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Abstract 

The human body is composed of 1.2 to 1.5 gallons of blood which is approximately 7%-10% 

of the weight of an adult. The blood constitutes of plasma and blood cells, and the ratio is 55% and 

45%. The plasma in the blood is responsible for carrying proteins, hormones and nutrients that help 

the blood clot and remove waste components from the human body. The blood cells in the body 

carry oxygen to the tissues, fight infections and also helps blood to clot. An excessive amount of 

blood cells or deficiency of blood cells can indicate various health problems like anaemia, 

leukaemia, thalassemia, etc. The most common form of malignancy in kids is leukaemia which 

represents 30% of all pediatric cancers. Classification of cells procured from bone marrow aspirate 

smears and cell differential count is important for hematologic disease diagnosis. But the process 

of classification and cell counting requires thorough manual intervention and is error-prone and 

tedious. Machine learning and deep learning have successfully generated accurate and excellent 

results in the medical domain, especially for automating the medical field's diagnosis proc ess. The 

only drawback is the requirement of ample data and a balanced dataset to develop an efficient model. 

The structure and pattern of data also play an important role in enhancing the performance of a 

model.  

In our research work, we take advantage of generative adversarial networks (GAN) and deep 

learning models to enhance the classification of microscopic single-cell images obtained from 

peripheral blood smears. To enhance classification, our primary goal was to balance and normalize 

the dataset. We use GAN for three reason in our proposed work. First, we utilize GAN for stain 

normalization. Second, we use GAN to generate synthetic images of blood cells that contained 

more than thousand images but less than six thousand images, per cell type in the dataset. Third, 

for cell types having less than hundred images we propose few-shot image generation based on 
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GAN architecture and meta-learning framework. We combine the original and the synthetic data 

to form a balanced dataset. After stain normalization and image generation, we obtain a balanced 

and normalized dataset which is used by the classification model. For classification, we proposed 

a novel deep learning model, SENet-154-GE which uses the original data and the balanced dataset 

individually to demonstrate how normalizing and balancing a dataset through proper models and 

algorithms can enhance the performance of a classification model and improve the classification 

accuracy.  

For stain normalization, we have proposed a modified version of cycle consis tency GAN 

(CycleGAN). We have incorporated Wasserstein GAN with gradient penalty (WGAN-GP) for the 

CycleGAN training and concentrated on the adversarial loss, cycle consistency loss and identity 

loss for building our model. Also, for the generator, instead of an encoder, transformer, and 

decoder network, we have used a U-Net architecture. For generating images of cell types with a 

moderate number of images, we have built a three-network GAN architecture consisting of a 

classifier, generator and discriminator. We named the model C-WGAN-GP since it’s a classifier-

based GAN architecture which incorporates the loss function of WGAN-GP. For cell types with 

very less images, we have proposed a meta learning based GAN framework that is trained on a 

larger dataset and, through learning the parameters, can generate images with fewer examples. We 

have incorporated the squeeze-and-excitation networks (SE) into the aggregated residual 

transformations (ResNeXt) architecture. We have implemented SENet-154 model and combined 

the gather excite model with SENet-154 for crucial and detailed feature extraction. We named the 

novel deep learning classification model SENet-154-GE. 

For evaluation, we have used various evaluation metrics such as structural similarity index 

measurement (SSIM), Frechet inception distance (FID), and inception score (IS) for stain 

normalization. FID, precision, recall, F1-score, SSIM, L1 and L2 error, IS and learned perceptual 
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image patch similarity (LPIPS) were used for evaluating C-WGAN-GP. We used FID, LPIPS and 

IS for evaluating few-shot image generation. We assessed the performance of the SENet-154-GE 

classification model through accuracy, specificity and sensitivity. We performed an ablation study 

to demonstrate the importance of each module in our proposed work, and the results show that our 

proposed approach can significantly enhance the performance of classifying microscopic single-

cell images obtained from peripheral blood smears.  
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Chapter 1: Introduction 

 
The peripheral blood smear is a procedure where count of various circulating blood cells is 

taken by viewing a blood sample under a microscope. This procedure helps in checking or 

detecting any abnormalities in the count or appearance of the blood cells. Blood is responsible for 

carrying nourishment, hormones, antibodies, electrolytes, vitamins, heat, immune cells and 

oxygen to the body tissues. The blood of the human body consists of plasma and blood cells. Blood 

cells can be subcategorized into red blood cells, white blood cells and platelets. Plasma is the 

liquid component of the blood that makes around 55% of the content of the blood [1]. The rest, 

45%, constitutes the red blood cells, white blood cells and platelets [1]. Red blood cells are 

responsible for carrying oxygen from the lungs to the rest of the body parts. Red blood cell is also 

known as erythrocytes. White blood cells or leukocytes are responsible for fighting infection and 

help in building immunity against the infections. Platelets are responsible for blood clotting. These 

blood cells are prepared or made in the bone marrow of a human being. The bone marrow is known 

as the spongy tissue present inside our bone and contains stem cells that creates all types of blood 

cells. The creation, development and production of the new blood cells in the bone marrow is 

known as hematopoiesis.  

Peripheral blood smear is a test to detect problems in the human body's red blood cells, white 

blood cells or platelets. Healthcare professionals take a sample of blood from the vein of the 

patient's arm. Special stains are then used on the blood sample, and the sample is examined under 

a microscope to observe the size, shape, number and if any abnormalities are present in the cells. 

First, a complete blood count (CBC) test is performed, and if there is any abnormality in the blood 

cell count, a peripheral blood smear test is needed to diagnose further. A peripheral blood smear 
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test also helps determine the type of infection by identifying the types of white blood cells. There 

are various other reasons why a peripheral blood smear test is done. For example, it explains the 

reason for unintentional weight loss, can provide information about the cause for excess bleeding 

and bruising, to find the reason for low platelet count, to detect and diagnose blood disorders, to 

evaluate the cause of bone pain or enlargement of the lymph nodes, spleen or liver [2]. A blood 

smear can provide the information about count of each type of blood cell, the size of the cells, 

shape as well as differences in the sizes, etc. In Table 1, we have provided the names of some of 

the disorders related to each cell type, i.e. red blood cells, white blood cells and platelets.  

Table 1: Examples of disorders related to each cell  type 

Red Blood Cells White Blood Cells Platelets 

Iron-Deficiency 

Anemia 

Acute or Chronic Leukemia Myeloproliferative 

Disorders 

Sickle Cell Anemia Lymphoma Thrombocytopenia 

Hemolytic Uremic 

Syndrome 

HIV Bernard Soulier Disease 

Acute Bleeding Hepatitis C Glanzmann’s 

Thrombasthenia 

Maturation Disorders Parasitic Infections Hermansky Pudlak 

Syndrome 

Inflammation Fungal Infections Jacobsen Syndrome 

Neoplasia Lymphoproliferative Diseases Lowe Syndrome 

Chronic Disease Idiopathic Thrombocytopenia TAR Syndrome 

Marrow Damage Autoimmune Neutropenia TTP 

 

In Figure 1, we present how a sample of blood taken for peripheral blood smear test looks 

under the microscope. Eosinophil, basophil, neutrophil, lymphocyte and monocyte are the 

subtypes of white blood cells. Erythrocyte is red blood cells in Figure 1.  
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Figure 1: Sample of peripheral blood smear under a microscope [3]  

Microscopic single-cell images refer to those images that contain an individual cell type, as 

shown in Figure 2. We have shown examples of a few cell types: basophil, eosinophil, erythroblast, 

immature granulocytes, lymphocyte, monoblast, monocyte and myeloblast, in Figure 2.

 

Figure 2: Examples of few cell types 
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Detection and diagnosis of blood related diseases or disorders require classification of these 

cell types, which is currently done manually, prone to error and requires a lot of time. 

Automatizing this process would help in the advancement of the medical domain and is a 

necessary requirement. Deep learning approaches have recently gained remarkable outcomes for 

medical image analysis, detection and classification. Machine learning and deep learning 

algorithms contributes in automatizing the process of diagnosis, accurate decision making and 

prognosis of a health problem which helps the doctors to find proper solutions. There has been 

rapid advancement in the field of medical imaging and analysis and also in the enhancement of 

classification outcomes. When handling medical data, there are certain constraints. Medical data 

are confidential and protected by patient data laws and these laws differ from country to country 

[4]. This makes the accessibility of medical data complicated and difficult. Machine learning or 

deep learning models require a large amount of data to train any model and to build an accurate 

and efficient model. But, in the medical domain, there is a problem of data scarcity. Several big 

research organizations and hospitals have made blood cell data anonymous and made them openly 

and freely available to the public, but they too are in less numbers [5]. Also, annotations of those 

data are done only once and show incorrectness and significant variations. Another issue with 

medical data is the data imbalance problem where data for one medical scenario exists in 

abundance, but there is very less data for the other medical scenario.  

According to European Hematology Association (EHA), around 80 million people are 

currently affected by blood diseases or disorders in the European Union [6,7]. According to their 

reports, almost half of leukaemia, lymphoma or myeloma patients lose their lives due to 

inaccessible, incorrect or late diagnoses [6-7]. The average time for leukaemia diagnosis is 

estimated to be 14 days [6-7]. Machine learning has achieved significant outcomes in error 

reduction, fastening the diagnosis process, reducing the cost of care through reducing manual 
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intervention, and providing contextual relevance to medical data and diagnosis. For data scarcity 

and imbalance problems, few-shot learning and generative adversarial networks (GAN) [8] have 

become famous for learning from small data and generating realistic synthetic data that would 

have no confidentiality problem and can be used for various research purposes. Data generated 

from GAN captures the distribution of the original data and can be used for developing real-time 

medical applications. Synthetic data generated by GAN has been fruitful in enhancing the 

classification of medical images and also in improving the process of automating medical image 

analysis.   

In this thesis, we propose novel generative adversarial networks models and a novel deep 

learning model for enhancing the classification of microscopic single-cell images obtained from 

peripheral blood smears. We focus on four tasks in this thesis: data acquisition and preparation, 

stain normalization, data synthesis for solving data imbalance problem and classification. In the 

data acquisition and preparation phase, we collect peripheral blood cell images from different data 

sources and preprocess the data with the help of medical experts. Since we collected data from 

different data sources that used different stains for their experiments, we have performed stain 

normalization because different color intensities and multiple variations can affect the 

performance of any classifier. After stain normalization, we merge the dataset through expert 

intervention. Then we generate synthetic microscopic single-cell images using two generative 

adversarial networks model. We propose a three-network GAN architecture for generating images 

of the cell type containing more than thousand images. We propose a meta-learning based GAN 

architecture for few-shot image generation. We propose a few-shot image generation model for 

the cell types containing less than hundred images. We combine original and generated data to 

form a balanced and normalized dataset. We propose a novel deep learning model that is trained 

on the normalized and balanced dataset to classify microscopic single-cell images obtained from 
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peripheral blood smears. The main contribution of this thesis is as follows: 

• We collaborated with medical experts to form a new dataset. The new dataset was 

created by combining microscopic single-cell images obtained from two different 

sources. We preprocessed the data with expert intervention and also performed stain 

normalization before combining the datasets to form a single dataset.  

• We have proposed a modified version of CycleGAN [9] for stain normalization.  

• We proposed a classifier-based GAN architecture for generating images of the cell 

types containing more than thousand images but less than six thousand images.  

• For cell types containing less than hundred images, we incorporated the meta-

learning framework on the GAN architecture for few-shot image generation. 

