

석사학위논문

GeoGebra를 활용한 고등학교 수치해석 교수·학습 자료 개발 및 적용

제주대학교 교육대학원

수학교육전공

신 형 철

2023년 8월

GeoGebra를 활용한 고등학교 수치해석 교수·학습 자료

개발 및 적용

지도교수 박 한 철

신 형 철

이 논문을 교육학 석사학위 논문으로 제출함

2023년 8월

신형철의 교육학 석사학위 논문을 인준함

심사위	Ⅰ원장	오 준 석	(서명)
위	원	이 경 언	(서명)
위	원	박 한 철	(서명)

제주대학교 교육대학원

2023년 8월

< 초록 >

GeoGebra를 활용한 고등학교 수치해석 교수·학습 자료 개발 및 적용

신 형 철

제주대학교 교육대학원 수학교육전공

지도교수 박 한 철

본 연구는 GeoGebra를 활용한 수치해석 교수·학습 자료를 개발하고, 이를 수업에 적용 후 학생들이 수치해석을 통해 실생활 문제를 탐구한 뒤, 결과 분석을 통해 학 생들에게 다양한 상황의 문제를 해결할 수 있는 역량을 길러주는 것에 목적을 둔 다. 이러한 목적을 달성하기 위해 본 연구는 다음과 같은 연구 문제를 설정하였다.

1. 수치해석을 이용한 교수·학습 자료를 개발한다. 이때, 반복적인 계산은 GeoGebra를 활용한다.

2. 개발한 교수·학습 자료를 적용한 후, 학생의 활동 및 결과물을 분석한다.

본 연구의 결과는 다음과 같다.

첫째, 본 연구로 개발된 교수·학습 자료는 학생들이 수치해석을 이해하고 실제 사 용하는 것의 숙달에 효과적임을 알 수 있었다.

둘째, 이 자료는 학생들이 GeoGebra의 다양한 사용법을 익히고 숙달하는 데 도움 을 주었다.

셋째, 이 자료는 학생들의 수학에 대한 흥미를 높여주고, 학생들의 현실에 있는 문제를 해결할 수 있는 문제 해결력을 신장시키는 데 도움을 주었다.

I	. 서론 ······	1
	1. 연구의 필요성 및 목적	1
	2. 연구 문제	2
	3. 연구의 기대효과	2

II	. 이론적 배경	• 3
	1. 수치해석	• 3
	2. 뉴턴법	• 3
	3. 미분방정식	• 4
	4. GeoGebra ······	· 6

III	. 연구 방법	• 7
	1. 연구 대상	• 7
	2. 교수·학습 자료 개발	• 7
	3. 수업 소재 및 수업 절차	• 8
	4. 분석 방법	10

IV. 🤉	연구 결과		•••••	•••••	 1
1.	교수·학습	읍 자료 개발	발		 1
	1) 1차시	교수·학습	자료 및	지도방안	 1
	2) 2차시	교수·학습	자료 및	지도방안	 2
	3) 3차시	교수·학습	자료 및	지도방안	 7
	4) 4차시	교수·학습	자료 및	지도방안	 2
	5) 5차시	교수·학습	자료 및	지도방안	 7

2. 학생 활동 및 결과물 분석
1) 학생 활동 결과물
2) 학생 활동 결과물 분석
V. 결론 및 제언
1. 결론
2. 제언
VI. 참고문헌
부록

<그림	1> 입력창에 함수 입력	13
<그림	2> 슬라이더 구성	14
<그림	3> 스프레드 시트 설정	14
<그림	4> 시행 결과	15
<그림	5> 해 리스트	16
<그림	6> 시행 횟수에 따른 최대오차와 실제 오차 비교하기	16
<그림	7> 스프레드 시트 1, 2행 구성	19
<그림	8> 스프레드 시트 3행 구성	20
<그림	9> '근(<i>f</i> (<i>x</i>))' 입력 결과	20
<그림	10>'x(A)'입력 결과	21
<그림	11> 시행에 따른 오차 결과	21
<그림	12> 스프레드 시트 4행 구성 결과	25
<그림	13> $f(x)$ 의 그래프와 수치해석을 통해 구한 그래프	26
<그림	14> B3 논리 입력	29
<그림	15> 수치해석을 통해 구한 $f(x)$ 와 $y=37$ 과의 교점	30
<그림	16> 이분법 결과물	32
<그림	17> 뉴턴법 결과물	32
<그림	18> 수치미분 결과물	33
<그림	19> 뉴턴의 냉각법칙 결과물	33
<그림	20> <u>2</u> <u>3</u> 분법을 이용한 근사해 구하기 학생 결과물	34
<그림	21> 실제 데이터 수집 장면(1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35
<그림	22> 실제 데이터 수집 장면(2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35
<그림	23> 실제 데이터와 뉴턴의 냉각법칙을 통해 구한 데이터 비교	36

<그림	24>	학생 성찰 결과	36
<그림	25>	SEIR 모델 결과물	37
<그림	26>	영화 속 장면 분석 결과	38

I. 서론

1. 연구의 필요성 및 목적

학교 현장에서 수학은 학년이 올라갈수록, 실용적인 의미에서 추상적인 의미로 발전되어간다. 특히, 고등학교 수학은 교과서를 보면 '탐구하기, 생각과 활동' 등 개념의 도입 부분에서 수학이 활용되는 실생활 예시를 제시하며 학생들의 흥미 를 높이려 하고 있으나, 결국 학생들은 개념을 학습한 이후에 이를 적용한 예제 문제, 연습문제를 푸는 것으로 귀결된다. 이로 인해, 현실과 수학, 수학과 실생활 사이의 괴리감을 경험하게 되고 만다.

2015 개정 교육과정에서는 창의적 사고 역량과 지식정보처리 역량 등을 활용 하여 다양한 분야의 지식을 융합하고, 새로운 것을 창출하며 문제를 합리적으로 해결하도록 요구하고 있다. 특히 고등학교 교육의 목표로 다양한 지식과 경험을 융합하여 창의적 문제해결과 새로운 상황에 능동적으로 대처할 수 있는 능력을 강조한다. 이러한 요구를 실현하기 위해 교사는 수업을 구성하여 학생들에게 제 공하지만, 교과서를 중심으로 한 수업으로 2015 개정 교육과정이 요구하는 역량 을 길러내기에는 제한적일 수밖에 없다.

한편, 미적분의 경우 물체의 운동, 온도의 변화 등 다양한 변화를 다룰 수 있 는 고등학교 수학 내용 요소이다. 하지만 미분을 학습하기 위해서는 선수학습 요 소인 극한을 학습해야만 하고, 해당 개념이 추상적이기에 학생들의 이해를 돕기 위해 수치적인 방법을 활용하곤 한다. 하지만 이 방법은 극한의 이해를 돕기 위 한 도입 부분에서만 활용될 뿐, 실제 미분과 적분을 할 때, 수치적인 방법을 활 용하여 학생들을 지도하지는 않는다. 또한, 미분과 적분이 실생활에 활용되는 여 러 상황은 단순한 미분과 적분의 계산으로 표현되는 상황이 아니라, 고등학교 교 육과정에 포함되어 있지 않은 미분방정식까지 필요한 경우가 부지기수다.

따라서 본 연구는 극한 개념의 이해를 돕기 위해 활용한 수치적인 방법을 미 분과 적분 등 고등학교 수학에 적용한 교수·학습 자료를 개발하고, 이를 수업에 적용 후 학생들이 수치해석을 활용하여 실생활 문제 상황을 해결하도록 할 것이

> 제주대학교 중앙도서관 JEJU NATIONAL UNIVERSITY LIBRARY

- 1 -

다. 또한 실생활 문제 상황을 탐구하는 과정에서 변화를 표현하는 미분방정식이 나올 경우, 수치해석을 이용하여 근사해를 구하고자 한다. 이때, 많은 양의 단순 계산은 GeoGebra의 스프레드시트 기능을 활용하여 해결하고자 한다. 이를 통해 2015 개정 교육과정이 요구하는 다양한 상황에서 문제를 해결하는 능력을 갖춘 학생으로 성장시키고자 하는 목적을 성취하고자 한다.

2. 연구 문제

본 연구는 고등학교 수준의 미분과 적분 등을 학습한 학생을 대상으로 하여 수 치해석을 이용한 방법으로 미분과 적분을 지도한 뒤 수치해석을 통해 실생활 문 제를 탐구하며 해당 과정에서의 연구 문제는 다음과 같이 설정하였다.

가. 수치해석을 이용한 교수·학습 자료를 개발한다. 이때, 반복적인 계산은 GeoGebra를 활용한다.

나. 개발한 교수·학습 자료를 적용한 후, 학생의 활동 및 결과물을 분석한다.

3. 연구의 기대효과

본 연구는 2021학년도 읍·면 지역에 있는 고등학교 2학년 학생들을 대상으로 실 시하였다. 이에 동 지역 일반계 고등학교보다 학생들의 학업성취 수준이 상대적 으로 낮은 편에 속한다. 따라서 본 연구를 동 지역 일반계 고등학교 학생들에게 도 충분히 적용할 수 있을 것이라 기대한다.

Ⅱ. 이론적 배경

1. 수치해석

수치해석이란 함수나 방정식의 해를 수치적으로 계산하여 근삿값을 구하는 것을 말한다. 이러한 방법은 고등학교 과정에서 배우는 인수분해, 조립제법, 근의 공식 으로 해결하기 어려운 방정식을 해결하는 하나의 방법이다.

2. 뉴턴법

뉴턴법은 수치해석의 한 방법으로 뉴턴-랩슨 반복법(Newton-Raphson iteration) 이라고도 불린다.

함수 f가 미분 가능하다고 할 때, f의 그래프 위의 한 점 $(x_0, f(x_0))$ 에 접선이 존재하면, 이 접선은 접점 근처의 함수의 곡선에 대한 근사로 볼 수 있다. 즉, x_0 근방에서 다음과 같은 함수가 f와 가깝다는 뜻이다.(Ward Cheney & David Kincaid, 2013)

$$l(x) = f'(x_0)(x - x_0) + f(x)$$

따라서 f의 근에 대한 근사해로 l(x)의 근을 택하며, 그 근은 다음과 같다.

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

이를 통해 x_1 을 얻어내면, 위의 과정을 반복하여 다음과 같은 값들을 얻어낸다.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}, \ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}, \ \cdots$$

위와 같은 방법은 미분방정식까지 확장하여 적용할 수 있는 수치해석 분야에서 상당히 중요한 방법이기도 하다.

3. 미분방정식

미분방정식(Differential equation)이란 하나 또는 둘 이상의 독립변수에 대해, 하 나 또는 그 이상의 미지의 함수(또는 종속변수)의 도함수를 포함하는 방정식을 말한다.(Dennis G. Zill, 2013)

이때, 하나의 독립변수에 대해 하나 또는 그 이상의 미지의 함수의 상도함수 (ordinary derivatives)만을 포함하는 방정식을 상미분방정식(ordinary differential equation, 이하 ODE), 두 개 또는 그 이상의 독립변수에 대해 하나 또는 그 이상 의 미지의 함수의 편도함수를 포함하는 방정식을 편미분방정식(Partial differential equation, 이하 PDE)라고 한다.(Dennis G. Zill, 2013)

실생활에서 다룰 수 있는 미분방정식의 예를 몇 가지 소개한다.

1) 뉴턴의 냉각법칙

$$\frac{dT}{dt} = -k(T - T_r), \ (T: \text{esc}, t: \text{시간}, k: \text{비례상수}, \ T_r: \text{주변온도})$$

위 식은 하나의 독립변수 시간 t에 대해, 하나의 상도함수를 갖는 1계 상미분방 정식이다. 고등학교 교육과정에서는 다루지 않는 내용이지만 특정 조건과 초기값 이 주어졌을 때, 수치해석을 이용하여 조건을 만족시키는 근사해를 구하고자 한 다.

