates a potent blood glucose-lowering effect but
cannot exhibit a renal protective effect. Therefore, since the combined use of telmisartan and
dapagliflozin cannot reduce the renal impairment factors relative to the monotherapy group of
each drug, it is suggested that their usage be limited in patients at risk of renal failure. On the
other hand, fimasartan and candesartan showed additional reductions in kidney damage factors
when combined with dapagliflozin, highlighting their potential as a new therapeutic

combination targeting kidney disease.
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These observed interactions and the variable mechanisms among ARBs offer invaluable
insights for drug selection in combination therapy. However, the current results are derived
from a murine model, emphasizing the need for further clinical studies in humans to
corroborate their safety and efficacy. Additionally, as our study only investigated acute
responses through short-term administration, future research should explore the response

changes upon long-term administration.

In conclusion, while telmisartan exhibited potent blood pressure and blood sugar reduction, its
overlapping inhibition of SGLT2 with dapagliflozin suggests carefully considering its usage
as a concomitant drug. Candesartan demonstrated superior vascular and renal protection when
combined with dapagliflozin, yet its synergy for blood pressure reduction was somewhat less
potent than the other two ARBs. Conversely, the combination of fimasartan and dapagliflozin
exhibited synergistic effects in blood pressure reduction, vascular protection, and renal
protection, thereby suggesting its potential as a new combination drug to deliver multifaceted
benefits to patients with hypertension, diabetes, and resultant vascular dysfunction and renal

failure.
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Supplementary Figure 1. Effects of fimasartan and dapagliflozin on heart rate, body

weight, and water intake in SHR.

All experimental animals were orally administered the drugs once a day for two weeks. Heart rate (A) was measured
one hour after drug administration every three days. Body weight (B) was measured daily during the test period,
and water intake (C) was measured every two days. Changes in heart rate, body weight, and water intake were
followed for an additional seven days after the end of drug administration (Rel-7). All data are expressed as mean

sk Kok

+ standard error mean. * means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to
the control group. ® % 3% means a significant difference at the p < 0.05, 0.01, and 0.001 level exists between the

same dose of the combined group and the single administration group. *# means a significant difference between

the low and high concentration groups at the p < 0.05 and 0.01 levels.
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Supplementary Figure 2. Effects of telmisartan and dapagliflozin on heart rate, body

weight, and water intake in SHR.

All experimental animals were orally administered the drugs once a day for two weeks. Heart rate (A) was measured
one hour after drug administration every three days. Body weight (B) was measured daily during the test period,
and water intake (C) was measured every two days. Changes in heart rate, body weight, and water intake were
followed for an additional seven days after the end of drug administration (Rel-7). All data are expressed as mean
+ standard error mean. “ ™ *** means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to

the control group. * %% %% means a significant difference at the p < 0.05, 0.01, and 0.001 level exists between the

same dose of the combined group and the single administration group.
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Supplementary Figure 3. Effects of candesartan and dapagliflozin on heart rate, body

weight, and water intake in SHR.

All experimental animals were orally administered the drugs once a day for two weeks. Heart rate (A) was measured
one hour after drug administration every three days. Body weight (B) was measured daily during the test period,
and water intake (C) was measured every two days. Changes in heart rate, body weight, and water intake were
followed for an additional seven days after the end of drug administration (Rel-7). All data are expressed as mean

sk Kok

+ standard error mean. * means a significant difference at the p < 0.05, 0.01, and 0.001 levels compared to
the control group. ® % 3% means a significant difference at the p < 0.05, 0.01, and 0.001 level exists between the

same dose of the combined group and single administration group.
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Supplementary Figure 5. The binding interaction of angiotensin receptor typel and

dapagliflozin.

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and
hydrophobic bonds contributing to the stability of the complex. (D) shows the hydrogen and hydrophobic bonds of
dapagliflozin to AT1 bound to fimasartan. (E) shows the hydrogen and hydrophobic bonds of dapagliflozin to AT1

bound to telmisartan. (F) shows the hydrogen and hydrophobic bonds of dapagliflozin to AT1 bound to candesartan.
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Supplementary Figure 6. The binding interaction of angiotensin receptor typel and

fimasartan

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and

hydrophobic bonds contributing to the stability of the complex.
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Supplementary Figure 7. The binding interaction of angiotensin receptor typel and

telmisartan

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and

hydrophobic bonds contributing to the stability of the complex.
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Supplementary Figure 8. The binding interaction of angiotensin receptor typel and

candesartan

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and

hydrophobic bonds contributing to the stability of the complex.
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Supplementary Figure 9. Cell viability of ARBs and dapagliflozin treated EA. hy926 cells.