• We proposed a novel deep learning model, SENet-154-GE, for the classification of 

microscopic single-cell images obtained from peripheral blood smears. 

The rest of the thesis is structured and organized in the following way: Chapter 2 presents the 

literature review of each module we proposed in our thesis. Chapter 3 gives details about the 

proposed methodology, its design and conceptualization. In chapter 4, we discuss the 

implementation results and performance analysis of each proposed module. Chapter 5 concludes 

the thesis along with a discussion.  
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Chapter 2: Literature Review 

 
In this section, we present the literature review of relevant works on medical image 

classification, generative adversarial networks and few-shot image generation. The rapid 

technological advancement of artificial intelligence (AI) has achieved remarkable success in the 

medical domain. Machine learning brings new promises to clinical diagnosis and decision making 

through medical image analysis [10-12]. With millions of published research studies in the last 

decades, machine learning for medical image processing has become a trending subject of research 

[13]. In the healthcare domain, deep learning algorithms address a wide variety of problems, such 

as personalized treatment, disease monitoring, and cancer screening [14]. Deep learning in medical 

image analysis involves pattern recognition, image mining and computer vision such as 

segmentation, registration, detection and classification, etc. [15-16].  

Enormous medical data reviewed by medical experts are now available on various data sources 

online, but the two most frequent problems with the medical datasets are imbalanced data 

collection and the lack of labeled or annotated data [17-19]. Not all labeled datasets are publicly 

available, and annotating data is a tedious task that requires manual intervention and is expensive 

as well as time-consuming. Supervised algorithms in machine learning require labeled datasets, 

but lately, the lack of labeled data has shifted the focus to semi-supervised, unsupervised or 

transfer learning models in machine learning for medical image analysis [20,21]. Machine learning 

consists of various types of learning that can be broadly categorized into four types and further 

subdivided into fourteen subtypes [22]. Figure 3 shows the types of learning in machine learning. 

We have classified the existing studies into five broad categories: generative adversarial networks, 

stain normalization, few-shot learning, few-shot image generation, and medical image analysis 
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and classification.   

 

Figure 3: Types of learning in machine learning [22] 

2.1 Generative Adversarial Networks (GAN) 

Learning the hidden pattern or underlying structure of the data with no supervision is known 

as unsupervised learning. Examples of unsupervised learning are clustering, dimensionality 

reduction, feature reduction etc. Generative modeling is an unsupervised learning task that takes 

training samples as input from some distribution and learns to generate new samples that represent 

the same distribution. Generative modeling addresses density estimation which is a core problem 

in unsupervised learning. Figure 4. presents the taxonomy of generative models. Explicit density 

estimation assumes the prior distribution of the data and estimates the true probability density 

function over the sample space. Whereas implicit density estimation learns to model sample from 

the true distribution without explicitly defining it. Explicit density can be categorized into tractable 

and approximate density. Fully visible belief networks such as neural autoregressive distribution 

estimation (NADE) [23], masked autoencoder for distribution estimation (MADE) [24],
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Figure 4: Taxonomy of generative models [25]  

variational autoencoders, Boltzmann machine, PixelRNN [26] and PixelCNN [27] are some of the 

explicit density models. Generative stochastic networks and generative adversarial networks are 

forms of implicit density models. Generative Adversarial Networks (GAN) have demonstrated 

outstanding performance in image synthesis tasks; It is now possible to generate high-quality 

images with both fidelity and diversity because of the recent development of deep generative 

models. Although they often require many training examples to achieve a high-quality synthesis, 

to train a GAN from scratch for a new domain, we need many data to feed the generator and days 

of training time. Most deep generative models require many training images from a particular 

category to create new images for that category, which are sometimes prohibitively expensive to 

obtain. Given a limited amount of training data, the performance of generative adversarial 

networks (GAN) deteriorates dramatically. This is due to the discriminator having to memorize 

the exact training set. GANs are prone to overfitting without enough training data, resulting in 

mode collapse and training instabilities. GAN's application in domains where collecting a large 

dataset is not practicable is limited by its reliance on the availability of training data. 
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Pretrained GAN models are sometimes used to facilitate downstream tasks in a target domain 

with limited training data. This predicament usually develops as a result of costly data collection 

or privacy concerns in medical or biological applications [28]. Researchers concentrate on the 

difficult scenario of developing a GAN model with minimal training data. One of the important 

findings that inspired many research works is that a well-trained GAN may generate realistic 

images not seen in the training dataset [29-31], proving GANs' ability to generalize and capture 

the training data in a variety of ways. Likely arising from novel combinations of 

information/attributes/styles, StyleGAN [32] includes generalization of GANs for scenarios  in 

which there are limited data. StyleGAN transfers style from one domain to another. GANs can be 

used to augment the training set via realistic data generation, alleviate overfitting or provide 

regularizations for classification [33,34], segmentation [35], or detection [36]. 

Recent efforts are centered on more stable objective functions [37-39], more advanced 

architectures [40-43] and better training strategy [44-46]. As a result, both the visual fidelity and 

diversity of generated images have increased significantly. For example, BigGAN [47] is able to 

synthesize natural images with a wide range of object classes at high resolution, and modified 

StyleGAN [48] can produce photorealistic face portraits with large varieties, often 

indistinguishable from natural images. However, the above work paid less attention to the data 

efficiency aspect. A recent attempt [49] leverages semi- and self-supervised learning to reduce the 

amount of human annotation required for training.  

2.2 Stain Normalization 

In computer-aided diagnosis, stain normalization of histopathology images is a promising 

technique. The effects of staining intensity and color difference are handled in various pathological 

imaging systems using this method. Deep learning has recently risen to prominence in the field of 
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digital pathology image analysis. However, special pre-processing steps are required to train a 

valid deep learning model due to the present problems of digital pathology (color stain fluctuation, 

big pictures, etc.). Many of the medical phenomena now addressed in clinical medicine and 

pathology can be diagnosed via medical imaging. The quantitative analysis of histopathological 

images is influenced by color and intensity changes in stained histology slides. Stain normalization 

is a term used in biomedical image analysis to describe the process of transferring the color 

distribution from the source image to the target image. Stain normalization is typically 

accomplished using a pixel-by-pixel color mapping model that is dependent on a single reference 

image, and it is difficult to ensure precise style transformation between image datasets. Although 

deep learning-based algorithms can theoretically tackle this problem, their intricate structure leads 

to low computational efficiency and artefacts in the style transition, limiting its practical 

application. 

To solve this well-defined problem of stain color fluctuations, stain normalizing methods have 

been developed. These approaches can be divided into two categories: traditional approaches, 

which attempts to match the image's color spectrum to that of the reference template image, and 

GAN based approach, which attempts to transfer style or color domain from one stain to another. 

Reinhard et al. [50] align the color channels to match the characteristics of the reference picture. 

However, because the same transformation is used across the photos and does not account for the 

individual contribution of stain dyes to the final color, this can result in incorrect color mapping. 

There are also stain-separation approaches that do normalization on each staining channel 

separately. Macenko et al. [51], for example, identify the stain vectors by converting RGB to 

Optical Density (OD) space. On the other hand, Khan et al. [52] provide a method for estimating 

the stain matrix that uses a color-based classifier to assign each pixel to the relevant stain 

component. According to Babak et al. [53], these approaches fail to account for the spatial aspects 
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of the tissue structure, resulting in incorrect staining. Nonetheless, the majority of the methods in 

this class rely on a well-chosen reference template image, which has a significant impact on the 

methods' outcomes. The third type of solution is pure learning-based approaches, which treat stain 

normalization as a style-transfer problem. For example, BenTaieb et al. [54] use auxiliary 

Generative adversarial networks (auxGANs) with an auxiliary task on top, such as a classifier. 

They present a GANs-based method that not only eliminates the need for a reference image but 

also achieves high visual resemblance to the target domain, making it easier to remove stain 

variances and therefore enhancing the diagnosis process for both pathologists and CAD systems. 

Furthermore, unlike [55], stain type transfer does not necessitate being educated for a specific 

purpose. 

Figure 5 [55] shows the framework, which is divided into two steps: StainGAN training, which 

is a generative adversarial networks model with two generators and two discriminators, and 

StainNet generation, which is a fully convolutional neural network. To learn the transition from 

the source color space to the target color space, StainNet requires matched source and target 

images. StainGAN is selected as the teacher network and StainNet as the student network because 

it is difficult to collect the paired photos and align them correctly in practice. That is, StainNet 

learns the output of StainGAN using the L1 loss. To achieve stain normalization, deep learning-

based approaches primarily use generative adversarial networks (GANs) (55-60). To transfer the 

stain style, Shaban et al. (58) suggested StainGAN, as shown in Figure 6. It is an unsupervised 

stain normalizing approach based on CycleGAN. Cai et al. (56) developed a novel generator that 

would increase image quality and network speed. Cho et al. (60), Salehi et al. (57), and Tellez et 

al. (59), on the other hand, reconstructed original images from photos augmented with color, such 

as grayscale and Hue-Saturation-Value (HSV) transformation. They attempted to bring different 

color styles closer to the original. It is difficult to maintain all source information due to the 
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intricacy of deep neural networks and the instability of GANs. It can sometimes introduce artefacts, 

which can have negative consequences for further analysis (60). At the same time, because the 

network of deep learning-based approaches typically comprises millions of parameters, it requires 

a lot of computer power and has a low computing efficiency (61). 

 

Figure 5: StainNet framework [55] 

Color variations can be solved via stain normalization without the use of labeled data. 

Grayscale conversion methods primarily learn texture elements and discard color information. An 

unsupervised stain normalization approach was presented by Chen et al. [62]. Colorful photos 

were transformed to grayscale images using a stain removal module and a color encoding mask to 

preserve color information. A GAN model was used to process this mask and the grayscale image. 
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Gupta et al. [63] used color vector space geometry to conduct stain normalization. Hoque et al.  

 

Figure 6: StainGAN framework [58] 

[64] presented a Retinex model to normalize stain vectors in order to remove variability and 

improve analysis consistency. This approach had the disadvantage of necessitating time-

consuming preprocessing to segment areas connected to each stain. Liang et al. [65] used GAN 

and the directional statistics-based color similarity index (DSCSI) as the loss for structure 

preservation in stain transformation. Using a pre-trained classifier network, a feature preserving 

loss was also computed to train the network. Hoque et al. [66] recommended a stain normalization 

technique based on the Retinex model in terms of area segmentation from stained tissue images to 

quantify the various stain components of the histochemical stains for the perfect reduction of 

variability. This method consistently had the minimum standard deviation, skewness value, and 

coefficient of variation in normalized median intensity measurements when compared to reference 

methods and tested on an organotypic carcinoma model based on myoma tissue. Janowczyk et al. 

[67] proposed a stain normalization method that used sparse autoencoders to cluster the pixels in 

the histogram. Mahapatra et al. [68] offered a self-supervised strategy to include semantic 
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guidance into a GAN-based stain normalization framework while still preserving precise structural 

information in their study. This method proved superior to existing methods since it does not 

require human segmentation maps. Between a pre-trained semantic network and the stain color 

normalization network, they integrate semantic information at different layers. The suggested 

system outperforms conventional color normalizing techniques, resulting in improved 

classification and segmentation results. 