제주대학교 중앙도서관

2) SEIR 모형(전염병 확산 설명 모형)

개체군을 *S, E, I, R(S*: 감염대상군, *E*: 접촉군, *I*: 감염군, *R*: 회복군)의 네 그룹 으로 나눌 때,

$$S + E + I + R = 1$$
$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dE}{dt} = \beta SI - aE$$
$$\frac{dI}{dt} = aE - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

을 만족한다. 이는 상미분방정식(ODE)이며, 이때, t: 시간, β: 감염률, γ: 회복률, $\frac{1}{a}$: 평균 지연 시간을 의미한다.(Junling Ma, 2020)

위의 상미분방정식은 COVID-19 전염병이 확산 정도를 예측할 때 활용 가능하 며, 조건과 초기값이 주어졌을 때, 수치해석을 이용하여 확산 정도를 구하고, 이 를 실제 전염병의 확산 정도와 비교하였다.

4. GeoGebra

수학교육용 소프트웨어인 GeoGebra에 대한 소개는 다음과 같다.

GeoGebra는 기하, 대수, 스프레드시트, 그래프, 통계, 미적분을 하나의 소프트웨 어로 통합하는 다양한 수준의 교육을 위한 수학교육용 소프트웨어이다. 본 연구에서는 학생들이 해결하기 복잡한 방정식의 근사해, 미분방정식 등을 수 치해석으로 해결하는 과정에서 필요한 반복적인 계산을 스프레드시트로 해결할 것이다. 또한 GeoGebra의 애니메이션 기능을 이용하여 수치해석을 통해 얻은 결 과를 좌표평면상에 구현함으로써, 결과가 갖는 의미를 기하적으로 확인하고자 한 다.

GeoGebra의 교육적 활용에 대해 양성현(2012)은 이렇게 설명하였다.

GeoGebra를 활용한 실험적 수업은 시각적 표상을 극대화하여 학생들의 이해를 높임과 동시에 수학에 대한 심미성을 증대시켜, 수학의 내적·외적 연결성을 증진 시키는 역할을 할 수 있다. 또한 대수적 설명을 기하를 이용해 시각적으로 설명 함으로써 대수와 기하의 다면적 이해를 촉진할 수 있다.

Ⅲ. 연구 방법

1. 연구대상

본 연구는 2021학년도 읍·면 지역에 있는 고등학교 2학년 학생들을 대상으로 2015 개정 교육과정 고등학교 수학Ⅱ 단원 중 'Ⅱ.미분'을 학습한 뒤 수행평가를 통해 실시하였다.

2. 교수·학습 자료 개발

컴퓨터를 이용한 수학 학습-지도 양식에는 개인교사형, 학생주도형, 보조도구형 의 세 가지로 분류된다. 본 연구자는 컴퓨터를 보조도구형으로 이용하고자 하며 그 장점으로 우정호(2010)는 다음과 같이 설명하였다.

수학 학습-지도에서의 이용범위가 가장 넓고, 연구와 개발이 가장 활발한 분
 야이다.

② 수학적 개념을 이해하는 데 반복적인 계산과정이 필요한 경우에 그러한 중간 과정을 신속하게 처리해 줌으로써 학생들이 학습 시간을 효율적으로 사용할 수 있게 해 준다.

③ 학교 수학에서 다룰 수 있는 문제의 영역을 확대하는 데 기여한다.

④ 산술적인 계산과 대수적인 문자식의 처리를 신속하게 수행해 줌으로써 관련
 된 수학적 사고 활동에 충실할 수 있게 해 준다.

⑤ 스프레드시트는 수 패턴을 조사하거나 문제해결 과정에서 얻어진 많은 자료 를 신속하게 처리하는 데 도움을 주며, 학교를 졸업한 후에도 적절하게 사용할 수 있다는 장점이 있다.

하지만 학생들이 기호 조작 기능을 충분히 숙달하기 전에 소프트웨어를 사용하 는 것은 오히려 학생들의 학습에 장애가 될 수 있다고 설명하였다.

- 7 -

이러한 점들을 고려하여 교수·학습 자료 개발 기준을 다음과 같이 선정하였다.

 학생들이 소프트웨어 조작 기능을 충분히 숙달할 수 있도록 기초 조작부터 쉽게 적용할 수 있는 문제부터 구성한다.

② 학생들의 성취 수준을 고려하여 쉬운 문제 상황부터 시작하여 실생활 예시 상황을 제시한다.

 ③ 실생활 예시 문제는 학생들의 현실에 와닿는 문제로 구성하며, 스스로 자신의 관심 분야에서 문제 상황을 인식하고, 모델링하여 문제를 해결할 수 있도록 하는 비계 역할이 가능한 문제를 제시한다.

 ④ 실생활 예시 상황을 제시한 뒤 교사와 함께 절차적 단계를 밟으며 문제를 해 결한다.

⑤ 복잡한 계산은 스프레드시트를 이용하여 해결하게 함으로써 공학적 도구 활용의 유용성을 인식하게 하여 실제적인 문제를 다룰 때, 복잡한 값의 처리가 학생들의 문제해결에 걸림돌이 되지 않음을 인식하게 한다.

3. 수업 소재 및 수업 절차

가. 1차시: GeoGebra의 기본적 조작 및 수식 입력 방법

GeoGebra를 이용한 활동을 하기 전 공학적 도구의 활용 목적과 이유에 대
 한 설명을 통해 학생들의 내적 동기를 유발해 효과적인 수업이 될 수 있도록 한
 다.

2) GeoGebra의 기본적인 조작 방법과 수식 입력 방법을 익힘으로써 앞으로 이 루어질 수업 과정 내에서의 GeoGebra의 능숙한 조작에 도움을 줄 것이다.

나. 2차시: 이분법을 이용한 방정식의 근 찾기

'함수 f(x)가 닫힌 구간 [a,b]에서 연속이고, f(a) ≠ f(b)이면 f(a)와
 f(b) 사이의 임의의 실수 k에 대하여 f(c) = k인 c가 열린 구간 (a,b)에 적어도
 하나 존재한다.'라는 사잇값 정리를 그래프를 이용해 설명하여 학생들의 직관적

이해를 돕는다.

2) 수치 해석적 방법인 이분법을 이용하여 인수분해, 근의 공식을 이용하여 찾
 기 어려운 방정식의 해의 근사해를 구함으로써 공학적 도구의 유용성을 인식시
 킨다.

3) 조건만 적절히 설정한다면 반복적이고 복잡한 수치적 계산은 스프레드시트
 를 이용하여 해결함으로써 학생들이 다룰 수 있는 문제의 영역을 넓혀준다.

다. 3차시: 뉴턴-랩슨법을 이용한 방정식의 근 찾기

미분을 학습한 뒤 접선의 방정식을 이용한 방정식의 근사해를 구하는 소재
 를 다룸으로써 미분을 이용하여 방정식의 해를 찾을 수 있음을 알게 한다.

2) 방정식이 주어졌을 때, 함수의 그래프에서 접선을 긋고, 접선이 x축과 만나는 점에서의 함숫값에서 다시 접선을 그은 뒤 위 절차를 반복했을 때, 접선과 x 축과의 교점의 x값이 점차 방정식의 해에 가까워짐을 시각적으로 알게 한다.

3) 2)의 과정에서 규칙을 찾게 하고, 해당 규칙을 정리한 결과가 뉴턴-랩슨법임을 소개하며 수학자들이 하는 경험을 학생들이 직접 경험할 수 있게 한다.

라. 4차시: 수치해석을 이용한 그래프 추정

1) f'(x)와 f(x)의 초기값이 주어졌을 때, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 에서

뉴턴법 f(x+h) = f(x) + hf'(x)을 이용하여 f(x)의 그래프를 추정한다.

2) 위 과정에서 h→0 대신 h를 0에 가까운 값으로 설정하여 f(x)를 근사적
 으로 추정해나가는 과정을 설명하며, GeoGebra를 이용하여 시각적으로 보여준
 다.

3) 슬라이더 기능을 이용하여 h를 설정한 뒤, h의 값을 변화시켜봄으로써 h의
 값이 0에 가까울수록 f(x)의 그래프와의 오차가 적음을 확인시킨다.

 4) 반복적인 복잡한 계산은 스프레드시트를 이용하여 학생들이 수학 학습에 집 중할 수 있도록 한다.

마. 5차시: 뉴턴의 냉각법칙

 지금까지의 학습 과정에서 GeoGebra의 숙달과 교과서에 나온 내용을 활용 하여 수치 해석적 방법을 연습하였고, 실생활 예시에 수치 해석적 방법을 적용해 학생들의 문제해결 범위를 확장시킨다.

2) $\frac{dT}{dt} = -k(T - T_r), (T: 온도, t: 시간, k: 비례상수, T_r: 주변온도)와 구체$ 적인 조건을 제시하여 근사적으로 문제를 해결한다.

 3) 학생들이 고등학교 범위에서 해결할 수 없는 문제를 수치적 방법으로 해결 해보는 경험을 통해 학생들의 성취감을 향상시킨다.

바. 과제

수업 때 배운 내용을 활용하여 실생활 문제 상황을 찾아보고, 수치 해석적
 방법으로 문제를 해결한다.

2) 문제해결 과정을 GeoGebra로 제작한다.

4. 분석 방법

가. 학생들의 문제해결 과정과 결과물을 토대로 GeoGebra 조작 능력과 수치해석 방법의 이해 정도를 확인한다.

나. 제출된 과제물을 통해 수치해석을 이용한 실생활 문제해결 능력을 확인하여 본 연구의 효과를 파악한다.

Ⅳ. 연구 결과

1. 교수·학습 자료 개발

가. 1차시 교수·학습 자료 및 지도방안: GeoGebra의 기본적 조작 및 수식 입 력 방법

1) 수학교육용 소프트웨어인 'GeoGebra'를 소개한다.

CeoGebra와 같은 수학교육용 소프트웨어를 사용하는 목적과 이유를 2015
 개정 교육과정의 교육 목표와 수학과 교육과정에서의 '공학적 도구의 활용 강조'
 와 관련하여 설명한다.

3) GeoGebra의 기본 도구의 설명과 사용 방법, 수식 입력 방법을 지도하여 앞 으로 이루어질 수업 과정 내에서의 GeoGebra의 능숙한 조작에 도움을 준다.