The cell viability of EA. hy926 cells were detected by MTT assay. The fimasartan (A and B), telmisartan (C and
D), candesartan (E and F), and dapagliflozin were treated to EA. hy926 cells for 24 hours with or without L/CM.
All values were calculated and expressed in percentages relative to the control. D, dapagliflozin; F, fimasartan; T,

telmisartan; C, candesartan.
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Supplementary Figure 10. Effects of ARBs and dapagliflozin on p38MAPK expression in

aged SHR.

Male spontaneously hypertensive rats (SHRs) over 60 weeks of age received oral administration of the drugs for
one week. After one week of drug administration, the experimental animals were euthanized using CO2 gas, and
aorta proteins were extracted for performing western blotting. Western blot images were visualized using the
ChemiDoc system. The expression levels of p38 MAPK were normalized by B-actin. The relative ratio was

calculated based on the control group. All data are expressed as mean + standard error mean.
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Supplementary Figure 11. Effects of ARBs and dapagliflozin on Water intake, food

intake and body weight in aged SHR.

Male SHRs over 60 weeks were placed in metabolic cages of age and received oral administration of the drugs for
one week. Water intake (A), food intake (B), and body weight (C) were measured one week after drug

kkk kkok
B

administration. All data are expressed as mean =+ standard error mean. ™ means a significant difference at the
p <0.05, 0.01, and 0.001 levels compared to the control group. ¥ means a significant difference at the p < 0.01

level compared to the dapagliflozin alone group

149



50 (A)

13

Py 3
£ 8
3 HE

-
Bz w0 5
Tz B2

*

;3 §:n 1 = I _"I.'_'j:_ =S -
- -1
Ef 10 =8
JE =g 1
-} o
&, g, L — — — — L

Cat D FO FH LD FED TL TH TID THD (1L ¢H 1D (HD
15
®

10

Lung welght

(mg organ / g body weight)
Heart welght

(mg organ / g body welght)

2 i E—

L]
Cat D FL FH FID FHD TL TH TID THP (1 <H 1D (HD

o

k]

1

Brain weght
(mg organ / g body weight)
Kidney weight
{mg organ / g body weight)

[E
Cet D Fr FTH FID FAD TL TH TID THd (L CH (D CHD Cwt D FL FH FID FED TL TH TID THD CL CH CID ¢HD

Supplementary Figure 12. Effects of ARBs and dapagliflozin on organ index in aged SHR.

Male SHRs over 60 weeks were placed in metabolic cages and received oral administration of the drugs for one
week. After one week of drug administration, the experimental animals were euthanized using COz gas. The organ
index was calculated by dividing the weight of the liver (A), lung (B), brain (C), spleen (D), heart (E), and kidney
(F) by the body weight of the animal. All data are expressed as mean + standard error mean. " means a significant

difference at the p < 0.05 and 0.01 levels compared to the control group.
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Supplementary Figure 13. The binding interaction of SGLT2 and dapagliflozin

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and

hydrophobic bonds contributing to the stability of the complex.
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Supplementary Figure 14. The binding interaction of SGLT2 and fimasartan

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and
hydrophobic bonds contributing to the stability of the complex. (D) shows the hydrogen and hydrophobic bonds of

fimasartan to SGLT2 bound to dapagliflozin.
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Supplementary Figure 15. The binding interaction of SGLT2 and telmisartan

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and
hydrophobic bonds contributing to the stability of the complex. (D) shows the hydrogen and hydrophobic bonds of

telmisartan to SGLT2 bound to dapagliflozin.
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Supplementary Figure 16. The binding interaction of SGLT2 and candesartan

Figures presented a comprehensive visualization of molecular docking study: (A) shows the docking simulation,
(B) details the ligand's binding form and site within the target protein, and (C) highlights the hydrogen and
hydrophobic bonds contributing to the stability of the complex. (D) shows the hydrogen and hydrophobic bonds of

candesartan to SGLT2 bound to dapagliflozin.
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Supplementary Figure 17. Effects of ARBs and dapagliflozin on SGLT2 and NHE-1
expression in ACHN cells.

ACHN cells were treated with drugs for 24 hours, and protein was extracted for western blotting. Western blot
images of SGLT2 and NHE-1 were visualized using the ChemiDoc system (A). The expression levels of SGLT2
(B) and NHE-1 (C) were normalized by B-actin. The relative ratio was calculated using the control (-/-). All data

are expressed as mean =+ standard error mean. “ ** means there is a significant difference at the p < 0.05 and 0.01

levels compared to the control group.
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