2.3 Few-Shot Learning 

Few-shot learning is not the same as traditional supervised learning. The goal of few -shot 

learning isn't to have the model recognize the photos in the training set before moving on to the 

test set. Machine learning has a sub-area called few-shot learning. It's about classifying new data 

when you only have a few supervised training samples. Few-shot learning, as the name implies, 

is the method of feeding a learning model with a limited quantity of training data rather than the 

more common practice of using a big number of data. This method is most commonly used in the 

field of computer vision to use an object categorization model without multiple training samples 

and still yield acceptable results. If we have a problem categorizing bird species from photos, for 

example, some uncommon bird species may not have enough pictures to use in the training images. 

As a result, if we have a classifier for bird photos but not enough data, we' ll regard the problem as 

a few-shot or low-shot machine learning problem. 

Few-shot learning is simply a more adaptable variation of one-shot learning in which we have 

multiple training examples (usually two to five images). Sun et al. [69] presented few -shot learning 

at the 2019 Conference on Computer Vision and Pattern Recognition. This model established the 

bar for future study by providing cutting-edge results and paving the way for more advanced meta-

transfer learning methods. To achieve spectacular results, many of the meta-learning and 
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reinforcement-learning algorithms are integrated with traditional deep learning methods. One of 

the most prominent deep learning methods, prototypical networks, is widely utilized for this task. 

Human cell classification and analysis is a time-consuming process that frequently requires the 

assistance of a skilled professional. An active area of research includes automating cell 

classification using deep learning-based algorithms in an attempt to speed up this process. Walsh 

et al. [70] evaluate the viability of employing few-shot learning-based strategies to reduce the 

amount of data required for accurate training in this study. First, human cell classification is used 

to evaluate current state-of-the-art few-shot learning algorithms. The chosen algorithms are trained 

on a non-medical dataset before being tested on two human cell datasets that are out-of-domain. 

Few-shot learning [71] is a machine learning method for learning a task from a limited number 

of images with supervision, addressing the abovementioned concerns. Few-shot learning-based 

segmentation is a new research area. Many existing few-shot segmentation models have a support 

branch [72-76] or a prototype learner [77], [78], and a query branch, similar to the original work 

[72]. Figure 7 depicts the basic concept of these models: Support images are sent to the support 

branch (or prototype learner), and query images are sent to the query branch; the connections 

between these two branches provide support information to help feature extraction and 

segmentation of the query images. As a result, researchers often followed a certain procedure when 

utilizing such models for few-shot segmentation tasks [72]. They apply the mode of receiving 

annotated support-query picture pairs to train a model on numerous tasks, then use it on an unseen 

target task for query segmentation with very few annotated samples. Another work based on few-

shot medical image segmentation with few labeled examples is [80]. In this work Tang et al. [80] 

proposed a context relation encoder (CRE) that enhances context relationship information around 

the object boundary by using the correlation between foreground and background. 
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Figure 7: O verview of few-shot image segmentation models. [79] 

A new approach for few-shot medical image segmentation is employing a recurrent module 

with CRE and prototype networks to modify the prediction mask repeatedly. Figure 8 shows the 

three primary components of the proposed model RP-Net: (1) A feature encoder that extracts 

features from both support and query images; (2) a context relation encoder (CRE) that uses 

correlation to improve local context relationship features; (3) a recurrent mask refinement module 

that iteratively uses CRE and a prototypical network to recapture and refine local context features. 

 

Figure 8: The architecture of RP-Net. [80] 
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2.4 Few-Shot Image Generation 

It is good to build a model for image generation that generalize to new domains from a few 

examples. It is challenging when there is limited data available for training in GAN. Given a 

limited amount of training data, the performance of generative adversarial networks (GANs) 

heavily deteriorates. This is due to the discriminator having to memorize the exact training set. 

Due to the likelihood-free nature of GANs, obtaining gradients for the generator from assessing it 

on development sets is a serious difficulty when using meta-learning on them. Similarly, recent 

improvements in meta-learning have paved the way for new few-shot learning applications. Some 

improved work has been done to overcome this training with small data situations.  

The study by Robb et al. [82] proposed few-shot GAN where they improved GAN training 

with a few images. Component analysis approaches are repurposed in Few-Shot GAN (FSGAN), 

which learns to modify the singular values of pre-trained weights while freezing the corresponding 

singular vectors. This creates an ample parameter space for adaptation while keeping changes to 

the pre-trained weights limited. The primary goal is to fine-tune the GAN on small image domains 

by identifying a more adequate and limited parameter space for adjusting the pre-trained weights. 

Li et al. [83] proposed a few-shot image generation model with adaption technique to produce data 

with few samples. They adopt a pre-trained model to use less than 10 target domain samples 

without adding more parameters to regularize the weights during the adaption. Ojha et al. [84] 

introduced a unique GAN adaptation framework for few-shot image creation that ensures cross-

domain correlation. They show that their model automatically discovers correspondences between 

relevant source and target domains to generate diversified and realistic images using substantial 

qualitative and quantitative data. The authors provide an anchor-based technique to encourage 

varying levels of realism over distinct regions in the latent space to further prevent overfitting.  
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Figure 9: O verview of few-shot adaptation 

Figure 9 depicts their work, which shows how the author has proposed to adapt a model trained 

on a large source dataset (Gs) to random picture domains, so that the final model (Gs→t) captures 

these target distributions with very few training samples. Their method reveals a one-to-one 

relationship between the distributions in the process, with noise vectors mapping to corresponding 

images in the source and target. Training a GAN model with few numbers of samples leads to a 

model overfitting issue. Xiao et al. [85] suggested a relaxed spatial structural alignment (RSSA) 

method for calibrating the target generative models during adaptation to address this issue. To 

address the generative model's identity degradation problem, it uses richer spatial structure priors 

of images from a source domain. They created a cross-domain spatial structural consistency loss 

that combines self-correlation and disturbance correlation consistency losses. They compress the 

original latent space of generative models to a subspace to relax cross-domain alignment.  

The goal of few-shot image generation is to create a diverse set of high-quality photographs 

in a new domain using minimal training data. The most straightforward method is to fine-tune a 

GAN that has already been trained [86-88]. However, fine-tuning the network weights as a whole 
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frequently produces unsatisfactory results. Researchers recommended changing a portion of the 

network weights [89], and Noguchi et al. [90] offered a new strategy focused on batch statistics, 

size, and shift of the hidden layers in the generator. They achieved stable generator training by 

supervised training only these parameters, and their method can generate higher quality images 

than earlier methods without collapsing, even when the dataset is small. FIGR stands for Few-shot 

Image Generation with Reptile, a GAN meta-trained with Reptile. With as few as four images 

from an unknown class, their [91] suggested model successfully creates novel images on MNIST 

and Omniglot. They also contribute FIGR-8, a new dataset for few-shot picture generation that 

has 1,548,944 icons divided into 18,409 categories. Lake et al. [92] is the first successful attempt 

at one-shot or few-shot image production that we are aware of. The images and stroke data are 

utilized to train a Bayesian model using Bayesian Program Learning on the Omniglot dataset 

introduced in the same paper. It expresses notions like a pen stroke as simple probabilistic 

programs and mixes them hierarchically to create visuals. This results in a model that can be 

trained on a single image of an unknown character and then used to create new samples of that 

letter.  

2.5 Medical Image Analysis and Classification 

Human professionals in the clinic, such as radiologists and physicians, does the majority of 

medical image interpretations. However, because of the complexity of medical imaging and the 

wide range of human expertise required, it is extremely difficult for radiologists and physicians to 

consistently provide an efficient and accurate diagnosis. As a broad area, medical image analysis 

is challenging for novices, even from computer vision or the clinical community, as it generally 

requires background knowledge from both sides. It is especially analyzing multiple datasets with 

different modalities as the datasets usually are nonstandard. On the other hand, although deep 
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learning has dominated the research and application in medical image analysis [92, 93], it 

consumes large amounts of engineering labor to tune the deep learning models. As a result, 

automatic machine learning (AutoML) [94] has become increasingly essential. However, there 

exist few benchmarks for comparing AutoML in medical image classification.  

Transfer learning from natural images is extensively employed in medical image analysis 

despite variances in image statistics, scale, and task-relevant properties [95-98]. Several empirical 

investigations [99-101] suggest that this enhances performance. However, extensive tests of this 

method by Raghu et al. [102] show that it does not always increase performance in medical 

imaging scenarios. They do, however, indicate that ImageNet transfer learning can speed up 

convergence and is especially useful when medical image training material is scarce. The study 

used tiny architectures and found considerable benefits with small amounts of data, notably when 

using ResNet-50 [103], which was their most significant architecture. Domain mismatch can be 

mitigated by transfer learning from in-domain data. Azizi at el. [104] suggested a method depicted 

in Figure 10, consisting of three steps: (1) SimCLR-based self-supervised pretraining on unlabeled 

ImageNet. (2) Additional unlabeled medical photos for self-supervised pretraining. If many 

images of each medical condition are available, a new Multi-Instance Contrastive Learning 

(MICLe) algorithm is utilized to create more informative positive pairs based on the diverse 

photographs. (3) Fine-tuning on tagged medical pictures under supervision. Steps (2) and (3), 

unlike step (1), are task and dataset-specific. A deep network was designed by Saba et al. [105] 

for segmentation and classification of leukemia. The author used fusion of transfer learning 

models. The authors used pretrained models such as DarkNet-53 and ShuffleNet. Also, principal 

component analysis (PCA) was used for informative feature selection. Datasets that were used for 

performance evaluation are ALL-IDB and LISC dataset. 
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Figure 10: Proposed approach by Azizi et al. [104] for medical image classification 
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Chapter 3: Proposed Methodology for 

Enhancing Classification of Microscopic 

Single-Cell Images 

 
In this chapter, we present a comprehensive study of our proposed methodology for enhancing 

the classification of microscopic single-cell images procured from peripheral blood smears. Our 

proposed model can be conceptually categorized as a three-step process: data collection and 

preparation, data synthesis and classification. In the data collection stage, w e collect data from 

two open-access data sources and perform preprocessing steps. To obtain better classification 

results, we implement stain normalization since the stain used in the two datasets are different. 

After normalization, we combine images belonging to the same class from the two data sources 

and form a single final dataset.  

For image synthesis, we propose two generative adversarial networks (GAN) architecture. For 

cell types containing more than 1000 images, we propose a classifier-based GAN model; for cell 

types containing less than 100 images, we propose a few-shot image generation GAN model. After 

image synthesis, we obtain a normalized and balanced dataset which is further used for 

classification. We propose a novel deep learning model that uses the balanced dataset for training 

and classifying microscopic single-cell images procured from peripheral blood smears. The 

proposed framework is able to handle variations in datasets and complicated datasets. Our 

proposed model was trained on twelve cell types and could efficiently improve the classification 

accuracy for each cell type.  

Figure 11 shows the conceptual view of the proposed approach for enhancing classification 

of microscopic single-cell images. Expert from EONE Laboratories helped us to form the final 
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dataset. Preprocessing the data and combining the datasets or images of the cell types belonging  

to the same group was done with the help of expert intervention. The total number of cell types 

from the two data sources before preprocessing was nineteen, and after combining the datasets, 

we formed the final datasets with twelve cell types. We divide the cell types according to the 

number of images they contain and implement different synthesis techniques to achieve a balanced 

dataset.  

 

Figure 11: Conceptual view of the proposed methodology  

In section 3.1 we present the overview of the proposed methodology. Section 3.2 presents the 

details of the dataset used and the data preprocessing techniques. In section 3.3 we present 

explanation of the foundations for our proposed methodology. Section 3.4 presents the model for 

stain normalization. Section 3.5 presents the classifier based generative adversarial networks 

architecture; section 3.6 presents the architecture for few-shot image generation and section 3.7 

presents the novel deep learning model for classification. 