<표 1> 1차시 교수·학습 자료

• · · · · · · · · · · · · · · · · · · ·	과란 무엇인가?	이미지	•	1	4		0
네미버에 지오지브라를 치면 이렇게 나온		이름					
✿ www.geogebra.org 지오지브라		이미지	0	4		a-2	4
App Downloads Resources Profile GeoGebra 클래스 활동, 그래프, 기하, 공동 화이트보드 등을 위한	Classic Classroom News Feed) 무료 디지털 학습 도구	이름					
그렇다면 지오지브라를 쓰는 이유는 무엇 2015개정 교육과정 수학॥의 교육 목표	1일지 찾아서 적어봅시다. >	이 뜹니다			OF ₩F20		
द्वा ११ ने ते जन्म के राज्य स्थान स्थानक स्वतः प्रध्यान स्थान ११ व्यु वृष्ट्व निष्ठे ने ने द्वारा स्थान स्थान स्थान १९४४ वृष्ट्यान स्थान स्थान	수학교과 역장의 구현 	3. 대가 심식용: ∅ 6. '변수'를 설정 ∅	할 그니고 싶은데 영하고 싶을 때 C	에 영제 그녀 개떻게 해야할기	ин вин: 149		
શ્ચ 1 વર્ક અમાર વાંહ લોમાં અંગલડ અંગડ વાંડવા કરવાયા કેલ 1 વર્ક આ કારણ અંગલ્ડ મંગલ કેલ વાંડવા અંગ માં મર તેર કરે કરે કરે દાવાર અંગ અંગ અંગ અંગ અંગ અંગ અંગ 1 વર્ક માં કરે અંગલડ શકે છા. આ દાવાર, કોઈ કેલ્બ કેલ્ગ સ્ટેન	수학교과 역장의 구현 유학적 도구역 • + 환경고운관정 활용 강조 지정의 방향	0. 대가 입적당 . '변수'를 설정 . · 변수'를 설정	하고 싶을 때 C	에 위에 가드며 개떻게 해야할기 (기호 /	이명시	যাত্রা দল	L 이러 차
मु નોરા બંધાર તેમું કેલીના સંભાવ રહ્યું છે. વાઇસ્ટામાં કેલી છે. શ વ રહે છે કોઈ સાથવાર બંધાર સિવાય કેલી માંગત તેમાં નવ છે દુવેર કોઈમાં પ્રત્યું સાથવાર કેલી સ્વાન તેમાં નવ શ દુવેર કોઈ સાથવાર હશે. છે. રહે કે કેલી સ્વાન સ્વાન ગાઉ કેલી શ દ્વેર સિંઘ કોઈ સાથવાર હશે. છે. રહે કે કેલી સ્વાન સ્વાન ગાઉ કેલી સાથવા સ્વાન સ્વાન તેમાં કેલી ને વાઇ શાળ તેમાં નવે જોવડ થઈ	수학교과 역당의 구현 중학적도구역 • 활용 강조 ***	 6. '변수'를 설정 수학기호 + 	알 그니고 싶을 때 ((하고 싶을 때 (단속키 +	(기호 / (기호 / 수학 표현 (+2	나 날까? 나용법> <u>입력식</u> ++2	지오지브리	ት 입력창 ו2
22 નોંકે બંધાર તેનું લ્લામાં બંધવાડ રેસ્ટર શખ્ડલન: પ્રેલ્ડ છે, શ ાં વ લો કોઈ ગોવધાર મંચલ ક્ષિત્રે દ્વારાં વર્શ્યાન, સંબ સંગ તે છે રેસ્ટ ટીશમ- મંચે જયન શ તેમાં સંશે સંગ માટે કોઈ તે કેર કે કેરના કેલ્ડ સંગ શ તેમાં સંશે સંગ માટે વાર્થ તેમ તેમ સંગ માટે સંગ ને સ્ટે કે શ્વે સ્વાર્થા, કેર્ક્સ વાર્થ તેમ તેમ ક્ષે સંગ ને કેર કેર્ક્સ સંગ ને સ્ટે કેર્ક્સ શ્વે સ્વાર્થા, કેર્ક્સ વાર્થ તેમ કેર્ક્સ સંગ માટે કોઈને સંગ સ્ટે કરોઈ શ્વે સ્વાર્થા,	수학교과 역당의 구현 수학교과 역당의 구현 · 학습 부담 경경 추구 활용 강조 실생활동신의 · 학습 부담 경경 추구 환승자의 · 학습 부담 경경 추구 · 학습 부담 경경 추구	5. (태가 감각종) 《 6. (변수/를 설정 《 수확기호 + -	한 고니고 싶을 때 C 단축키 -	(기호 / (기호 / 수학 표현 (+2) (-2)	아 날까? 가? <u>입력식</u> <u><u></u> <u></u> <u></u> <u></u> <u></u> -2</u>	지오지브리 입역	├ 입력창 ×*2 ×2
理 이상 아파고 지금 적인에 위한 2 30,2 20,2 20,2 20,2 20,2 20,2 20,2 20	수학교과 역당의 구현 수학교과 역당의 구현 · 학습 부담 경경추구 활용 경조 실생활 중심의 · 학습 부담 경경추구 지정의 방향 용계 나용 재구성 정의 적 측면 강조	5. 대가 감각당 :	한고 싶을 때 C 단축키 - (Suift - 숙제8)	(기호 / (기호 / <u>수약 표현</u> <u>x+2</u> <u>x-2</u> 2 <u>x</u>	아 날까? 가? 아용법> 입력식 <u>2+2</u> 2+2 2+2	지오지브리 임역 임역 음악	ት 입력창 ×+2 ×2 2×
ਉਹ 1 4 16 ਆਸਟ ਨੇ 2 1914 (ਸੋਵਾਲ, 3002, 8038), 540 (9), 81 3 1 191 (9) 1910 (1914), 1910 (1914) 201 (202 (200), 1910 (1914) 201 (202) (200), 1910 (1914) 201 (202) (200), 1910 (1914) (1914) (200), 200 (1914) (2014) 2014 (2	수학교과 역당의 구현 수학교과 역당의 구현 · 학습 부담 경경 추구 활용 강조 실성활동성의 통계나용 재구성 정의 핵 측면 강조	6. '변수'를 설정	(Shift - 옷자이) /	(기호 / (기호 / (기호 / <u>수학 표현</u> <u>x+2</u> <u>x-2</u> 2 <u>x</u> <u>¥</u> 2	아 날까? 가? 사용법> <u>입력식</u> <u>x+2</u> <u>z-2</u> <u>2+x</u> <u>z/2</u>	지오지브리 일역 일역 일역 일역	ት 입력장 ×+2 ×-2 2 [°] × ×2

나. 2차시 교수·학습 자료 및 지도방안: 이분법을 이용한 방정식의 근 찾기

1) 사잇값 정리를 학습한 후에 수업을 진행한다.

2) 고등학교 수준에서의 인수분해, 조립제법, 근의 공식으로 해결하기 어려운
 방정식을 제시하고, 주어진 함수가 사잇값 정리의 조건을 만족시킴을 확인한다.

3) 방정식의 근을 포함하는 임의의 열린 구간을 직접 설정하고, 이분법을 이용 하여 근을 포함하는 열린 구간의 특징을 찾게 한 뒤, 열린 구간의 크기를 줄여나 가는 과정을 공식화하는 경험을 하게 한다.

4) GeoGebra를 이용하여 공식화한 식을 활용하여 수치해석을 이용해 방정식의 근사해를 구하게 한다.

		14-					
2학년 수학 II 단원 함수의 연속 수행까가 ()반 ()반 이름: 2	(3	$a, b, \frac{a+1}{2}$	- 중 f(;	r)=0의 실근을 포함하는 열린구간은?			
학습목표 이분법(사인값 정리)을 이용한 방정식의 근 찾기							
	14	\ ⊐ 0 π δ ι ≉ι	L 01217				
1 사이가 저긴라?	1.4	이 근물 조심이	는 걸인가	신처 정 붙임해서의 임숫값의 국정관 !			
- 함수 $f(x)$ 가 달한구간 $[a,b]$ 에서 연송이고 $f(a) = f(b)$ 이면 $f(a)$ 와 $f(b)$ 사이의 임의의							
실수 k에 대하여 $f(c) = k$ 인 c 가 열린구간 (a, b) 에 적어도 하나 존재한다.							
(그래프를 활용한 사딧값 정리의 이해)	(5) (3)에서의 (] 린구간 ·	중 근을 찾기에 효과적인 열린구간은?			
	4. 9	이분법이란?					
	6	9					
	5 3	1071426 74	HENI				
	9. 1	יד ויביייבי					
	مح	28	, , ,	2 4			
2 마야 노_이라며 사스 -가 아미하는 거오 모아이가?	2 4	구성 스프러드 일본 장	A1	· 나는 31	CI	D1	El
2. 만약 k=0이라면, 성수 c가 의미하는 것은 무엇인가?	হ ল 1	구성 스프레트 입면 장 시트 1월 그성 입력 내	A1	48 81 4	C1 b	Di R	El
2. 만약 k=0이라면, 성수 c가 의미하는 것은 무엇인가? ∅	e4 1	구성 스프레프 일면 장· 시프 1명 구성 일면 내 스프레트 일면 장·	AL AL BE N A2	내는 31 	C1 b C2	D1 8 D2	E1 8 E2
2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ④	ه م 1 2	구성 스프레프 일원 정 시프 일원 정 1월 구성 일원 약 스프레프 일원 정 시프 일원 약	AL AL B 37 A2	48 21 22 22 46	01 b 02 6	D1 R D2 (B2,f(B2))	E1 5 E2 (Co.f(Co))
2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? 《	ем 1 3	구성 스프레프 시프 1월 구성 인원 년 스프레프 시프 2명 구성 인원 년 신문 년 2명 구성 인원 년 전 문 년 2 연구 년 2	스 A1 문 11 소 A2 문 0 대 두 정이 대 고급가는 각	사용 31. 82. 6. 6. 15위 19년 나타나의 원란 조진 A2~ ~c 및명	01 5 02 6	D1 R D2 (Bc.f(B2))	El B E2 (Co.f(Co))
2. 만약 $k=0$ 이라면, 상수 c 가 의미하는 것은 무엇인가? @ 3. 지오지브라의 입력장에 $f(x)=x^3-2x^2-1$ 을 입력해봅시다.	وم 1 3	구성 스프러프 시프 18 구성 인원 대 스프러프 28 구성 인원 대 시프 28 구성 민원 다 28 구성 민원 다 20 구성 민원 다 20 구성 민원 다 20 구성	소 A1 문 17 소 A2 문 0 대 문 정에 대 · 고급기는 대 석, 도간 파란어 노 A3	사용 31. 32. 48. 전체 24 2 학원 24 2 학원 24 2 학원 24 2 학원	C1 5 C2 6 6	D1 8 D2 (Bo.f(Bc))	E1 5 E2 (Cc.f(Cc)) E3
 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ○ 3. 지오지브라의 입력창에 f(x) = x³ - 2x² - 1을 입력해봅시다. (1) 사잇값 정리에 의하면 f(x) = 0의 실근은 열린구간 (a, b)에 있다고 할 수 있다. a, b가 	ع م 1 3	구성 스트레프 시프 1월 구성 일원 중 일원 가성 스트레프 2월 구성 일원 가 1월 26 2월 구성 일원 가 1월 26 2월 구성 일원 가 1월 26 2월 구성 22 27 소프레프 2월 구성 22 27 소프레프 2월 26 22 27 소프레프 시프 2월 24 22 27	철 A1 8 37 4 A2 8 0 4 투 정의 대 고급가는 의 적, 도2 파란의 철 A3 8 A2+1	사용 31 32 4 8 8 9 9 9 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 5 2 5 2 5 2 5 5 2 5 5 5 5 5 5 5 5 5 5	C1 b C2 b C3	D1 8 D2 (Bo.f(B0)) D3 (Bo.f(B3))	E1 B E2 (Co.,f(Co)) E3 (Co.,f(Co))
 2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ※ 3. 지오지브라의 입력창에 f(x) = x³ - 2x² - 1을 입력해봅시다. (1) 사잇값 정리며 의하면 f(x)=0의 실근은 열린구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수를 적절하게 적어봅시다. 	4 1 3 4	구성 스트레프 시프 1월 구성 일원 등 2월 구성 소프레프 2월 구성 일원 가 2월 구성 고프레프 2월 구성 일원 가 20 도망 20	▲ A1 ● 17 ▲ A2 ● 0 4 주 않이 다 1.2 2 2.2 16 ▲ A3 ● A2	내용 31 82 82 84 84 92 내려나키 원한 코인 A12 ~ ~ 6 102 83 83 84 84 내려나키 18한 코인 A12 ~ ~ 6 102 83 84 84 내려나키 18한 코인 A12 ~ ~ 6 102 83 84 84 84 84 84 84 84 84 84 84 84 84 84	C1 6 6 C3	D1 8 D2 (B0.f(B0)) D3 (B3.f(B3))	EI B E2 (Co.f(Co)) E5 (Co.f(Co))
 2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? 3. 지오지브라의 입력찮에 f(x) = x³ - 2x² - 1을 입력해봅시다. (1) 사잇값 정리에 의하면 f(x) = 0의 실근은 열린구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수름 적절하게 적어봅시다.	€ ₩ 1 3 4	구성 스프레프 시프 18 구성 10 8 % 신프레프 18 구성 10 8 % 스프레프 20 구성 10 8 % 20 구성 10 8 % 20 구성 10 8 % 20 구성 10 8 % 31 구성 10 8 % 31 구성 10 8 % 32 구성 10 8 %	△ A1	내용 31 32 6 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	C1 5 62 69 C5	D1 8 D2 (B3; f(B2)) D3 (B3; f(B3))	E1 B E2 (Cc.,f(Cc)) E5 (C3,,f(C3))
 2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ※ 3. 지오지브라의 입력칭에 f(x) = x³ - 2x² - 1을 입력핵봅시다. (1) 사잇값 정리에 의하면 f(x) = 0의 살근은 열린구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수를 적절하게 적어봅시다. 	2 3 4	구성 스트레트 시프 18 구성 10 8 % 신트레트 시프 20 구성 10 8 % 신트레트 시프 20 구성 10 8 % 전드레트 시프 30 구성 10 8 % 스트레트 시프 30 구성 10 8 % 스트레트 시프 30 구성 10 8 % 20 8 % 10 8 % 20 7 % 10 8 % 20 7 % 10 8 %	▲ A1 ► 15 ▲ A2 ► 0 ▲ A2 ► 0 ▲ 42 ▲ 22718 13 ▲ E2 = 1890 ▲ E2 = 1890 ▲ A3 ► A2+11 HRIF: 22	将会 31. 32. 34. 35. 35. 35. 33. 조건은 구성해봅시다.	C1 5 6 6 C3	D1 8 D2 (B5,f(B2)) D3 (B5,f(B3))	E1 B E2 (Co.,f(Co)) E5 (Co.,f(Co))
 2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ※ 3. 지요지브라의 입력창에 f(x) = x³ - 2x² - 1을 입력해봅시다. (1) 사잇값 정리의 의하면 f(x) = 0의 실근은 일친구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수름 적절하게 적어봅시다. 	ew 1 3 4 - '	구성 스트러프 시프 1월 - 1월 2월 2월 1월 14 스트러프 시프 2월 구성 1월 1월 14 02 182 1월 구성 1월 18 1	▲ A1	내용 31 32 4 5년 30 나다나이 최한 코린 A2c - c 1 1년 3 고린 (-f82) / 1822 + 6(2) (-2.82) 고린 (-f82) / 1822 + 6(2) (-2.82) 조건용 구성해봅시다.	C1 5 6 6 C3	D1 8 D2 (B3;f(B2)) D3 (B3;f(B3))	EI B E2 (C::,f(C:)) E3 (C;:,f(C;))
 2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ※ 3. 지요지브라의 입력창액 f(x) = x³ - 2x² - 1을 입력핵봅시다. (1) 사잇값 정리액 의하면 f(x)=0의 실근은 입린구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수름 적절하게 적어봅시다. (2) 이 때 f(a), f(b), f(a)f(b)의 부호를 생각핵봅시다. 	<u>م</u> بر 1 3 4 - '	구성 스프레프 탄원 등 년원 등 시프트 1월 2월 1월 1월 2월 스프레프 1월 2월 1월 1월 2월 2월 1월 1월 1월 2월 2월 1월 1월 2월 2월 1월 1월 1월 2월 1월 1월 24 1월 1월 1월 24 1월 1	▲ A1	내용 31 32 32 34 34 35 2년(서요(서대 원한 조진 AC< ~6 일원 33 2년(서요(서대 원주·전) ~6 (영요~46(3)(5.82)) 조건(서요(서대 원주·전) ~6 (영요~46(3)(5.82)) 조건(음 구성)해봅시다.	C1 b C2 6 b C3	D1 8 D2 (B0.f(B0)) D3 (B5.f(B3))	EI B E2 (C:s,f(C:s)) E3 (C;s,f(C;s))
 2. 만약 k=0이라면, 상수 c가 의미하는 것은 무엇인가? ※ 3. 지오지브라의 입력 첫에 f(x) = x³ - 2x² - 1을 입력해봅시다. (1) 사잇값 정리에 의하면 f(x) = 0의 싶근은 열린구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수름 적절하게 적어봅시다. (2) 이 때 f(a), f(b), f(a)f(b)의 부호를 생각해봅시다. 	<u>م</u> بع 1 3 4 - *	- 24 스프레프 일본 전 시프 일본 전 18 그년 12 12 12 12 호 강 일본 12 12 18 그년 12 12 12 18 그년 12 12 12 19 그년 12 12 19 - 12 12 10 - 12 12 10 - 12 12 10	▲ A1 ► 21 ▲ A2 ► 0 ← 400 ↓ 227(8) ↓ 227(8) ↓ 227(8) ↓ A2 ▲ A3 ► A2+11	나는 사용 31. 8. 32. 8. 5년 4년 4년 4년 4년 4년 4년 1년	C1 b C2 6 c	D1 8 D2 (B0,f(30)) D3 (B5,f(B3))	E1 B E2 (Cc,f(Cc)) E3 (C3,f(C3))