3.1 Overview of the Proposed Methodology 

The overview of the proposed methodology is shown in Figure 12. Our proposed approach as 

can be seen in Figure 12 has four layers. The first layer is the data acquisition and data preparation 

layer, where we collect data from two sources and with expert intervention, we first perform stain 

normalization. After normalizing and procuring images of the same intensity, we merge the images 
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of two datasets belonging to the same class or cell types. We combine the datasets to form a new   

 

Figure 12: Layout of the proposed methodology 

dataset. We perform stain normalization through cycle consistency generative adversarial 

networks (CycleGAN).  

The third layer is the data synthesis and data balancing layer. Individual, as well as the newly-

formed combined dataset, suffered from data imbalance problem. The number of images for each 

cell type varied to a great extent in few cases. For enhancing classification accuracy, it is important 

to have a uniform distribution of images for each cell type. In the data synthesis and data balancing 

layer, we first classify the cells in the dataset into two categories: cell types having more than 
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thousand images and cell types containing less than hundred images. For cell types having more 

than thousand images, we perform data synthesis through classifier based generative adversarial 

networks. For cell types containing less than hundred images we implement few-shot image 

generation where we use the images of the cell types with more than thousand images for the 

training phase. In the generation phase of the few-shot image generation, we generate images for 

only the cell types having less than hundred images. For few-shot image generation we developed 

an encoder based generative adversarial networks in few-shot learning settings.  

The next layer is the classification and evaluation layer. After data balancing, we propose a 

novel deep learning model that uses squeeze and excitation networks (SENet), ResNeXt-101 and 

gather-excite (GE) module to classify the microscopic single-cell images obtained from the 

peripheral blood smears. For evaluating our proposed methodology, we divide the evaluation 

phase into four phases. First, we evaluate the performance of stain normalization using three 

evaluation metrics as shown in Figure 12. In the second phase, we measure the performance of 

classifier-based GAN for synthetic blood cell image generation. We use six evaluation metrics and 

also present visual result for the image generation. In the third phase, we assess the implementation 

of few-shot image generation using three evaluation metrics and finally, we quantify the 

performance of the classification model using the original dataset and the dataset prepared through 

the proposed methodology. For each module, we compare our proposed model with existing 

models. We perform ablation studies to justify the proposed contribution and to investigate the 

performance of our proposed architectures.  

3.2 Overview of the Datasets and Data Preprocessing 

Techniques 

We collected data from two open access data sources that were merged to form a new dataset 
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for our work after preprocessing and stain normalization. Microscopic single-cell images from 

peripheral blood smears were collected from Mendeley Data Source [106] and Cancer Imaging 

Archive [107]. The Mendeley dataset contains 17,092 blood cell images that has no irregularities 

and were acquired from the Hospital Clinic of Barcelona in the Core Laboratory through 

CellaVision DM96 analyzer. The dataset contains eight cell types: immature granulocytes that has 

promyelocytes, metamyelocytes and myelocytes, neutrophils, basophils, lymphocytes, eosinophils, 

monocytes, erythroblasts and platelets. Table 2. shows the count of images for cell type in the first 

dataset, i.e. Mendeley Dataset. 

Table 2: Count of images for each types of cells in the Mendeley Dataset 

Types of Cells Count of Images 

Neutrophil (NEU) 3329 

Eosinophil (EOS) 3117 

Basophil (BAS) 1218 

Lymphocyte (LYM) 1214 

Monocyte (MON) 1420 

Immature Granulocyte (Metamyelocyte, Myelocyte) (IG) 2895 

Erythroblast (ERY) 1551 

Platelet (Thrombocytes) (PLT) 2348 

Total 17092 

 

The images are present in JPG format. The images were taken from individuals who did not 

have any form of infection, hematologic disease or oncologic disease and were also free from drug 

consumption during blood collection. The blood cell count in the Mendeley dataset were obtained 

by analyzing the blood sample in the Advia 2120 instrument. They prepared the smear using the 

Sysmex SP1000i slide maker-stainer with May Grünwald-Giemsa staining.  
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                 Table 3: Count of images for each types of cells in the Cancer Imaging Archive  

Types of Cells Count of Images 

Basophil (BAS) 79 

Erythroblast (EOS) 78 

Eosinophil (EOS) 424 

Smudge Cell (SMC) 15 

Lymphocyte (Atypical) (LYA) 11 

Lymphocyte (Typical) (LYT) 3937 

Monoblast (MOB) 26 

Monocyte (MON) 1789 

Myelocyte (MYL) 42 

Myeloblast (MYB) 3268 

Neutrophil (Band) (NEB) 109 

Neutrophil (Segmented) (NES) 8484 

Promyelocyte (Bilobed) (PRB) 18 

Promyelocyte (PRO) 70 

Metamyelocyte (MTM) 15 

Total 18365 

 

The Cancer Imaging Archive consists of 18,365 expert annotated single-cell images procured 

from the peripheral blood smears at the Munich University Hospital between the year 2014 and 

2017. Table 3 presents the number of images for each type of cell existing in Cancer Imaging 

Archive. The data were gathered from hundred patients who did not have signs of haematological 

malignancy and hundred patients who were diagnosed with Acute Myeloid Leukemia (AML). The 

dataset contains images of fifteen cell types: basophil, monoblast, eosinophil, promyelocyte, 

lymphocyte (atypical), erythroblast, metamyelocyte, lymphocyte (typical), monocyte, myelocyte, 
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myeloblast, neutrophil (segmented), promyelocyte (bilobed), neutrophil (band), and smudge cells. 

M8 (Precipoint GmbH, Freising, Germany) digital scanner was used for image acquisition. Figure 

13 presents examples of images of each cell types and how does it look in microscopic images.  

 

Figure 13: Sample of microscopic cell images 

 

3.2.1 Data Preprocessing Techniques 

In the data preprocessing section, we remove redundant or duplicate images. We filter the 

images with the help of a medical expert from EONE Laboratories. After elimination, we perform 

stain normalization and then we combine images from two sources belonging to the same cell type. 
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Table 4. And Table 5. shows the number of images removed from each cell type present in the 

Cancer Imaging Archive and the Mendeley Dataset. 

         Table 4: Count of images eliminated for each types of cells present in Cancer Imaging Archive 

Types of Cells Count of Images 

Basophil (BAS) 17 

Erythroblast (ERY) 1 

Eosinophil (EOS) 3 

Smudge Cell (SMC) 0 

Lymphocyte (Atypical) (LYA) 4 

Lymphocyte (Typical) (LYT) 119 

Monoblast (MOB) 0 

Monocyte (MON) 624 

Myelocyte (MYL) 3 

Myeloblast (MYB) 164 

Neutrophil (Band) (NEB) 27 

Neutrophil (Segmented) (NES) 1138 

Promyelocyte (Bilobed) (PRB) 0 

Promyelocyte (PRO) 1 

Metamyelocyte (MTM) 2 

Total 2103 
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               Table 5: Count of images eliminated for each types of cells in the Mendeley Dataset 

Types of Cells Count of Images 

Neutrophil (NEU) 13 

Eosinophil (EOS) 0 

Basophil (BAS) 56 

Lymphocyte (LYM) 1 

Monocyte (MON) 2 

Immature Granulocyte (Metamyelocyte, Myelocyte) (IG) 14 

Erythroblast (ERY) 81 

Platelet (Thrombocytes) (PLT) 9 

Total 176 

 

After data elimination, we merge images of cell types belonging to the same cell class or 

family and form a single cell class. Subgrouping of the cell types were done by medical expert 

based on maturation sequence of human hematopoietic cells. Figure 14. shows the subgrouping of 

the cell types in our proposed work. 

 

Figure 14: Subgrouping of cell types  

As shown in Figure 14, lymphocyte typical, lymphocyte and lymphocyte atypical were 
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integrated to form a single group, i.e. lymphocyte. Also, immature granulocyte, metamyelocyte 

and myelocyte were combined to form immature granulocyte group. Images from neutrophil, 

neutrophil band and neutrophil segmented were combined to form a single cell type, i.e. neutrophil.  

The fourth group promyelocyte was created by combining cell types promyelocyte and 

promyelocyte bilobed.  

Combining similar cell types images from the two data sources, we created a new dataset with 

a total of nineteen cell types. The final dataset contains twelve cell types after subgrouping. Table 

6. presents the total number of cell types and the total number of images for each cell type in the 

final dataset. 

             Table 6: Total number of cell types and images for each types of cells in the final dataset. 

Sl. No. Types of Cells Count of Images 

1 Basophil (BAS) 1224 

2 Eosinophil (EOS) 3538 

3 Erythroblast (ERY) 1547 

4 Immature Granulocyte (IG) 2933 

5 Lymphocyte (LYM) 5038 

6 Monoblast (MOB) 26 

7 Monocyte (MON) 2583 

8 Myeloblast (MYB) 3104 

9 Neutrophil (NEU) 10744 

10 Platelet (PLT) 2339 

11  Promyelocyte (PRO) 87 

12 Smudge Cells (SMC) 15 

 Total 33178 
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3.3 Foundations of the Proposed Methodology 

The two basic building blocks of our proposed methodology are generative adversarial 

networks (GAN) and few-shot learning. In this section, we will explain the architecture of 

generative adversarial networks and the concept of meta learning and few-shot learning. 

3.3.1 Generative Adversarial Networks (GAN) 

In machine learning when we use a model to make predictions, it is known as predictive 

modeling. When we train this predictive model with a training dataset comprising an input variable 

and an output class label associated with it, it is known as supervised learning. In supervised 

learning, for every input a corresponding label is provided and the goal is to learn the mapping 

from the input to the output. Supervised learning approaches include classification and regression. 

Another kind of learning is where the model is only provided with the input variable, and no output 

variable or labels exist. The model has to extract and learn from the patterns of the input data. This 

form of learning is referred to as unsupervised learning. Unsupervised learning includes generative 

modeling and clustering. Discriminative models discriminate between various data instances and 

draw boundaries in the data space, whereas generative model captures the distribution of the input 

data and generates new data instances or data points. Discriminative models are mainly utilized 

for supervised machine learning and are known as conditional models. They are not capable of 

generating new data points. The ultimate goal is to separate one class from the other class. 

Generative models focus on modeling how the data was generated and how it is placed throughout 

the space. Generative models are used in unsupervised machine learning problems and applies 

probability estimates and likelihood for modeling data points and to differentiate between various 

classes or labels present in the dataset.  

Generative adversarial networks (GAN) as the name suggests, is a generative model that was 
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introduced in the year 2014 by Ian Goodfellow. GANs are capable of generating realistic data or 

synthetic data by using two neural networks. GANs are a deep learning based generative model 

that consists of two models: Generator (Gen) and Discriminator (Dis). The generator is trained to 

generate fake data, and the discriminator is trained to distinguish between the generated and the 

real data. The term adversarial in the generative adversarial networks model refers to the minmax 

game concept between the two models in the GAN framework. The objective of the generator is 

to fool the discriminator by generating realistic samples of images, and the objective of the 

discriminator is to be able to discriminate between real and the generated images and prove the 

generator wrong. This is known as a zero-sum game. The GAN architecture is shown in Figure 

15.  

 

Figure 15: Generative adversarial networks (GAN) architecture 

The two networks continuously try to outsmart each other. The more the generator gets better 

at generating new realistic data, the better the discriminator has to perform in distinguishing the 

real samples from the generated samples. In Table 7, we describe the input, output and goal of the 

generator and the discriminator in the GAN architecture and in Table 8, we describe some 

parameters and variables we will use to show the derivation of the loss functions of the generator 

and the discriminator.  
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Table 7: Input, output and goal of generator and discriminator networks  

Function Generator Discriminator 

Input Random noise vector Two Sources: 

- Real Samples from training dataset 

- Generated fake samples from the 

generator 

Output Fake samples that looks like 

original data 

Predicted probability of whether the sample 

is real 

Goal Generate fake samples 

which are indistinguishable 

from the real data 

Distinguish whether data is coming from 

real distribution or belongs to the generated 

distribution 

 

                           Table 8: Definition of variables used for mathematical expressions  

Variable Definition 

x Real or original data 

z Latent random vector 

Dis Discriminator 

Gen Generator 

𝑃𝑧(𝑧) Distribution of input noise 

𝑃d (𝑥) Distribution of real data 

𝑃𝑟(𝑥) Generated distribution 

Gen(z) Generated data 

Dis(x) Discriminator's (real data) 

Dis(Gen(z)) Discriminator's (fake data) 

 

In Figure 15, real data refers to the original dataset or samples that we want the generator to 

learn to synthesize as realistic as possible. Random noise vector is a vector of random numbers 

that is fed to the generator, which utilizes it as a starting point for generating fake samples. For 



                                             39 

 

every prediction of the discriminator, just like a classifier, we determine how good it is. For every 

prediction, the loss is evaluated, and the result is used to iteratively tune the trainable parameters 

of the generator and the discriminator networks through backpropagation. The discriminator 

maximizes the objective to correctly predict real and fake and the generator tries to minimize the 

objective that the discriminator correctly identifies the samples. From binary cross -entropy loss, 

we can derive the original loss function of GANs, which can be written as in Equation 1: 

Loss(ŵ,w) = [w ⋅ logŵ+ (1− (w) ⋅ log(1− ŵ)]  ( 1 ) 

Where w is the original data and ŵ is the reconstructed data. When we train the discriminator, 

the label for the data coming from the real distribution i.e. 𝑃d(𝑥) is w=1 (real data) and the 

reconstructed data ŵ = Dis(x). So, we can write the above loss function as in Equation 2: 

Loss(Dis(x),1) = log(Dis(x))    ( 2 ) 

and for the generated data, the label is w=0 (generated data), ŵ  = Dis(Gen(z)) and the loss 

function from Equation 1 can be written as in Equation 3: 

Loss(Dis(Gen(z)),0) = log (1 −Dis(Gen(z)))  ( 3 ) 

 

The goal of the discriminator is to correctly distinguish real and generated data. So, Equation 2 

and Equation 3 should be maximized. The final loss function of the discriminator can be defined 

as shown in Equation 4: 

Loss(Dis) = max[log(Dis(x))+ log (1− Dis(Gen(z)))] ( 4 ) 

The role of the generator is to compete against the discriminator and minimize Equation 4. So, 

the loss function can be defined as in below Equation 5: 

Loss(Gen) = min [log(Dis(x)) + log (1 −Dis(Gen(z)))] ( 5 ) 

We can define the combined loss function for a single data point as shown in Equation 6: 

Loss = min
Gen

 max
Dis
  [log(Dis(x))+ log (1−Dis(Gen(z)))] ( 6 ) 
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For the entire dataset, the minmax function can be defined as Equation 7: 

min
Gen

 max
Dis
 F(Dis, Gen) = 𝔼x∼Pd (x)[logDis(x)]+ 𝔼z∼Pz(z) [log (1− Dis(Gen(z)))]

= 𝔼x∼Pd(x) [logDis(x)]+ 𝔼x∼Pr(x) [log(1 −Dis(x)]]
 

( 7 ) 

Kullback-Leibler divergence, known as KL divergence and Jensen-Shannon divergence, or JS 

divergence, are the metrics that measure the similarity between two probability distributions. KL 

divergence quantifies how one probability distribution (PA) differs from another probability 

distribution (PB), and JS divergence quantifies the similarity between two probability distributions 

that are bounded by [0,1]. KL and JS can be defined as Equation 8 and Equation 9: 

KLD(PA ∥ PB) = Ex∼PA log
PA

PB
    ( 8 ) 

JSD(PA ∥ PB) =
1

2
KLD(PA ∥

PA+PB

2
) +

1

2
KLD(PB ∥

PA+PB

2
) ( 9 ) 

For any generator, the optimal discriminator can be obtained by maximizing the value function 

in Equation 7 through a partial derivative of V(Gen,Dis) with respect to Dis(x). The optimal 

discriminator is denoted by Dis+(x) and it occurs when the condition as shown in Equation 10 

occurs. 

Pd(x)

Dis(x)
−

Pr(x)

1−Dis(x)
= 0     ( 10 ) 

Rearranging Equation 10, we get Equation 11: 

Dis+(x) =
Pd(x)

Pd(x)+Pr(x)
  ( 11 ) 

So, if a sample x is realistic, we expect Pd(x) to be near about one and Pr(x) to converge to 

zero and in that case the optimal discriminator would assign one to the realistic sample. But, for a 

generated sample x=Gen(z), the optimal discriminator would assign zero to the sample. 

For training the generator, we assume that the discriminator is fixed and we put Equation 9 in 

the value function as shown in Equation 12: 
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F(Gen,Dis+) = 𝔼x∼Pd 
[log(Dis+(x))]+ 𝔼x∼Pr [log(1− Dis

+(x))]

= 𝔼x∼Pd
[log

Pd (x)

Pd (x)+Pr(x)
] + 𝔼x∼pr [log

Pr(x)

Pd (x)+Pr(x)
]

    ( 12 ) 

In Equation 12 we exploit the properties of logarithms and take out a -log 4 and change the 

whole equation accordingly so that we can interpret it in KL divergence equation as shown in 

Equation 13 and Equation 14: 

F(Gen,Dis+) = 𝔼x∼Pdata 
[log

Pd (x)

Pd (x)+Pr(x)
] + 𝔼x∼pr [log

Pr(x)

Pd (x)+Pr(x)
]

= −log 4+ 𝔼x∼Pd 
[logPd (x)− log

Pd (x)+Pr(x))

2
]

+𝔼x∼Pr [logPr(x)− log
Pd (x)+Pr(x))

2
]

( 13 ) 

F(Gen,Dis+) = −log4 +KLD(Pd ∥
Pd+Pr

2
)+ KL(Pr ∥

Pr+Pr

2
)( 14 ) 

and, now we can incorporate the JS divergence shown in Equation 9 from Equation 14 as 

below in Equation 15. 

F(Gen,Dis+) = −log4 + 2 ⋅ JSD(Pd ∥ Pr)    ( 15 ) 

The objective of training the generator is to minimize the value function, so we want the JSD 

to be as small as possible between the distribution of the real data and the generated data. 

Therefore, for a generator to be optimal, Pr should be as close to Pd as possible, which means 

the generator should produce realistic samples that cannot be distinguished from the real data by 

the discriminator. 

According to game theory, every zero-sum game has a Nash Equilibrium. A GAN model is 

said to have reached Nash Equilibrium when both the generator and the discriminator stops 

learning, and both of them cannot improve their performance anymore. When the Nash 

Equilibrium is achieved, the GAN model is considered to have converged. At this point, the GAN 

training is stopped since the generator and the discriminator cannot learn further.  
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3.3.2 Few-Shot Learning and Meta Learning 

For machine learning models to perform exceptionally, we require enormous data. But,  in 

many scenarios, abundant data is not present. Few-shot learning helps in building models that can 

perform accurately even with a small dataset or, as the name denotes, few examples of data. The 

advantage of few-shot learning is not only that we can build a model with limited information, but 

also it reduces the computational cost, requires less time and reduces resource cost, e.g. lowering 

the cost of labeling extensive data. Few-shot learning is an application of meta learning that differs 

from conventional supervised learning in a way that in supervised learning the model is trained on 

some training data and then evaluated on some unseen data but in meta learning the model learns 

to learn. So, while the meta learning is about learning how to learn, few-shot learning is about 

learning from few examples of data. Meta learning and few-shot learning both has the goal of 

generalizing the learning process.  

Few-shot learning is defined through a function that is trained to predict the similarity between 

samples. In few-shot learning paradigm, the training data is known as the Support set, and the data 

to be evaluated or the test data is known as the Query set. The support set is different from the 

training set of traditional machine learning algorithms in a way that the traditional training data 

consists of a large volume of data but the Support set only consists few labeled examples or data 

from each class. Unlike conventional supervised learning, the Query set of few -shot learning 

contains data of classes that are not present in the support set and are never seen before. The 

terminologies used in few-shot learning are: 

• N-way: N represents the number of classes. So, if there are 3 classes, then it is 

denoted as 3-way. 

• K-shot: K denotes the number of examples present for each class. So, if there are 

3 classes having 4 examples each then it would be called 3-way 4-shot learning. 
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Figure 16: Few-shot terminologies and dataset structure 

Figure 16 shows the representation of few-shot learning terminologies and the dataset 

structure for few-shot learning.  

Few-shot learning follows certain approaches when building a model. The approaches are 

defined based on three categories: previous knowledge of similarity, knowledge based on learning 

and existing knowledge about the data. Previous knowledge about similarity helps the model to 

distinguish different classes that are unseen and was not used in the training process . The model 

learns the patterns and the embeddings in the training dataset. Some examples are Siamese 

networks [108] and triplet networks [109] which can differentiate between two classes that are 

unseen. Matching networks [110], prototypical networks [111] and relational networks [112] are 

models that can learn the patterns from training data and distinguish between multiple or more 

than two unseen classes. Knowledge based on learning refers to the scenario where models limits 
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the learning model on hyperparameters that can generalize prior learning on unseen data and 

perform better for few-shot data. Model agnostic meta learning (MAML) [113] and meta learning 

LSTMs [114] are examples of few-shot learning based approach that depends on existing 

knowledge of rules and hyperparameters. Previous knowledge of data is another approach on 

building a few-shot learning model. These models have existing knowledge about the structure, 

patterns and variables of the dataset. It is also useful for generating new synthetic data. Examples 

are the Penn-stroke model [115] and analogies [116]. 

In meta learning, there are a set of training and test tasks. Meta learning is about learning to 

learn, and a model is said to be learning if, with every task experience, the model improves its 

performance on solving the training tasks and if the experience can be used for solving the test 

tasks.   

 

Figure 17: Meta learning training and test tasks layout 
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As shown in Figure 17 in meta learning first the model learns from the meta training dataset 

or tasks so that it can perform well on the meta test dataset. The meta training learning is adapted 

on the support set of meta test dataset. The model learns about the meta test support set through 

learning adaptation from the meta training tasks and then the model is evaluated on the query set 

of the meta test dataset. The meta test dataset has unseen classes on the support and the query set.  

Every task has an associated dataset defined as data=(a,y) where a is considered as the data 

samples and y is the label associated with it. So, a model with trainable parameter φ can be 

represented as learning thePφ(y|a) where φ is defined as in Equation 16 

φ = argmax
φ

E(a,y)∈data[Pφ(y ∣∣ a )].                            ( 16 ) 

φ = argmax
φ
 𝔼Y∈𝒴 [𝔼SupY⊂data,QueY⊂data [∑  (a,y)∈QueY Pφ(a,y, Sup

Y)]]( 17 ) 

Referring to Equation 17 we will start with the discussion about task sampling in meta learning.  