<표 2> 2차시 교수·학습 자료

▶ 이론 설명

- 사잇값 정리

함수 f(x)가 닫힌 구간 [a,b]에서 연속이고, $f(a) \neq f(b)$ 이면 f(a)와 f(b) 사이 의 임의의 실수 k에 대하여 f(c) = k인 c가 열린 구간 (a,b)에 적어도 하나 존

- 12 -

재한다.

- 이분법

구간 [a,b]에서 f(a)f(b) < 0인 연속함수 f에 대하여 $c = \frac{1}{2}(a+b)$ 라 할 때, $f(c) \neq 0$ 인 경우, f(a)f(c) < 0이거나 f(c)f(b) < 0이다.

(i) f(a)f(c) < 0인 경우
사잇값 정리에 의해 f의 해는 열린 구간 (a,c)에 존재한다. 그러므로 구간 [a,c]
를 시작으로 다시 위 과정을 반복하여 근사해를 구한다.

(ii) f(c)f(b) < 0인 경우
사잇값 정리에 의해 f의 해는 열린 구간 (c,b)에 존재한다. 그러므로 구간 [c,b]
를 시작으로 다시 위 과정을 반복하여 근사해를 구한다.

위 과정을 n번 거치면 근의 최대오차는 $\frac{(b-a)}{2^{n+1}}$ 이다.

▶ GeoGebra 구성 방법

① 입력창에 함수 ' $f(x) = x^3 - 3x^2 + 1$ ' 입력

입력: f(x) = x³-3x²+1

② 슬라이더 구성

- 닫힌 구간 [a,b]에서 a를 표현하는 슬라이더 a₀(초기 설정: 최솟값 -5, 최 댓값 5, 증가 0.01) 설정

- 닫힌 구간 [a,b]에서 b를 표현하는 슬라이더 b₀(초기 설정: 최솟값 -5, 최댓 값 5, 증가 0.01) 설정

③ f(x)의 근을 포함하도록 a_0, b_0 값 설정

- $a_0 = 1, b_0 = 3 으로 설정$

④ 반복 횟수를 나타내는 슬라이더 n(초기 설정: 최솟값 0, 최댓값 100, 증가 1)설정

- ⑤ 스프레드시트 설정
 - '보기'-'스프레드시트' 선택
 - 1행 구성하기

A1: N(시행 횟수), B1: a, C1: b, D1: R, E1: B

- 2행 구성하기

A2: $n, B2: a_0, C2: b_0, D2: (B2, f(B2)), E2: (C2, f(C2))$

* 스	프레드시트	Ē					
∫r 굶 0 Ē Ē □ ▾ ⊡ ▾							
	A	В	С	D	E		
1	N	a	b	R	В		
2	0	1	3	(1, - <mark>1</mark>)	(3, 1)		

<그림 3> 스프레드시트 설정

- ⑥ 논리 구성하기
 - 3행 구성하기
 - A3: A2+1
 - B3: 조건(f(B2)f((B2+C2)/2) > 0,(B2+C2)/2,B2)
 - C3: 조건(f(C2)f((B2+C2)/2) > 0, (B2+C2)/2, C2)
 - D3: (B3, f(B3))
 - E3: (C3, f(C3))
- ⑦ 시행하기
 - A3부터 E3까지 블록 지정 후 드래그
 - A열이 '이분법의 시행 횟수', B열과 C열이 방정식 f(x) = 0의 근사해

<그림 4> 시행 결과

- 입력창에 '해(f(x) = 0)' 입력

I1 = {-0.5320888862379, 0.6527036446661, 2.879385241572}

<그림 5> 해 리스트

- 각 시행에 따른 해의 최대오차를 구하기 위해 F2에 '(\$C\$2-\$B\$2)/(2^(A2))'입력

- F2를 드래그하여 시행 횟수에 따른 최대오차 구하기

- 각 시행 횟수에 따른 실제해와 근사해의 오차 구하기 위해 G2에 '2.879385241572-B2' 입력, H2에 'C2-2.879385241572' 입력 후 각각 드래그

F	G	Н
최대오차	실제해와 근사해의 오차①	실제해와 근사해의 오차②
2	1.879385241572	0.120614758428
1	0.879385241572	0.120614758428
0.5	0.379385241572	0.120614758428
0.25	0.129385241572	0.120614758428
0.125	0.004385241572	0.120614758428
0.0625	0.004385241572	0.058114758428
0.03125	0.004385241572	0.026864758428
0.015625	0.004385241572	0.011239758428
0.0078125	0.004385241572	0.003427258428
0.00390625	0.000478991572	0.003427258428
0.001953125	0.000478991572	0.001474133428
0.0009765625	0.000478991572	0.000497570928
0.00048828125	0.000478991572	0.000009289678
0.000244140625	0.000234850947	0.000009289678
0.0001220703125	0.0001127806345	0.000009289678
0.00006103515625	0.00005174547825	0.000009289678
0.000030517578125	0.000021227900125	0.000009289678

<그림 6> 시행 횟수에 따른 최대오차와 실제 오차 비교하기

이를 통해 시행 횟수가 18회 정도로 생각보다 적은 횟수더라도 충분히 작은
 오차범위 내의 근사해를 구할 수 있음을 설명한다.

다. 3차시 교수·학습 자료 및 지도방안: 뉴턴-랩슨법을 이용한 방정식의 근 찾기

1) 미분을 학습한 뒤 수업을 진행한다.

2) 고등학교 수준에서의 인수분해, 조립제법, 근의 공식으로 해결하기 어려운 방정식을 제시하고, 그래프를 활용하여 접선의 방정식을 시각적으로 이해시킨다.

3) 뉴턴-랩슨법을 직접 공식화해보는 경험을 제공하며, GeoGebra를 활용하여 수치해석 방법으로 주어진 방정식의 근사해를 찾는 경험을 제공한다.

<표 3> 3차시 교수·학습 자료

2학년 수학표 단원 미분 +해평가 학습목표 미분(접선의 방정식)을 이용한 방정식의 근 찾기 3 1. 미분을 활용한 접선의 방정식 - 합수 f(x)?t x = a'에서 미분가능할 때, 곡선 y=f(x) 위의 점 (a, f(a))에서의 접선의 기용가는 f'(a)이고, 접선의 방정식은 ()이다.	4. 1	던-랩슨법	이란?				
〈그래프를 활용한 접선의 방정식 이해〉	5 XI	이지 비라 그	1.41 81-84				
	0. j		0 0 8				- i
	En		0.748 at .4			1.	
	2	84 상자 및 음란이머	이 다양에 2가~! '인턴 상자' 가방 '음악이머' 가능	-21-1 일역 등에서 접선에 • 선택 후 이름 • 선택 후 이름	/ 일편 도 연결 = 6g. 최순값 - 1 5. 최순값 0.4	5 대상에 받수 <i>위 1</i>) 선택 0. 희생값 10 일편 희생값 50. 중아 1 일편	
		스프레트시트	일련 장소	A1	B1	C1.	D1
	2	198 7/8	입력 내용	10		1	5
		스프레트시트	일력 장소	A2	B2	62	D2
	2	2*8 7/8	입력 내용	0	00	f'(Bc)(x-Bc)+f(Bc)	€(C2)
	5	2 23	C2, D2의 두 정 성경사한 고급7	1에 대하여 1 11: 대상이 내	타내기 위한 프린	i A2 = n 및원	10
		스트레드웨트	일본 중소	AS	23	CS	DS
○ 1040년 그의 자신이	6	3*8 7/8	입력 내용	A2+1	g (De)	C2 도려고	D2 도려그
1. 1만 바가 구한 집안가 2위가 안가는 유명을 (05,0 가다 올 가, 05,2 (05,7 마가다 집안가 3 3 식을 그래프로 그려봅시다.	7	실제 근과의 오카 확인	기하장 '입편' (키고) = 0의 근과	기하장 '인원' 간에 관귀(J)) 인원 개J – 이의 근과 뉴턴-원순명을 이용한 근상값 사이의 요사 중인			
	8	애니케이션	슬라이머 5의 년 애니메이션 시장	발경사 반 에서 : 안	배니케이션 속도:	0.1. 한북: 중가	
3. 1번에서의 점산을 넣. 2번에서의 점산을 섞이라 할 때, 각 점선이 교축과 만나는 점의 움직임 의 특징을 적어봅시다. ♂							
-1-					- 2		

▶ 이론 설명

함수 f가 미분 가능하다고 할 때, f의 그래프 위의 한 점 $(x_0, f(x_0))$ 에 접선이 존재하면, 이 접선을 접점 근처의 함수의 곡선에 대한 근사로 보며, 이를 구하면 다음과 같다.

$$l(x) = f'(x_0)(x - x_0) + f(x)$$

따라서 f의 근에 대한 근사해로 l(x)의 근을 택하며, 그 근은 다음과 같다.