The support and query set in a task or dataset is defined as data=(Sup,Que). We then take subset 

of the labels Y ∈ 𝒴 so that SupY,QueY ∈ data.  

 

Figure 18: Task sampling in meta learning  
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The training is performed in episode wise fashion and we would explain the training for one 

episode with example. So, first we sample N classes in 1 task from the meta training dataset. We 

can create multiple tasks. As shown in Figure 18, in task 1 we take two classes from the 

training dataset. 

After sampling the task, we define the support set for the meta training dataset for each task. 

We sample images from classes defined in the task as shown in Figure 19. 

 

Figure 19: Sampling support set for meta training 

Next, for each task we perform sampling of the query set from the meta training dataset. 
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Images from every class defined in the task are sampled to prepare the query set. The 

query set contains images that are not present in the support set. Figure 20 shows the 

example of a query set. 

 

Figure 20: Sampling query set for meta training  

The meta training tasks shown in Figure 20 now has the same structure as meta test tasks 

shown in Figure 17. We train the model on the support set and evaluate the model on query set. 

After several episodes the model learns to learn the pattern and structure of the few -shot dataset. 

Through loss calculation, the model can be optimized with the objective as defined in Equation 

17. The learnings from the meta training dataset can now be adapted on the meta test dataset to 

for solving the meta test tasks. 
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3.4 Stain Normalization 

Stains are a necessity for cytological and haematological research studies. Stains are useful 

for detecting haematological disorders and also irregularities in chromosomes. They are important 

for differentiating cells of blood and bone marrow samples. Romanowsky stains are used for 

haematological studies. The name was termed after Dmitri Leonidovich Romanowsky who was 

the first to invent an eponymous histological stain. There are multiple Romanowsky staining types, 

and every laboratory might not use the same stain for experiments. Therefore, the microscopic 

blood cell images obtained from different laboratories vary in color, staining quality and 

illumination. Figure 21 shows examples from our dataset of how images for the same cell types 

have different intensities when different stains are used. 

 

Figure 21: Variation in blood cell images due to application of different stains 

In our work, we use the cycle consistency GAN (CycleGAN) architecture for stain 

normalization. Stain normalization is one of the main steps for enhancing classification of blood 
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cell images obtained from peripheral blood smears. In the evaluation section, we also present an 

ablation study to show how accuracy is affected when the stain normalization module is removed 

from our proposed methodology. CycleGAN has become tremendously popular for image-to-

image translation. Image-to-image translation is the mapping of an image from one source domain 

to a target domain. It is also useful for style transfer. Through CycleGAN, we can translate a 

semantic label to a photorealistic image, change color of images from one color domain to another, 

synthesize items from outlines, etc. The advantage of CycleGAN is that we do not need paired 

inputs for training GAN. It can be used for unpaired image-to-image translation. Also, traditional 

approaches like ensemble models [117] with different reference slides, color matching [118], 

normal coding, stain separation [119-121] suffers from a larger problem, i.e. it does not consider 

spatial features. In this scenario where it does not consider the spatial features, the tissue structure 

is not preserved which leads to an inefficient model output which is not appropriate for real-life 

usage in the medical field. 

CycleGAN uses two generators and two discriminators. One generator GAB takes input of 

domain A and converts it to domain B, whereas another generator GBA converts images from B to 

A. A being the input or source image distribution and B is the target output distribution. The two 

discriminators are defined as DA and DB and each generator has a corresponding discriminator. DA 

tries to distinguish generated output from real ones for domain A and DB tries to distinguish 

generated output from real ones for domain B. Figure 22, presents the architecture of CycleGAN 

for our proposed work. There are two flows in the Figure 22. The first one being translation from 

domain A→B→A and the second one being a translation from domain B→A→B.  

In our work, for each cell type, we compare the count in both the datasets. We perform stain 

normalization for the dataset having a smaller number of images for a particular cell type. For e.g. 

in Mendeley dataset, basophil has 1218 images and in the Cancer Imaging Archive dataset there 
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are only 79 images for basophil. So, we consider the stain in Cancer Imaging Archive dataset as 

the source and we perform stain normalization to the target stain i.e. stain in the Mendeley dataset. 

Count of images for neutrophil cell type in Cancer Imaging Archive dataset is more than the 

images for neutrophil in the Mendeley Dataset, so we consider the stain used in Mendeley Dataset 

as the source and the stain in the Cancer Imaging Archive Dataset as the target. For our work, we  

 

Figure 22: CycleGAN architecture for stain normalization 

consider Mendeley dataset as domain A and Cancer Imaging Archive Dataset as domain B.  

As can be seen from Figure 22, the image follows two paths. First real image of domain A is 

fed to the generator GAB which maps the image and normalizes the stain from domain A to 

domain B. The generated image is then passed to the discriminator DB which evaluates whether 

the data seems real or not and then the image is again translated back to domain A through 

generator GBA. The real image of domain A and the fake translated image of domain A is then 
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used to measure cycle consistency loss. In this flow the source is considered as domain A and the 

target as domain B. In the second flow, same steps are followed but the domain translation or stain 

normalization is from source domain B to target domain A. Table 9 summarizes the input, output 

and objective of the two generators and the two discriminators. 

                Table 9: Summary of objective, input and output of four networks in CycleGAN 

Network  Input Output Objective 

GAB Images from Mendeley 

Dataset (Domain A) 

 or  

Generated images from 

generator GBA  

Translation to 

Domain B (stains of 

Cancer Imaging 

Archive) 

Stain Normalization- 

Realistic images of 

Domain A with stains of 
Domain B (Generate 

image in domain B) 

GBA Images from Cancer 

Imaging Archive Dataset 

(Domain B) 

 or  

Generated images from 

generator GAB 

Translation to 

Domain A (stains of 

Mendeley Dataset) 

Stain Normalization- 

Realistic images of 

Domain B with stains of 
Domain A (Generate 

image in domain A) 

DA Real image of Domain A 

or 

Translated image of 

Domain A 

Probability of the 

image being real 

Correctly identify 

generated samples by 

GBA  

DB Real image of Domain B 

or 

Translated image of 

Domain B 

Probability of the 

image being real 

Correctly identify 

generated samples by 

GAB 

 

For our work we concentrate on three losses of CycleGAN: adversarial loss, cycle consistency 

loss and identity loss. Adversarial loss is responsible for measuring the probability of an image 

being from the original data distribution rather than from the generator. It also matches the 
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distribution of the source domain or generated images to the distribution of the second or targeted 

domain. Adversarial losses are applied to both the mappings i.e. 1) GAB : A→B and its 

discriminator DB and 2) GBA : B→A and its discriminator DB. The adversarial loss can be 

formulated as shown in Equation 18 and Equation 19: 

For GAB : A→B 


LossAdv(GAB,DB , A,B) = 𝔼b∼pd (b)

[logDB(b)]+ 𝔼a∼pd (a)
[log(1 −DB(GAB(a))]( 18 ) 

For GBA : B→A 

LossAdv
(GBA ,DA , B,A) = 𝔼a∼pd (a)

[logDA(a)]+ 𝔼b∼pd (b)
[log(1 −DA(GBA(b))]( 19 ) 

Adversarial loss can help to learn the mapping from source domain to target domain but when 

the data is large, the input image from the source domain can be mapped to any combination of 

images in the target domain that follows the distribution of the target domain. So adversarial loss 

only by itself cannot confirm the mapping of an image from the source domain to a particular 

desired output in the target domain. Therefore, we require cycle consistency loss that guarantees 

that an image a from domain A translated to domain B should be able to translate a back to the 

real image, i.e. a→ GAB (a) → 𝐆𝐁𝐀(GAB (a))≈ a. This is known as the forward cycle consistency. 

Also, an image b from domain B translated to domain A should be able to translate b back to the 

real image, i.e. b→ GBA(b) → GAB (GBA(b))≈ b. This is known as the backward cycle consistency. 

We measure the performance through the cycle consistency loss defined as in Equation 20: 


Losscyc(GAB ,GBA ) = 𝔼a∼pd(a)[∥ GBA(GAB

(a)) − a ∥1] + 𝔼b∼pd(b)[∥ GAB (GBA
(b)) − b ∥1]( 20 ) 

Therefore, the objective function of a CycleGAN can be defined by combining the adversarial 

loss and the cycle consistency loss as shown in Equation 21: 
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Loss(GAB, GBA,DA , DB) = LossAdv(GAB ,DB , A,B)+ LossAdv(GBA,DA , B, A)+

λLosscyc(GAB ,GBA)     ( 21 ) 

We have two objectives as defined in Equation 22 and λdenotes the relative importance of it. 

GAB
∗,GBA

∗ = ar g min
GAB ,GBA

  max
DA ,DB

 Loss(GAB, GBA,DA , DB).              ( 22 ) 

In our work, we also use the identity mapping or the identity loss along with the overall loss 

to preserve the color intensities between the source and the target stains. The identity loss is 

defined as in Equation 23: 

Lossidentity (GAB ,GBA)= 𝔼b∼pd (b)
[∥ GAB(b)− b ∥1]+ 𝔼x∼pd (a)

[∥ GBA(a)− a ∥1]     ( 23 ) 

CycleGAN uses least-squares [30] loss instead of the negative log likelihood objective defined 

in Equation 18 and 19. For our proposed work we improve the training of CycleGAN by 

introducing two changes: 1) We introduce WGAN-GP to the loss function of CycleGAN to 

improve the stability of the training, 2) We implement a U-Net architecture for the generator 

instead of a vanilla ResNet architecture.  

The training in the Vanilla GAN led to various problems like mode collapse, vanishing 

gradient, difficulty in convergence (Nash Equilibrium), low dimensional support etc. Also, KL 

and JS divergence value failed to produce any meaning for disjoint distributions. Wasserstein 

distance also known as the Earth Mover’s distance is also a measure that provides the distance 

between two probability distribution. The Wasserstein distance performs better than KL 

divergence or JS divergence because it can produce significant representation of the distance 

between two probability distributions even if they are not overlapping in the lower dimensional 

manifold. The WGAN model takes advantage of the Wasserstein distance which comprises of 

continuity properties and differentiability properties, and introduces Wasserstein Loss function. 