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

이를 통해 x1을 얻어내면, 위의 과정을 반복하여 다음과 같은 값들을 얻어낸다.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}, \ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}, \ \cdots$$

이렇게 얻어낸 $x_n(n: \text{자연} \hat{c}) \in n$ 이 커질수록 f의 근의 근사해로 볼 수 있다.

▶ GeoGebra 구성 방법
 ① 입력창에 함수 'f(x) = x³-3x²-1' 입력

② 슬라이더 구성

- 초기값 x₀를 나타내는 슬라이더 a₀(초기 설정: 최솟값 -10, 최댓값 10, 증
 가 0.01) 설정

- 시행 횟수를 나타내는 슬라이더 n(초기 설정: 최솟값 0, 최댓값 50, 증가 1)설정

- '설정 사항 - 고급기능'에서 '대상을 나타내기 위한 조건'에 'A2=n' 입력

- 19 -

- C2와 D2를 선택
- ④ 시행 횟수에 따른 접선 및 접선과 x축과의 교점을 나타내기

<그림 7> 스프레드시트 1, 2행 구성

* ^	프레드시	E		
f_x	굵 이 🗐			
	A	В	С	D
1	N	a	1	b
2	0	10	$(3 \cdot 10^2 - 6 \cdot 10) (x - 10) + 10^3 - 3 \cdot 10^2 - 1$	(7.09, 0)
3			☆ 재정의 ×	
4			함수 C2	
5			f'(B2) (x - B2) + f(B2)	The second s
6			설정사항… 확인 취소 적용	
7				1

- D2: '근(C2)' 입력
- 2행 구성하기 A2: '0' 입력 B2: 'a₀' 입력 C2: 'f'(B2)(x-B2)+f(B2)' 입력
- D1: 접선 l의 해를 나타낼 'b' 입력

B1: 초기값과 근사해를 나타낼 'a' 입력

- A1: 시행 횟수를 의미하는 'N' 입력

C1: 접선을 의미하는 'l' 입력

- 1행 구성하기
- ③ 스프레드시트 설정(1)

⑤ 스프레드시트 설정(2)

- 3행 구성하기
 - A3: 'A2+1' 입력
 - B2: 'x(D2)' 입력
 - C3: C2 드래그
 - D3: D2 드래그

$* \Delta f_x$:프레드시 굵 이 [E]			
- 1	A	В	С	D
1	N	а	I t	b
2	0	10	$\left(3\cdot 10^2 - 6\cdot 10\right)(x-10) + 10^3 - 3\cdot 10^2 - 1$	(7.09, 0)
3	1	7.09	$(.09^2 - 6 \cdot 7.09)$ (x - 7.09) + 7.09 ³ - 3 $\cdot 7.09^2 - 1$	(5.2, 0)

<그림 8> 스프레드시트 3행 구성

- ⑥ 시행하기
 - A3부터 E3까지 블록 지정 후 드래그
- ⑦ 실제 근과의 오차 확인
 - 입력창에 '근(f(x))' 입력

A = (3.10380340273	5537, 0)		
🗘 재정의			×
점 A			
[근(f(x))			α
설정사항…	확인	취소	적용

<그림 9> '근(f(x))' 입력 결과

a = 3.10380340273		6 9	
🗘 재정의			×
수a			
x(A)			α
설정사항…	확인	취소	적용

<그림 10> 'x(A)' 입력 결과

- E2에 'abs(a-x(D2))' 입력

- E2 선택 후 드래그하여 각 시행에 따른 실제 근과의 오차 구하기

	E
오차	
	3.983696597264464
	2.094814515326826
	0.923744595621698
	0.284185735944323
	0.039384911723877
	0.000919524730737
	0.000000518778887
	0.000000000000165
	0
	0
	0
	0
그림	11> 시행에 따른 오치

⑧ 애니메이션 설정하기

- 슬라이더 n의 '설정 사항 - 애니메이션'에서 '속도: 0.1, 반복: 증가' 설정
- 슬라이더 n에서 '애니메이션 시작'을 누르고 각 시행에 따른 f위에서의 접 선의 변화에 따른 근사해의 변화를 시각적으로 확인

⑨ 초기값 변경 설정하기

- 초기값을 나타내는 슬라이더 a_0 의 값을 변화시켜 근사해를 구하는 과정을 비교하게 한다.

- 초기값을 어떤 값으로 정하느냐에 따라 적은 시행 횟수 근사해를 구할 수도
 있고, 많은 시행을 하더라도 근사해를 구하기 어려울 수도 있다는 사실을 지도한
 다.

라. 4차시: 수치해석을 이용한 그래프 추정

1) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 에서 $h \to 0$ 대신 h를 0에 가까운 값으로 설

정할 경우, 뉴턴법 f(x+h) = f(x) + hf'(x)을 이용할 수 있음을 지도한다.

2) 도함수 f'(x)와 f(x)의 초기값이 주어졌을 때, f(x)의 그래프를 근사적으 로 구할 수 있음을 알게 한다.

 3) 반복적인 복잡한 계산은 스프레드시트를 이용하여 학생들이 수학 학습에 집 중할 수 있도록 한다.

▶ 이론 설명

- 수치미분

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 에서 $h \to 0$ 을 극한을 이용한 계산 대신 h를 0에 가까운 값으로 설정하여, 수치적인 계산을 통해 미분한다.

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

<표 4> 4차시 교수·학습 자료

2약년 수약॥	() ^j ⁱ ⁱ () ^j ⁱ ⁱ	이름:	4	24	구성			내용		
학습 <mark>목</mark> 표	수치해석(수치미분))을 이용한 그래	프 추정	1	8 0 ପଟ	일력장에 3 ⁴ 일력장에 <i>f</i> ~ig	ar ² -1 입원) 입원	}		
미분이란?				2	승각이며 만두기	'올라이더' 기능	ଅ ଖ ‡ ବା	• 6. 8 ₩2 - 1. 8%2 1.	중가 001 입전	
C Internation				2	스프레드시트	입면 장소	A1	BI	C1	Di
				5	18 78	입면 내용	S.	≠x)	$(\Sigma, f(\Sigma))$	1
대프를 활용한 미분의	이해〉			12	스프레트시트	입력 장소	A2	B2	ci	D2
					2*8 7.8	입면 내용	0	f(A2)	(A2, B2)	성분(01,03
					스프레트시트	입력 장소	A3	- B3	CS	DS
				5	348 7/8	입면 너물	Ào+h	$f(Az) + h \times f^{+}(Az)$	C2 도려고	D2 드러그
				6	방수 그러프 수경	A3부터 D5까지	*****	60행까지 도러그		27
				æ	방수 / 위 그래프와 비고	·····································	수치해석을 두	해 수축한 그리프와 원러의	그러프	
. 도함수 <i>f'(x)를</i> 극한	·음 사용하여 표현해봅시다.			5. બ	제를 활용한	· 수치해석	연습			
. 도함수 ƒ´(x)를 극한 @	을 사용하여 표현해봅시다.			5. প	제를 활용힌 NO.	! 수치해석 ƒ´ュュ ƒネャ	연습 1의 관계	초기값	র	값함수 <i>f</i>)
. 도함수 ƒ´(x)를 극한 @	을 사용하여 표현해봅시다.			5. 9	제를 활용한 NO.	한 수치해석 f'과 f사* y'-2)	연습 1의 관계 /=0	ತೆಸಗಳ f(0) = 1	ক	武智수 <i>f</i>) <i>c³</i> 4
. 도압수 ƒ'(x)를 극한 @	을 사용하여 표현해봅시다.			5, 9	제를 활용한 NO. 1 2	! 수치해석 ƒ´과 ƒ샤< y´-?; y´+2;	연습 1의 관계 /=0 /=0	<u>عرائ</u> <u>f(0) = 1</u> <u>f(0) = 1</u>		e^{2t}
도압수 /'(x)를 극한 @ 수치해석과 수치미분	·을 사용하여 표현해봅시다.			5. 9	제를 활용한 NO. 1 2	! 수치해석 f'과 fAi- y'-2) y'+2)	연습 1의 관계 /=0 /=0	<u>ま</u> りな f(0) = 1 f(0) = 1	3	$e^{2\epsilon}$
도입수 f'(x)를 극한 과 수치해석과 수지미분	을 사용하여 표현해봅시다.			5. ୩	제금 발용한 NO. 1 2	난 수치해석 ƒ ['] 과 ƒ¾ y ['] - 2) y ['] + 21	연습 1의 관계 /=0 /=0	<u>වෙ</u> තුදා f(0) = 1 f(0) = 1		$\frac{\partial (\Psi \wedge f)}{e^{2t}}$
. 도함수 ƒ'(x)를 극한 ♂ 수치해석과 수치미분 ♂	을 사용하여 표현해봅시다.			5, 9	제를 활용한 NO. 1 2	t 수치해석 f'과 fA+ u' − 3j u' + zi	연습 1의 관계 /=0	호기값 f(0) = 1 f(0) = 1		$\frac{d(\frac{1}{2} + f)}{e^{\frac{2}{2}}}$
도입수 $f'(x) 를 극한④수지해석과 수지미분④$	'을 사용하여 표현해봅시다.			5. 91	제를 활용한 NO. 1 2	<u></u>	연습 1의 관계 /=0 /=0	초기값 f(0) = 1 f(0) = 1		$\frac{\partial^2 \nabla \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial t^2}$
. 도함수 $f'(x) 플 극약 @ 수치해석과 수치미분 @$	을 사용하여 표현해봅시다.			5. M	제를 활용한 NO. 1 2	<u></u>	연습 1의 관계 /=0 /=0	초기값 f(0) = 1 f(0) = 1		$\frac{e^{2\epsilon}}{e^{2\epsilon}}$

이때, $f(x+h) \approx f(x) + hf'(x)$ 이므로, 도함수 f'(x)의 식과 f(x)의 초기값을 알고 있다면 수치계산을 통해 적분 없이 f(x)를 근사적으로 구할 수 있다.

x = 0일 때, $f(0+h) \approx f(0) + hf'(0)$

x = h일 때, $f(2h) = f(h+h) \approx f(h) + hf'(h)$

위의 과정을 반복하여 (0, f(0)), (h, f(h)), (2h, f(2h)), …를 구하여 f(x)을 근 사적으로 구한다.