The Wasserstein distance between the distribution of real image R and the generated image S can 

be defined as in Equation 24: 
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WD(R,S) = sup
|f|L≤1

 𝔼y∼R[f(y)]− 𝔼ỹ∼S[f(ỹ)]                      ( 24 ) 

Where sup represents supremum considered over all the functions f which should be 1- 

Lipschitz continuous. Y in the function f: Y→ℝ is a compact metric space. In WGAN the 

discriminator is represented through the function f and it does not work as a classifier or a direct 

critic. The discriminator helps to estimate the Wasserstein distance between the original and the 

generated data distribution. The objective function of the WGAN can be defined as in Equation 

25: 

min
G
 max
D∈L

  𝔼
y∼R
[D(y)]− 𝔼

ỹ∼S
[D(ỹ)]                               ( 25 ) 

Where L represents 1- Lipschitz functions. But, to add the Lipschitz constraint to the 

discriminator, a weight clipping method is used, where the weights of the discriminator are clipped 

in a compact space [c, −c] and are limited to it. In WGAN few changes were made with respect to 

the original GAN training. The changes were: logarithm was not used anymore for loss function 

in WGAN, weight clipping for the discriminator in WGAN, sigmoid was removed from the last 

layer of the discriminator and RMSProp was used instead of Adam optimizer. Although WGAN 

eliminated the problem of Vanilla GAN, the weight clipping method led to optimization 

difficulties. Therefore, to solve this issue, WGAN with gradient penalty (WGAN-GP) was 

introduced by [122]. WGAN-GP replaces the weight clipping by complying with the condition of 

1-Lipschitz and by enforcing a penalty on the gradient. The objective of WGAN-GP can be defined 

as the combination of original critic loss and gradient penalty as shown in below Equation 26: 

Loss(G,D, Y) = 𝔼
G(z)∼S

[D(G(z))]− 𝔼
y∼R
[D(y)]

⏟                  
Original critic loss 

+∂ 𝔼
ŷ∼ℙŷ

[(∥∥∇ŷD(ŷ)∥∥2
−1)

2
]

⏟                
Gradient penalty 

                   ( 26 ) 

Where ∂is the penalty coefficient, �̂� ∼ ℙ�̂� are random samples and ℙŷ is responsible for 
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uniformly sampling between pairs of points sampled from real and generated data distribution 

along a straight line. WGAN-GP has tremendously improved the training of GANs. 

For incorporating WGAN-GP in CycleGAN we have made the following changes: removed 

sigmoid function from the last layer of the discriminator, instead of RMSProp we have used Adam 

optimizer, eliminated logarithm for generator and discriminator loss function, applied gradient 

penalty on the loss function of the discriminator and removed batch normalization.  

So, the adversarial losses of CycleGAN for our proposed work can be defined as in Equation 

27 and Equation 28: 

AdvLossWGAN(GAB ,DB ,A, B) = 𝔼b∼pd(b) [DB(b)]− 𝔼a∼pd(a)[DB(GAB(a)]( 27 ) 

AdvLossWGAN(GBA ,DA , B,A) = 𝔼a∼pd(a)[DA(a)]− 𝔼b∼pd(b) [DA(GBA(b)]( 28 ) 

And after combining the cycle consistency loss, the W-CycleGAN objective can be defined 

as shown in Equation 29: 

Loss(GAB, GBA,DA , DB) = AdvLossWGAN(GAB,DB , A, B)+AdvLossWGAN(GBA ,DA , B,A) 

+λLosscyc (GAB,GBA)      ( 29 ) 

We improve the performance of W-CycleGAN by introducing gradient penalty. The objective 

of W-CycleGAN-GP can be defined as shown in Equation 30: 

Loss(GAB,GBA ,DA , DB) = AdvLossWGAN(GAB,DB , A,B)+ AdvLossWGAN(GBA ,DA , B,A)

+λLosscyc(GAB,GBA)+ ∂1 𝔼
â1∼pdâ1

[(∥∥∇â1DB(â1)∥∥2
− 1)

2
]

+ ∂2 𝔼
â2∼pdâ2

[(∥∥∇â2DA(â2)∥
∥
2
− 1)

2

]
( 30 ) 

Where λ is the relative importance for cycle consistency loss, â1 ∼ pdâ1
 and â2 ∼ pdâ2

 

are random samples, ∂1 and ∂2 are the penalty coefficient and pdâ1
and pdâ2

 are responsible 

for uniformly sampling between pairs of points sampled from real and generated data distribution 

along a straight line.  
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In general, the CycleGAN generator consists of an encoder, a transformer and a decoder as 

shown in Figure 23. The encoder is built with three convolutional layers which downsamples the 

input image and increases the number of channels. The transformer uses few residual blocks 

(ResNet) to transform the image and the decoder uses convolutional blocks for upsampling and 

generating the output image.  

 

Figure 23: CycleGAN generator architecture 

In our work, we have used a U-Net architecture that uses convolutional layers to design the 

encoders. We have skip connections in between convolutional blocks so that information can 
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traverse easily and quickly. Then for the decoder we have used deconvolutional blocks with one 

convolutional layer for upsampling the image and for producing the output image of the same size 

as the original image. Figure 24 presents the U-Net architecture for the generator network of W-

CycleGAN-GP. For U-Net we have used standard 2D convolutional layers, LeakyReLU activation 

and instance normalization instead of batch normalization, transposed convolution and created 

skip connections between the downsample and the upsample blocks as shown in Figure 24. 

   

Figure 24: Proposed U-Net generator architecture for CycleGAN 

We have used same discriminator architecture as CycleGAN which is based on the PatchGAN 

[123] architecture. It uses fully convolutional neural networks that examines a patch of the input 

image and produces the probability of the patch being original or real. This approach is considered 

to be more efficient computationally as compared to evaluating an entire image. This allows the 

discriminator to concentrate more on intricate details like texture that is mostly modified during 

translation of images. PatchGAN discriminator does not output a probability like conventional 

discriminators. PatchGAN discriminator predicts for each patch of the whole image whether it is 
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real or not. The predictions are then averaged to generate the output or is tallied to a matrix of 

expected values i.e. zero or one. The discriminator architecture uses 2D convolutional blocks, 

LeakyReLU activation and instance normalization. The PatchGAN based discriminator model in 

our work (W-CycleGAN-GP) is presented in Figure 25. 

 

Figure 25: Plot of discriminator model of CycleGAN 



                                             59 

 

3.5 Classifier Based Generative Adversarial Networks 

Conditional GAN introduced in [124] is a variation of GAN which conditions the generator 

and the discriminator of a GAN model on class labels or specific conditions. We can provide any 

auxiliary information like labels of data or data of other modalities as the extra information C in 

the GAN architecture. The condition C is forwarded as input to both the generator network and 

the discriminator network. The structure of conditional GAN model is shown in Figure 26. 

 

Figure 26: Conditional generative adversarial networks 

The generator receives the combination of an input noise vector P(z) and the condition C. The 

input to the generator is in the form of a hidden representation. The discriminator receives the real 

image y and the generated image as input. The discriminator is also conditioned on the extra 

information. The objective function of the conditional GAN can be described as in Equation 31: 

min
G
 max
D
 V(D,G) = 𝔼y∼pd(y)[logD( y ∣∣ C )] + 𝔼z∼P(z) [log (1 −D(G( z ∣ C )))]   ( 31 ) 

In conditional GAN the discriminator cannot output the category or labels of data directly. To 

get the data category, the data should be provided as input by mentioning each category one by 

one. Also, conditional GAN fails to provide intricate features or images with detailed and specific 

labels. In auxiliary classifier GAN (AC-GAN) [125], the generator receives an input noise vector 
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along with a condition. The generator produces a fake sample which is forwarded to the 

discriminator. The discriminator receives the real image and the fake image. The discriminator in 

AC-GAN performs two tasks. The discriminator has to produce the probability distribution of the 

data being real and also output the probability of the image belonging to a specific class. AC-GAN 

defines a classifier on top of the discriminator, so the discriminator has two tasks. One is to 

distinguish generated image from a real image, and the second is to predict the class labels of the 

image. Figure 27 shows the structure of the auxiliary classifier GAN. 

 

Figure 27: Auxiliary classifier generative adversarial networks (AC-GAN) 

The objective function of AC-GAN can be represented with the log-likelihood of the image 

being from the real ( R ) distribution (LSource) and the log-likelihood of the image being from correct 

class label (LClass). They can be described with Equation 32 and Equation 33.  

LSource = E[logP(Source =  R ∣ XR )]+ E[logP(Source=  F ∣ XF )] ( 32 ) 

LClass = Elo gP(Class = C ∣∣ XR)]+ E[logP(Class = C ∣ XF )]  ( 33 ) 

Where F denotes the generated data. The discriminator in AC-GAN is not provided with the 

class label. But due to the sharing of weight parameters in the discriminator architecture AC-GAN 

has a complex and limited training process. Following conditional generation from conditional 

GAN and classifier-based discriminator in AC-GAN, in our work we have proposed a classifier-
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based GAN architecture C-WGAN-GP which is a three-player GAN architecture consisting of a 

generator, discriminator and a classifier. We have used WGAN-GP loss for our model training. 

We have separated the classifier from the discriminator, and the generator is simultaneously 

trained from the feedback of the classifier and the discriminator. The generator tries to fool the 

discriminator and simultaneously targets to generate samples that can be classified correctly by 

the classifier. Figure 28 presents our proposed classifier-based GAN architecture. 

 

Figure 28: Classifier-based generative adversarial networks (C -WGAN-GP) 

In our work, we use the classifier-based GAN model to generate images of cell types 

consisting more than thousand images each. There are eight cell types with more than thousand 

images and they are: basophil, eosinophil, erythroblast, immature granulocytes, lymphocyte, 

monocyte, myeloblast and platelet. We have enough data for neutrophil, so we did not consider 

neutrophil cell type for image generation. The structure of the generator, discriminator and the 

classifier are presented in Table 10, Table 11 and Table 12. We use two hidden deconvolutional 

layer for each residual block. We have used LeakyReLU for the activation function.  
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Table 10: Network architecture details of the generator 

Blocks Size of Kernel Shape of Output 

Input Concatenate(z,C) 

Fully Connected - 64 x 32 x 32 

Residual Block (1,2) 3 x 3 64 x 32 x 32 

Deconvolution (s=2) 5 x 5 64 x 64 x 64 

Residual Block (3-6) 3 x 3 64 x 64 x 64 

Deconvolution (s=2) 5 x 5 64 x 128 x 128 

Residual Block (7,8) 3 x 3 64 x 128 x 128 

Deconvolution (s=1) 5 x 5 64 x 128 x 128 

  

Table 11: Network architecture details of the discriminator 

Blocks Size of Kernel Shape of Output 

Input (X, G(z,C)) 

Convolution (s=2) 5 x 5 64 x 64 x 64 

Residual Block (1,2) 3 x 3 64 x 64 x 64 

Average Pooling 2 x 2 64 x 32 x 32 

Residual Block (3-6) 3 x 3 64 x 32 x 32 

Average Pooling 2 x 2 64 x 16 x 16 

Residual Block (7-10) 3 x 3 64 x 16 x 16 

Average Pooling 2 x 2 64 x 8 x 8 

Fully Connected - 128 

Fully Connected - 1 
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Table 12: Network architecture details of the classifier 

Blocks Size of Kernel Shape of Output 

Input (X, G(z,C)) 

Convolution (s=2) 5 x 5 64 x 64 x 64 

Residual Block (1,2) 3 x 3 64 x 64 x 64 

Average Pooling 2 x 2 64 x 32 x 32 

Residual Block (3-6) 3 x 3 64 x 32 x 32 

Average Pooling 2 x 2 64 x 16 x 16 

Residual Block (7-10) 3 x 3 64 x 16 x 16 

Average Pooling 2 x 2 64 x 8 x 8 

Fully Connected - 128 

Fully Connected - 8 

 

3.6 Few-Shot Image Generation 

In this section, we generate images for the cell types containing less than hundred images  

through meta learning based few-shot image generation. The cell types for which we have 

introduced few-shot image generation are monoblast, promyelocyte and smudge cells. We have 

followed the meta learning architecture of [126], but modified the generator architecture for better 

performance, high resolution images and to build a light weight model. The few-shot image 

generation model is an encoder-based GAN model which has a training phase and a generation 

phase. In the training phase we take the dataset we prepared from classifier-based GAN model as 

input to the encoder. In the training phase we have training tasks denoted as Task In and in the 

generating phase we have testing tasks denoted as Task Jn. The testing tasks are unseen and are 

not present in the training tasks just like the concept of meta learning. Both the training and 
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generating phase has two loops: inner and outer. First the encoder En1 in the inner loop of the 

training phase receives the input image a from the training tasks. The encoder downsamples the 

input into a feature vector FV, FV= En1(a). The feature vector is combined with two random noise 

vectors denoted as z1 and z2. There are two random noise vectors to eliminate mode collapse 

problem in GAN as was introduced in mode seeking GAN [36]. Then the two combined random 

noise with feature vector is passed to the generator (Gen) as input. The generator outputs synthetic 

images b1=Gen1(z1, r) and b2=Gen1(z2, r). The generated images are then passed to the 

discriminator. The discriminator Dis1 tries to distinguish between the real image (a) and generated 

image (b). Once all the iteration of the inner loop is completed the outer loop is activated. The 

outer loop consists of the second encoder (En2), generator (Gen2) and the discriminator (Dis2). By 

setting the gradient θ = θ− WeiTask, the gradients are updated for the encoder, generator and 

discriminator in the outer loop. Figure 29 presents the layout of the training phase for few-shot 

image generation.  