- ▶ GeoGebra 구성 방법
- ① 입력창에 함수 ' $f(x) = x^3 3x^2 1$ ' 입력
- ② 슬라이더 구성
 - 슬라이더 h(초기 설정: 최솟값 -1, 최댓값 1, 증가 0.01) 설정
 - 슬라이더 h 값을 0.01로 설정
- ③ 스프레드시트 설정(1)
- 1행 구성하기
 A1: f(x)의 x값을 의미하는 'X' 입력
 B1: 함숫값 f(x)를 의미하는 'f(X)' 입력
 C1: 점의 좌표를 표현하는 '(X, f(X))' 입력
 D1: 각 점을 연결할 선을 의미할 'l' 입력
- 2행 구성하기 A2: '0'입력 B2: '*f*(A2)'입력 C2: '(A2,B2)'입력 D2: '선분(C2,C3)'입력
- 3행 구성하기 A3: 'A2+h'입력 B3: 'f(A2)+h×f'(A2)'입력 C3: C2 드래그

- 4행 이후의 스프레드시트 구성하기: A3부터 C3까지 블록 지정 후 드래그하

7]

/*			0	
(225)11	A	В	C	D
1	X	f(X)	(X,f(X))	1
2	0	-1	(0, -1)	0.01
3	0.01	-1	(0.01, -1)	
4	0.02	-1	(0.02, -1)	
5	0.03	-1	(0.03, -1)	
6	0.04	-1	(0.04, -1)	
7	0.05	-1	(0.05, -1)	
8	0.06	-1.01	(0.06, -1.01)	
9	0.07	-1.01	(0.07, -1.01)	
10	0.08	- <mark>1</mark> .01	(0.08, -1.01)	
11	0.09	-1.02	(0.09, -1.02)	
12	0.1	-1.02	(0.1, -1.02)	
13	0.11	-1.02	(0.11, -1.02)	
14	0.12	-1.03	(0.12, -1.03)	
15	0.13	-1.03	(0.13, -1.03)	
16	0.14	-1.04	(0.14, -1.04)	
17	0.15	-1.04	(0.15, -1.04)	
18	0.16	-1.05	(0.16, -1.05)	
19	0.17	-1.05	(0.17, -1.05)	
20	0.18	-1.06	(0.18, -1.06)	
21	0.19	-1.07	(0.19, -1.07)	
22	0.2	-1.07	(0.2, -1.07)	
23	0.21	-1.08	(0.21, -1.08)	
24	0.22	-1.09	(0.22, -1.09)	
25	0.23	-1.09	(0.23, -1.09)	
26	0.24	-1.1	(0.24, -1.1)	
27	0.25	-1 11	(0.25 -1.11)	

<그림 12> 스프레드시트 4행 구성 결과

④ 수치해석을 이용한 그래프 추정

- D2 선택 후 드래그

- f(x)의 그래프와 수치해석을 통해 구한 그래프 비교

 - 스프레드시트에서 충분히 많은 행까지 드래그하여 그래프를 추정할 수 있게 한다.

<그림 13> f(x)의 그래프와 수치해석을 통해 구한 그래프

⑤ 슬라이더 h 변화

- 슬라이더 h 값을 변화시켜보며, h 값의 변화에 따른 원래 그래프와의 차이 를 비교하게 한다.

마. 5차시: 뉴턴의 냉각법칙

1) 뉴턴의 냉각법칙인

 $\frac{dT}{dt} = -k(T - T_r), \ (T: \text{온도}, t: \text{시간}, k: 비례상수, T_r: 주변온도)$

와 구체적인 조건을 제시하여 근사적으로 문제를 함께 해결하며 학생들이 고등 학교 범위에서 해결할 수 없는 문제를 수치적 방법으로 해결해보는 경험을 통해 학생들에게 실생활 문제해결 경험을 제공한다.

<표 5> 5차시 교수·학습 자료

	110							
		1 41 11	단원	미분			Ť.	수행평가
2	악년	수약॥	()반	()번	이름:			5
	학습목.	Ħ	수치해석(수치미분)을	· 이용한 시구	<u>"</u> 에 ¤	사른 온도	예측
1. 뉴	년의 <mark>냉각법</mark> 무체가 내가	직 되는 비유	이 부채이 기			HAI		
	dT	-12 -18	C 611-1 -	10-12-1				
iπ)	$\frac{dx}{dt} = -k(t)$	$T - T_r$), (T:온도, t: 시	간, k: 비례 실	남수, <i>T</i> ,:주변원	·도)		
2. 문	제해결을 우	1한 단서						
-	사체 확인 /	시각: 이시						
-	사체의 온도	: 30°C						
	생존 시 체	≗: 37℃						
· 77./	방 안의 온	E: 20°C						
243	새벽 1시 시	체의 온도	28°C (비례)	상수를 위한 조	건으로 e ^{-k} =0	SOI LA	음. k=0.	22)
3. X	오지브라 구	너성 방법						
군서	7/8			내음	6			
1	슬라이어 아름기	'음라이더' 7)	등 전력 # 이름 h.	8:5 % - 1. 8:5%	1. 중아 0-01 입력			
2	ka wa	입원장이 k =	0.22 및관					
2	같값 설정 스프레이스/프	입원장이 k = 입원 장스	0.22 및관 A1	81		ci	D1	
2		입원장이 홈 = 입원 장소 입원 나무	0.22 및원 Al	81 (2)	(5.	ci fizh	D1	
2	X0: 43 X0: 43 ABMEANE 19: 28 ABMEANE	입원장이 참 = 입원 장소 입원 내용 입원 내용	0.22 101 Al X A2	81 82	(2.	Ci Fiziti Ci	D1 1 D2	
2	값값 설정 값값 설정 스프레트시트 1명 그성 스프레트시트 2명 구성	입원장이 등 = 입원 장소 입원 가운 입원 가운 입원 가운	0.22 128 A1 X A2 0	81 7(%) 82	(2.	Ci f(11)) C1 2-82)	D1 1 D2 8≢(cocs	
2	값값 설정	입력장이 Å = 입력 장소 입력 나무 입력 가유 입력 가유 입력 장소	0.22 12 12 12 12 12 12 12 12 12 12 12 12 1	81 7(%) 82 83	(2. (A	Ci (12)) C2 0.80) C3	D1 1 D2 0#(cocs D3	
2	값값 설명 값값 설명 스프레트시프 1명 구성 스프레트시프 2명 구성 스프레트시프 3명 구성	입력창여 Å = 입력 정소 입력 나용 입력 장소 입력 작소 입력 장소 입력 나용	0.22 112 Al X A2 0 A3 A2+b	81 f(X) 82 83	(E. A	Ci f(2)) C2 C3 C3 SP(1)	D1 1 D2 d=(cocs D5 D2 Eq11	
2 3 4 5 6		입원장에 참 = 일원 장소 일원 장소 일원 장소 일원 당운 일원 당운 일원 나운 지3부터 C3가	0.22 98 Al Z A2 A3 A2+h A3 A2+h	81 (위도) 82 85 약가지 프라그 & D3 -	(2. (2. (2. *2×13 * 60%7×1	Ci f(II) CC 0.80 ² C3 도려그 프레그	D1 1 D2 3€(ce.cs D3 D2 ⊑9(⊐	

- ▶ 이론 설명
- 뉴턴의 냉각법칙

(문제)

사체 확인 시각이 0시, 사체의 온도가 30℃, 생존 시 체온이 37℃, 방 안의 온 도가 20℃, 새벽 1시의 사체의 온도가 28℃(비례상수 *k*를 구하기 위한 조건이 며, *k*=0.22)일 때, 뉴턴의 냉각법칙을 이용하여 사망 시간을 추정하시오.

- ▶ GeoGebra 구성 방법
- ① 슬라이더 구성
 - 슬라이더 h(초기 설정: 최솟값 -1, 최댓값 1, 증가 0.01) 설정
 - 슬라이더 h 값을 0.01로 설정
- ② k값 설정
 - 입력창에 'k=0.22' 입력
- ③ 스프레드시트 구성(1)
 - 1행 구성하기
 - A1: 시간을 의미하는 'X' 입력
 - B1: 온도 T를 의미하는 'f(X)' 입력
 - C1: 점의 좌표를 표현하는 (X, f(X))'입력
 - D1: 각 점을 연결할 선을 의미할 'l' 입력

<그림 14> B3 논리 입력

- 29 -

* ^	·프레드시	E		-
f_x	ਡ 0 / ≣	≣ ∃ ■ ▼ ⊞ ▼	9.9	
	Α	В	С	D
1	X	f(X)	(X,f(X))	ſ
2	0	30	(0, 30)	0.02
3	0.01	29.98	(0.01, 29.98)	
4	Q X	생의		×
5	~ 02			
6	T D3	h		
7	B2 +	h (-(k (B2 - 20)))		α
8	설	정사항… 확인	취소 적용	8
0				

⑤ 스프레드시트 구성(2)

- 3행 구성하기
 - A3: 'A2+h' 입력
 - B3: 'B2+h×(-k(B2-20))' 입력
 - C3: C2 드래그

- f(x+h) ≈ f(x)+hf'(x)이고, f'(x)=-k(f(x)-20)이므로 f(x+h)=f(x)+h{-k(f(x)-20)} - 따라서 B3에 'B2+h×(-k(B2-20))' 입력
- A2: '0' 입력 B2: 시간이 0일 때의 초기값 '30' 입력 C2: '(A2,B2)' 입력
 - D2: '선분(C2,C3)' 입력

④ B3에 입력할 논리 구성하기

- 2행 구성하기

⑥ 수치 계산하기

- A3부터 C3까지 블록 지정 후 100행까지 드래그

⑦ 슬라이더 h 값 변화

- 생존 시 체온이 37℃이므로, 입력창에 'y=37' 입력

- h < 0이어야 생존했을 때의 체온을 그래프로 표현할 수 있기에 h < 0이면 서 0에 가까운 값으로 변화시킨다.(100행까지 계산했을 때, h = -0.03인 경우로 설정함.)

⑧ 사망 시간 추정하기

- y=37과 수치해석으로 구한 f(x)의 그래프와의 교점을 구하기 위해 스프레 드시트 D2 블록 지정 후 D100까지 드래그

- '교점'기능을 이용하여 y=37과 수치해석을 통해 구한 점들을 연결한 선분 과의 교점을 구함

<그림 15> 수치해석을 통해 구한 f(x)와 y=37과의 교점

- 교점의 *x*좌표가 -2.42가 나오므로, 사망 추정 시간은 대략 2시간 26분 전 인 9시 34분 경이다.

- h의 값이 0에 가까울수록 실제 오차가 적어진다는 사실에 유의하며 지도한 다.

바. 과제

1) 수업 때 배운 내용을 활용하여 실생활 문제 상황을 찾아보고, GeoGebra를 이용하여 수치 해석적 방법으로 문제를 해결한 결과물을 제출한다.

2. 학생 활동 및 결과물 분석

가. 학생 활동 결과물

교수·학습 자료를 수업에 적용하였고, 그 과정에서 학생들이 개념 및 GeoGebra 의 이해도 및 활용 능력을 확인하였다.

1) 1-5차시 결과물

1차시부터 5차시까지는 GeoGebra의 기본 기능부터 이분법, 뉴턴법, 수치미분, 뉴 턴의 냉각법칙에 대한 개념을 학습하고, GeoGebra를 이용해 주어진 문제 상황을 만족하는 결과물을 교사의 시범에 따라 제작하였다. 이때, 학생들은 수업 상황에 따라 개인별, 모둠별로 결과물을 제작하였으며, 다음 그림은 학생들이 활동하고 난 뒤의 결과물이다.

태수창	8 - 2	프레드시트					×	 기하참 		
• $f(x) = x^3 - 3x^2 + 1$	f_x	3 01	E E 🗆 🕶							
🕚 a _o = 1	田	A	8	С	D	E	ell F	0.0002	n = 0	
o b _o = 3	1	N	а	b	R	8	B1	0.0002	•	-1
o n = 0	2	0	া	3	(1, -1)	(3, 1)	а		f $x^3 - 3x^2 + 1$	
A1 = "N"	3	1	2	3	(2, -3)	(3, 1)	а	0.00015		1
C1="b"	4	2	2.5	3	(2.5, -2.125)	(3, 1)	а		a = 1	
O D1 = "R"	5	3	2.75	3	(2.75, -0.89063)	(3, 1)		0.0001		
E1 = "B"	6	4	2.875	3	(2.875, -0.0332)	(3, 1)			b ₀ = 1	3
C C3=3	7	5	2.875	2.9375	(2.875, -0.0332)	(2.9375, 0.46069)		0.00005	•	1
F1 = "B1"	8	6	2.875	2.90625	(2.875, -0.0332)	(2.90625, 0.20816)		0.0000		
C = (2.87939, 0) R = (0.6537, 0)	9	7	2.875	2.89063	(2.875, -0.0332)	(2.89063, 0.08609)				c
A = (-0.53209, 0)	10	8	2.875	2.88281	(2.875, -0.0332)	(2.88281, 0.0261)		2.87915 2.8792 2.1	87925 2.8793 2.87935	2.8794 2.87945 2.87
	11	9	2.87891	2.88281	(2.87891, -0.00364)	(2.88281, 0.0261)				
	12	10	2.87891	2.88086	(2.87891, -0.00364)	(2.88086, 0.01121)		-0.00005		
	13	11	2.87891	2.87988	(2.87891, -0.00364)	(2.87988, 0.00378)				
	14	12	2.87891	2.87939	(2.87891, -0.00364)	(2.87939, 0.00007)		+0.0001		
						1				

<그림 16> 이분법 결과물

- 33 -

<그림 18> 수치미분 결과물

나. 학생 활동 결과물 분석

5차시까지의 수업 이후 학생들에게 스스로 생활 속 주제를 찾아 배운 개념을 적 용하여 GeoGebra로 제작하고, 보고서를 작성하도록 과제를 제시하였다. 그 결과 는 다음과 같다.

① <u>2</u> 분법

이분법의 경우 구간을 정확히 2등분하여 방정식의 근사해를 찾는 방법이다. 해 당 학생의 경우 주어진 구간을 $\frac{2}{3}$ 등분하여 주어진 방정식의 근사해를 구한 것이 다. 이때, B3와 C3에 입력할 논리는 다음과 같다.

B3: 조건(f(B2)f((B2+2C2)/3) > 0, (B2+2C2)/3, B2)

C3: 조건(f(C2)f((B2+2C2)/3) > 0, (B2+2C2)/3, C2)

또한 실제 해보다 큰 유사해가 나오면 파란색으로, 작은 유사해가 나오면 빨간색 으로 점을 표현한 뒤, 시행 횟수인 *n*에 따라 점으로 표시하여 시각적으로 더욱 쉽게 확인할 수 있는 조건을 설정하였다.

이처럼 학생이 스스로 비율을 바꾸어보는 접근법을 생각하고, 논리를 구성하여 GeoGebra를 통해 확인해보며 이분법과의 결과를 비교해보는 모습을 관찰할 수 있었다.

② 뉴턴의 냉각법칙의 실제 적용

뉴턴의 냉각법칙을 학습한 뒤, 실제 물을 이용하여 시간에 따른 온도변화를 예측 하고, 이를 GeoGebra로 제작하였다. 실제 시간에 따른 온도의 데이터를 수집하 였고, 특정 값을 토대로 비례상수 값을 구한 뒤, 뉴턴의 냉각법칙을 통해 유추한 데이터와 실제 데이터 사이의 차이를 비교하였다. 학생 결과물의 경우 실제 데이 터와 뉴턴의 냉각법칙을 이용해 구한 데이터 사이의 오차가 비교적 크게 나타나 는 한계점이 있으나, 학생이 작성한 결론 및 성찰에 이에 대한 원인 분석이 제시 되어 있다. 다음은 학생이 제작한 GeoGebra 결과물 및 성찰문의 일부이다.

<그림 21> 실제 데이터 수집 장면(1) <그림 22> 실제 데이터 수집 장면(2)

<그림 23> 실제 데이터와 뉴턴의 냉각법칙을 통해 구한 데이터 비교

	지오지브라를 사용해서 계산한 50분 뒤의 값은 19.1도로 실제로 측정한 값보다
	13.9도 더 낮은 값이 나오게 되었습니다. 그리고 물이 식을 <u>때의 온도를</u> 그래프로
	나타냈을 때 실제 값이 예상값보다 그래프가 더 완만하게 나왔습니다. 이러한 오차가
	나는 이유를 예상하자면 첫 번째로는 주변 기온이 실제 값에선 조금씩 계속 변화한다
	는 점입니다. 값을 <u>예측할 때에는</u> 주변 기온이 변하지 않는다고 가정을 하고 측정을
	했기 때문에 주변 기온의 오차로 인해 값의 차이가 발생할 수 있었습니다. 그리고 두
	번째로는 사용한 컵 때문입니다. 제가 사용한 컵은 조금 두껍고 긴 종이컵입니다. 그
	종이컵은 카페에서 테이크아웃 컵으로도 사용하는 컵과 유사해 물이 식는 것을 방해
	할 수 있을 것입니다. 이러한 다양한 한계로 인해 예상된 값과 실제 값이 다르게 나
	타난 <u>것으로 예상됩니다.</u> 세 번째로는 h의 값이 O에 충분히 가까운 값으로 설정하지
	못하였기 때문입니다. 5O분까지 추측해야 하기에 시행 횟수를 늘리는 방법도 <u>있었지</u>
	<u>만 h</u> 값을 <u>크게하는</u> 방법을 선택하여 0.5로 설정했기에 실제 값과의 오차가 크게
	나왔습니다.
결론 및 성찰	박아에도 주지 내 피스키님의 은 특히 거리아 드 초한 ㅋ ㅋ 페파 곧 마토스네트 과에 댄ᄎ!

<그림 24> 학생 성찰 결과

③ SEIR 모형

전염병 감염 추이 예측 모형인 SEIR 모형이 미분방정식을 이용한 것이라는 사실 을 알고 난 뒤, GeoGebra를 이용하여 이를 제작하였다. 이때, β: 감염률, γ: 회복 률, R₀: 기초감염재생산수를 의미하는 변수는 슬라이더를 이용하여 설정하였다. *S*,*E*,*I*,*R*(*S*: 감염대상군, *E*: 접촉군, *I*: 감염군, *R*: 회복군)에 대한 논리 구성은 아래의 미분방정식을 이용하여 구성하였다.(Junling Ma, 2020)

$$S + E + I + R = 1$$
$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dE}{dt} = \beta SI - aE$$
$$\frac{dI}{dt} = aE - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

이를 통해 β, γ, R₀에 대한 데이터만 알고 있다면 감염병이 얼마나 확산할지 예 측할 수 있다. 다음은 학생이 제작한 SEIR 모델의 결과물이다.

고등학교 수준에서 해결하기 어려운 미분방정식으로 이루어진 감염병 확산 모델 을 직접 구현해보고, 아직 정해지지 않은 변수는 슬라이더를 이용해 설정한 뒤, 선행 연구에서 찾은 지역별 변수 값을 설정하고 결과를 확인하였다. 그 과정에서 학생 스스로 관계식을 세우고, 이를 구현하는 논리를 구성하였으며 수치해석을 통해 학생이 자신의 탐구 과정을 끝까지 완수하는 모습을 관찰하였다.

④ 영화'설국열차'상황 분석

영화 '설국열차'의 장면 중 '열차 밖으로 팔을 내민 후 7분이 지났을 때, 팔이 완 전히 얼어버린 상황'을 보며 시간에 따른 팔의 온도변화를 탐구하였다. 영화 속 에서 열차 밖의 온도를 -50℃, 원래 팔의 온도를 35℃, 열차 밖에서 7분이 지 난 후의 팔의 온도를 -21℃로 설정하였다. 이를 토대로 시간에 따른 팔의 온도 변화를 예측할 수 있다는 결론을 도출하였다. 그 결과는 다음과 같다.

<그림 26> 영화 속 장면 분석 결과

위의 결과들을 통해 학생들은 수업 이후에 배운 개념과 GeoGebra의 기능을 활 용하여 예시로 설명했던 상황뿐만 아니라 다양한 주제와 새로운 문제 상황을 주 도적으로 탐색하고 해결하는 모습을 보여주었다.

V. 결론 및 제언

1. 결론

본 연구는 학생들이 고등학교 수학에서 배운 내용을 적용 및 활용할 수 있는 역량을 높여줌과 동시에 공학적 도구를 능숙하게 활용할 수 있도록 하는 교수·학 습 자료 개발에 목적을 하고 있다. 이를 위하여 GeoGebra의 기본적 이해부터 수 치해석을 주제로 한 이분법, 뉴턴법, 수치해석, 뉴턴의 냉각법칙을 총 5차시 분량 의 교수·학습 자료를 제작하고, 이를 활용하여 수업을 진행하였다. 수업의 과정에 서는 학생들의 개별, 모둠별 수업으로 진행하였고, 수업 과정에서 학생들이 직접 결과물을 제작하도록 지도하여 GeoGebra에 대한 숙련도를 향상시켰다. 이후 학 생들에게 개별 과제를 부여하고 그 결과물을 받아 분석하였다. 이와 같은 과정을 통해 다음과 같은 결론을 얻을 수 있었다.

첫째, 본 연구로 개발된 교수·학습 자료는 학생들이 수치해석을 이해하고 실제 사용하는 것의 숙달에 효과적임을 알 수 있었다. 학생들은 이 자료를 통해 고등 학교 수학에서 다루는 내용이나 고등학교 수준에서 다루기에는 한계가 있는 내 용까지 수치해석을 이용해 문제를 해결해나감으로써 학생들이 해결할 수 있는 문제의 범위를 넓혀주었다. 이를 통해 학생들의 문제해결 범위와 문제해결 역량 의 향상에 많은 도움을 주었다고 판단된다.

둘째, 학교에서 배운 수학이 문제 풀이에 국한되어 사용되는 것이 아니라, 수 치해석과 GeoGebra라는 도구를 이용해 2015 개정 교육과정이 요구하는 다양한 상황의 문제를 해결하는 능력을 갖추게 되었다. 학생들이 자신의 현실에서 관찰 한 문제 상황을 분석하고, 문제해결을 위해 필요한 논리를 스스로 구성하며, GeoGebra를 활용해 이를 구현한 뒤 문제를 해결하는 모습을 관찰하였다.

셋째, 이 자료는 학생들이 GeoGebra의 다양한 사용법을 익히고 숙달하는 데

- 39 -

도움을 주었다. GeoGebra를 처음 접하는 학생들을 위해 수업의 첫 차시에서 GeoGebra에 대한 기본적 이해와 기능을 가르쳐주고, 각 차시마다 교사의 시범하 에 수치해석의 과정에서 불필요한 계산을 대신해 주는 도구로서의 활용뿐 아니 라 결과물을 보다 효과적으로 이해할 수 있도록 조건을 부여해 다양한 시각적 효과를 보여주는 것까지 다뤄봄으로써 학생들의 GeoGebra 활용 능력이 향상되 었다고 판단된다. 이에 앞으로 학생들이 수학을 다룰 때, GeoGebra를 적극적으 로 활용할 것으로 기대한다.

넷째, 이 자료는 학생들의 수학에 대한 흥미를 높여주고, 학생들의 현실에 있 는 문제를 해결할 수 있는 문제 해결력을 신장시키는 데 도움을 주었다. 수학을 학습한 후, 주변에 관심이 있는 영역에서 수치해석을 이용해 문제를 해결하고, GeoGebra를 활용하여 복잡한 계산을 처리하였다. 또한, 일련의 과정에서 학생들 의 생각의 결과들을 그래프로 확인하며 과정을 검토 및 수정함으로써 학생들의 사고가 발전되어가는 모습을 관찰하였다. 이런 과정에서 학생들은 더 적극적으로 수업에 임하였으며, 수학을 활용해 문제를 해결해나가며 수학에 대한 성공 경험 과 흥미를 높이는 경험을 하였다.

2. 제언

본 연구는 고등학교 수학 내용에서 수치해석을 활용한 교수·학습 자료 개발과 적용, 이에 따른 학생들의 문제해결 역량 및 GeoGebra 활용 능력을 관찰하였으 며, 학생들의 문제해결 역량 및 GeoGebra 활용 능력에 대한 질적 연구를 진행하 였기에 객관적인 연구 결과를 제시하지 못했다는 한계가 있다. 또한, 실제 수업 에서 학생들에게 개념을 지도함과 동시에 GeoGebra 활용 및 교과 외의 내용까 지 가르치기에는 수업시수에서 무리가 있었다. 더 나아가 양적 연구까지 연결하 기 위해서는 교사의 수업 재구성을 통한 충분한 수업 시수 확보가 필요할 것으 로 예상된다. 이러한 점을 고려하여 후에는 사전 설문과 사후 설문을 통해 학생 들의 문제해결 역량에 대한 양적 연구가 후속되길 기대한다.

Ⅵ. 참고문헌

[1] Ward Cheney, David Kincaid (2013). Numerical Mathematics and computing 7th edition(pp.150-158). 출판: Cengage Learning

[2] Dennis G. Zill (2013). A First Course in Differential Equations with Modeling applications 11th Edition(pp.2). 출판: Cengage

[3] 양성현(2012). 수학 교수학습에서 GeoGebra의 역할과 활용 방안에 관한 연 구. 성균관대학교 일반대학원 박사학위 논문.

[4] 우정호(2011). 수학 학습-지도 원리와 방법. 서울: 서울대학교출판문화원

[5] Junling Ma (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, (5), 129–141.

<부록 1> 1차시 활동지(1)

2학년	수학॥	단원	<i>만</i> 원 공학적 도구를 활용한 미적분 탐구						수행
		()반	()번	이름:			평가 1
학습	늨목 표		27143	나간 무이	20/7+?				1

1. 네이버에 지오지브라를 치면 이렇게 나온다.

지오지브라					
App Downloads	Resources	Profile	GeoGebra Classic	Classroom	News Feed

- 2. 그렇다면 지오지브라를 쓰는 이유는 무엇일지 찾아서 적어봅시다.

<2015개정 교육과정 수학॥의 교육 목표>

- 42 -

Ø

<부록 2> 1차시 활동지(2)

3. 우리가 사용할 수 있는 도구들을 살펴보자.

이미지	•	AND STATE	·↓	Þ.	
이름					
이미지	O,			<u>a=2</u> ↓	₽,
이름					

4. 아이콘은 알겠는데 어떻게 사용하는지 모르겠어요. 어떻게 해야하죠? ✓ 사용하려고 하는 아이콘 위에 마우스 커서☆를 올려놓으면 설명이

다음 그림과 같이 뜹니다.	수직선 점과 수직인 직선을 선택하세요.

- 5. 내가 삼각형을 그리고 싶은데 어떻게 그려야 할까?
 ∅
- 6. '변수'를 설정하고 싶을 때 어떻게 해야할까? ∅

<기호 사용법>

수학기호	단축키	수학 표현	입력식	지오지브라 입력창
+	+	x+2	x+2	입력: x+2
_	_	x-2	x-2	입력: <mark>x-2</mark>
×	* (Shift + 숫자8)	2x	2*x	입력: <mark>2*x</mark>
<u>.</u>	/	$\frac{x}{2}$	x/2	입력: x/2
거듭제곱	^ (Shift + 숫자 6)	x^2	x^2	입력: x^2

<부록 3> 2차시 활동지(1)

2학년	수학॥	단원	t 함수의 연속						
		()반	()번	이름:			평가 2
학습	늨목 표	0	唱时(化放	721)	을 이용한	1167714101	근사	1

- 1. 사잇값 정리란?
 - 함수 f(x)가 닫힌구간 [a,b]에서 연속이고 $f(a) \neq f(b)$ 이면 f(a)와 f(b)사이의 임의의 실수 k에 대하여 f(c) = k인 c가 열린구간 (a,b)에 적어도 하나 존재한다.

〈그래프를 활용한 사잇값 정리의 이해〉

- 만약 k = 0이라면, 상수 c가 의미하는 것은 무엇인가?
- 3. 지오지브라의 입력창에 $f(x) = x^3 2x^2 1$ 을 입력해봅시다.
 - (1) 사잇값 정리에 의하면 f(x) = 0의 실근은 열린구간 (a, b)에 있다고 할 수 있다. a, b가 될 수 있는 수를 적절하게 적어봅시다.
 - (2) 이 때 f(a), f(b), f(a)f(b)의 부호를 생각해봅시다.

- 'C3' 칸에 입력해야 할 조건을 구성해봅시다.

순서	구성			내용						
	스프레 드시트	입력 장소	A1	B1	C1	D1	E1			
1	1행 구성	^행 입력 성 내용 N		а	b	R	В			
	스프레 입력 드시트 장소		입력 장소 B2 B2		C2	D2	E2			
Z	2 2행 구성	입력 내용	0	a_0	b_0	(B2, f(B2))	(C2, f(C2))			
3	3 점 설정 2 판간색, 돈2 파란색									
	스프레 드시트	입력 장소	A3	B3	C3	D3	E3			
4	3행 구성	입력 내용	A2 +1	조건(f(B2)f((\$B2+\$C2)/2)>0,(\$B2+\$C2)/2,B2)		(B3, f(B3))	(C3, f(C3))			

5. 지오지브라 구성 방법

Ø

4. 이분법이란?

(5) (3)에서의 열린구간 중 근을 찾기에 효과적인 열린구간은?

(4) 근을 포함하는 열린구간의 양 끝점에서의 함숫값의 특징은?

(3)
$$a, b, \frac{a+b}{2}$$
 중 $f(x) = 0$ 의 실근을 포함하는 열린구간은?

<부록 4> 2차시 활동지(2)

<부록 5> 3차시 활동지(1)

2학년		단 원				미분			수행
	수학॥	()반	()번	이름:			평가 3
학습	글목표	@ 121.	县(石石	19 1	しなる人)을 이용한	비디지신의	근샀	71

1. 미분을 활용한 접선의 방정식

함수 f(x)가 x = a에서 미분가능할 때, 곡선 y = f(x) 위의 점 (a, f(a))에서의 접선의 기울기는 f'(a)이고, 접선의 방정식은
 ()이다.

〈그래프를 활용한 접선의 방정식 이해〉

- 2. 1번에서 그린 접선이 x축과 만나는 교점을 $(a_{1,0})$ 이라 할 때, $(a_{1,f}(a_{1}))$ 에서의 접선의 방정식을 그래프로 그려봅시다.
- 3. 1번에서의 접선을 l_0 , 2번에서의 접선을 l_1 이라 할 때, 각 접선이 x축과 만 나는 점의 움직임의 특징을 적어봅시다.

D3

D2 드래그

3행 구성	입력 내용	A2+1	x(D2)	C2 드래그
실제 근과의	기하창 '입력	' 칸에 근(<i>f</i> (:	x)) 입력	
오차 확인	f(x) = 0 의	근과 뉴턴-랩	슨법을 이용한	<u></u> 근삿값 사이의 오차 확인

A3

입력 장소

애니메이션 시작

1	함수 입력	입력창에 x^3	입력창에 $x^3 - 2x^2 - 1$ 입력								
2	입력 상자 및 슬라이더	'입력 상자' '슬라이더' 기 '슬라이더' 기	기능에서 캡신 능 선택 후 능 선택 후	^년 에 <i>f</i> 입력 8 이름 a ₀ , 최솟 이름 n, 최솟	& 연결된 대상에 함수 $f(x)$ 는값 -10, 최댓값 10 입력 값 0, 최댓값 50, 증가 1 9	신택 입력					
3 3 1행 구성	스프레드시트	입력 장소	A1	B1	C1	D1					
	1행 구성	입력 내용	Ν	а	l	b					
1	스프레드시트	입력 장소	A2	B2	C2	D2					
4	2행 구성	입력 내용	0	a_0	f'(B2)(x-B2) + f(B2)	근(C2)					
5	점 설정	C2, D2의 두 설정사항 고·	- 점에 대하여 급기능 대상이	 나타나기 위	한 조건 A2 = n 입력						

B3

슬라이더 n의 설정사항에서 애니메이션 속도: 0.1, 반복: 증가

C3

내용

5. 지오지브라 구성 방법

구성

스프레드시트

애니메이션

순서

6

7

8

4. 뉴턴-랩슨법 이란? ∅

<부록 6> 3차시 활동지(2)

- 3. 수치해석과 수치미분

Ø

2. 도함수 f'(x)를 극한을 사용하여 표현해봅시다.

〈그래프를 활용한 미분의 이해〉

______ 1. 미분이란?

		단원				미분			수행
2학년	수학॥	()반	()번	이름:			평가 4
학습	늨목표	@ 4	礼子	1(午礼	<u> 외분)을</u>	이상황탄	23HE	수정	

<부록 7> 4차시 활동지(1)

<부록 8> 4차시 활동지(2)

4. 지오지브라 구성 방법

순서	구성			내용						
1	함수 입력	입력창에 x^3- 입력창에 $f'(x)$	2x ² -1 입력) 입력							
2	슬라이더 만들기	'슬라이더' 기능	슬라이더'기능 선택 후 이름 h, 최솟값 -1, 최댓값 1, 증가 0.01 입력							
2	스프레드시트	입력 장소	A1	B1	C1	D1				
3 1	1행 구성	입력 내용	Х	$f(\mathbf{X})$	(X, $f(X)$)	l				
1	스프레드시트	입력 장소	A2	B2	C2	D2				
4	2행 구성	입력 내용	0	f(A2)	(A2, B2)	선분(C2,C3)				
F	스프레드시트	입력 장소	A3	B3	C3	D3				
5	3행 구성	입력 내용	A2+h	$f(A2) + h \times f'(A2)$	C2 드래그	D2 드래그				
6	함수 그래프 추정	A3부터 D3까지	43부터 D3까지 블록지정 후 60행까지 드래그							
7	함수 <i>f</i> 의 그래프와 비교	<i>h</i> 를 변화시켜	수치해석을 통	해 추측한 그래프와 '	원래의 그래프					

5. 예제를 활용한 수치해석 연습

NO.	f'과 f 사이의 관계	초기값	정답(함수 <i>f</i>)
1	y'-2y=0	f(0) = 1	e^{2x}
2	y' + xy = 0	f(0) = 1	$e^{-rac{1}{2}x^2}$

<부록 9> 5차시 활동지

2학년	수학॥	먄	붠					미분			수행
			()반		()번	이름:			평가 5
학습목표			4	71346	1(-	別	기분)을	이킹카	617/01	ĮĮ	에누

1. 뉴턴의 냉각법칙

- 물체가 냉각되는 비율은 물체와 그 주위의 온도차에 비례한다는 법칙

- $-\frac{dT}{dt} = -k(T T_r), (T: 온도, t: 시간, k: 비례상수, T_r: 주변온도)$
- 2. 문제해결을 위한 단서
 - 사체 확인 시각: 이시
 - 사체의 온도: 30°C
 - 생존 시 체온: 37℃
 - 방 안의 온도: 20℃

- 새벽 1시 사체의 온도: 28℃ (비례상수를 위한 조건으로 e^{-k} = 0.8이 나
 음. k = 0.22)

3.	지	오지	브라	구성	밧법
_					

순서	구성	내용							
1	슬라이더 만들기	'슬라이더'기능 선택 후 이름 h, 최솟값 −1, 최댓값 1, 증가 0.01 입력							
2	k값 설정	입력창에 $k = 0.22$ 입력							
3	스프레드시트	입력 장소	A1	B1	C1	D1			
	1행 구성	입력 내용	Х	$f(\mathbf{X})$	(X, $f(X)$)	l			
4	스프레드시트	입력 장소	A2	B2	C2	D2			
	2행 구성	입력 내용	0		(A2, B2)	선분(C2,C3)			
5	스프레드시트	입력 장소	A3	B3	C3	D3			
	3행 구성	입력 내용	A2 + h		C2 드래그	D2 드래그			
6	함수 그래프 추정	A3부터 C3까지 블록지정 후 60행까지 드래그 & D3 블록지정 후 60행까지 드래그							
7	사망시간 추정	입력창에 $y=37$ 입력 후 사망시간 추정							