 

Figure 29: Training phase for few-shot image generation 

In the generating phase, we work with the testing task Task Jn. The parameters of the encoder, 
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generator and the discriminator from the training phase are adapted for training the testing task in 

the generating phase. In the generating phase, we use the cell types having less than hundred 

images. We get the generated images for monoblast, promyelocyte and smudge cells from the 

generating phase. Figure 30 presents the layout of the generating phase for few-shot image 

generation.  

 

Figure  30: Generating phase for few-shot image generation 

We follow the algorithms of [126] to train the overall encoder-based GAN network for few-

shot image generation. Since we have considered two random variable z1 and z2, we define the 

objective function of the discriminator as shown in Equation 34, Equation 35 and Equation 36. 

LossDis = 
LossDis1+LossDis2 

2
     ( 34 ) 

Where, 

LossDis1 = −𝔼ai∼a [log(Dis1(ai)]− 𝔼b1i∼b1[log(1−Dis1(b1i)] ( 35 ) 

LossDis2 = −𝔼ai∼a [log(Dis2(ai)]− 𝔼b2i∼b2 [log(1− Dis2(b2i)]    ( 36 ) 

Where i is the index of the image i.e. from the input a and the output b of every task, we sample 
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I images and i∈[0,I]. Similarly, the objective function of the generator can be defined as shown in 

Equation 37, Equation 38 and Equation 39. 

LossGen= 
LossGen1+LossGen2 

2
     ( 37 ) 

Where, 

LossGen1 = −𝔼b1i∼b[log(Dis1(b1i)]− 𝔼ai∼a [log(1−Dis1(ai)] ( 38 ) 

LossGen2 = −𝔼b2i∼b[log(Dis1(b2i)]− 𝔼ai∼a[log(1− Dis1(ai)]    ( 39 ) 

Also, in the same way we can define the objective function of the encoder through average of 

two encoders as shown in Equation 40, Equation 41 and Equation 42. 

LossEn= 
LossEn1+LossEn2 

2
      ( 40 ) 

Where, 

LossEn1 = ∑  I
i=1 ∥∥ai −b1i∥∥     ( 41 ) 

LossEn2 = ∑  I
i=1 ∥∥ai −b2i∥∥     ( 42 ) 

The weights of the generator WeiGen, discriminator WeiDis and the encoder WeiEn for every 

sampled training task Task In and generating task Task Jn are initialized and minimized in the 

inner loop of the model through the objective functions LossGen,LossDis  and LossEn. In the 

outer loop we update the global parameters θGen,θDis  and θEn of the generator, discriminator 

and the encoder by minimizing or reducing the distance between the optimized weights and the 

initial parameters of the generator, discriminator and the encoder (θGen,θDis  and θEn) from the 

inner loop. We denote it through the following Equation 43: 

minimise∑(θDis−WeiDisTask)+ (θGen−WeiGenTask)+ (θEn− WeiEnTask) ( 43 ) 

Therefore, the overall loss function can be defined as shown in Equation 44: 

Loss = LossDis +LossGen+λEnLossEn + λMSRℒMSR  ( 44 ) 

Where, ℒMSR  denotes the regularization term defined in mode seeking GAN and the 

hyperparameter λEn and λMSR are set to one following [127]. 
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We have built the generator of the meta learning model following [128]. The generator 

consists of channel-wise attention along with skip layer excitation that performs larger skip 

connections than ResNet. Figure 31 represents the architecture of the generator for few-shot image 

generation. The combination of the encoder’s feature vector and the two random noise is fed to 

the fully connected layer, which is then passed through the transposed convolution with batch 

normalization and gated linear unit [129]. The grey boxes in Figure 31 represents the feature maps 

with the spatial size and as can be seen the boxes follows up-sampling of the image. The green 

boxes represent the skip layer excitation module which is described in Figure 32. Instead of 

element-wise addition of skip connection between the activations of same special dimension as in 

residual blocks, we use channel-wise multiplication for the skip connection. Also, it is not required 

that the spatial dimension should be same. As we can see from Figure 31, the skip layer excitation  

 

Figure 31: Generator architecture for few-shot image generation 
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Figure 32: Skip layer excitation module of the generator network  

 

module is between different resolution size like 82 and 1282, 162 and 2562, etc. The skip layer 

excitation module can be described as shown in Equation 45: 

SLE = ℱ(Ilow , {Wei}) ⋅ Ihigh                        ( 45 ) 

Where I represent input feature map, SLE represents output feature maps of the skip layer 

excitation module. Wei is the weight of the module and ℱ denotes the operations on the input 

feature maps of low resolution Ilow. In Figure 32, the skip layer excitation module is shown where 

Ilow is 8x8 resolution and Ihigh is 128x128 resolution. First Ilow is downsampled through adaptive 

average pooling to 4x4, then a convolutional layer is used to downsample it further. The non-
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linearity is modeled through LeakyReLU, after a 1x1 convolution, a sigmoid function is used and 

the output from the ℱ operation is multiplied with Ihigh along the dimension of the channel to 

obtain SLE that has the same resolution as Ihigh. 

 

Figure 33: Architecture of the encoder network of the few-shot image generation 

The encoder network is shown in Figure 33 which consists of four residual blocks with 

convolutional layer, ReLU activation and batch normalization. Three out of four boxes are 

followed by a max pooling layer and at the end there is a fully connected layer and feature vectors 

are the output of the encoder network. Figure 34 presents the discriminator architecture of the few-

shot image generation which uses three 3x3 convolutions with spectral normalization and 

LeakyReLU followed by 4x4 convolutions with spectral normalization and LeakyReLU. The 

model is followed by a single 3x3 convolution and a fully connected later. The discriminator 

outputs the probability of an image belonging to the real distribution.  
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Figure 34: Architecture of the discriminator network of the few-shot image generation  

3.7 Novel Deep Learning Model for Classification 

After few-shot image generation, we get a balanced dataset by combining the original and the 

generated synthetic data. For classification of the microscopic single-cell images, we propose a 

novel deep learning model named as SENet-154-GE. The proposed model is based on three 

foundations: Squeeze-and-Excitation Networks (SENet), aggregated residual transformation-

ResNeXt model and Gather-Excite framework (GE).  

ResNeXt is a model that introduces a new dimension called cardinality on top of the ResNet 

architecture. It was proposed by Facebook AI research and UC San Diego for enhancing the 

performance of image classification [130]. In a simple neuron as shown in Figure 35, the output 

is a combination of splitting, transforming and merging and is represented by Equation 46: 
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Figure 35: A simple neuron 

∑ 𝑤𝑗𝑎𝑗
𝑛
𝑗=1                                             ( 46 ) 

The vector a is split into a lower-dimensional embedding. In Figure 35 it is a single-dimension 

embedding aj. The vector or input is then transformed i.e. 𝑤𝑗𝑎𝑗 and then it is merged through the 

summation operator. In ResNeXt instead of the linear function 𝑤𝑗𝑎𝑗 , a generic function is 

introduced that expands along a new dimension and is referred to as the “Network-in-Neuron” 

instead of “Network-in-Network” which expands the dimension of depth [131]. The aggregated 

transformation in ResNeXt is presented in Equation 47: 

ℱ(a) = ∑  C
i=1 𝒯j(a)                                     ( 47 ) 

Similar to a simple neuron 𝒯jis an arbitrary function that project a into a low-dimension 

embedding and then transforms it. In Equation 47, C refers to the cardinality [132] that denotes 

the size of the set of transformation that has to be merged or aggregated. In Equation 47, we see 

C in the position of n in Equation 46, but C can be an arbitrary number and has not to be equal to 

n. The dimension of width represents the amount of simple transformations but the dimension of 

cardinality handles more complex transformations and is considered as a more important 

dimension than depth or width. In Figure 36, we show the relationship of ResNeXt block with 

Inception-ResNet and grouped convolution in AlexNet. Three of the architecture has same internal 
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Figure 36: ResNeXt equivalent building blocks (a) Aggregated residual transformation (b) Inception -ResNet  

(c) Grouped convolution 

dimensions. In Figure 36 (a) each convolution path consists of Conv 1x1- Conv 3x3 – Conv 1x1 

block, which is the basic design of the ResNet. For each path the internal dimension is 4 which is 

represented with d and the cardinality C refers to the number of paths i.e. C=32. Aggregating the 

dimension of each Conv 3x3 i.e. d x C = 4 x 32, we get 128 as the dimension. In aggregated 

residual transformation Figure 36 (a), the dimension is directly raised from 4 to 256 and added 

together along with the addition of skip connections. In Inception-ResNet, the dimension needs to 

be increased from 4 to 128 and then to 256, so ResNeXt requires less effort to design each path 

and in ResNeXt the neurons of one path is not connected to the neurons of other paths like ResNet.  

Figure 36 (b) shows Inception-ResNet block that has Conv 1x1 – Conv 3x3 for each convolution 
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path and is also of dimension 128. Here the outputs are concatenated and Conv 1x1 is utilized to 

regain the dimension from 128 to 256. The only difference is the concatenation. In Figure 36 (c), 

we see grouped convolution as was suggestes in AlexNet [133]. Every convolution path has Conv 

1x1 – Conv 3x3 – Conv 1x1 layers. The low-dimension embeddings i.e. Conv 1x1 can be replaced 

by a wider and single layer (Conv 1x1, 128-d). There are 32 groups of convolutions with 4-

dimensional input and output channels. The authors of ResNeXt concluded that grouped 

convolution performed better and faster compared to the other two (Figure 36 (b) and 36 (c)).  

The squeeze-an-excitation block is an easy-to-plug-in module that consists of the squeeze 

module, the excitation module and the scaling module [134]. In convolutional neural networks 

lower layers can find trivial features while upper layers can understand complex structures. The 

whole network fuses spatial and channel information of images to extract valuable information for 

solving a task. SENet proposes squeeze module where the feature maps across the spatial 

dimension are aggregated to generate a channel descriptor. Each channel is squeezed to a single 

numeric value through global average pooling. Excitation module captures channel-wise 

dependencies fully and also learns about nonlinear relationship between channels. The excitation 

operation works as a gating mechanism. Embeddings are input to the excitation operation and it 

generates modulation weights of each channel all together. The nonlinearity is added through a 

fully connected layer that is followed by a ReLU function. Each channel receives a gating function 

through a second fully connected layer that is followed by a sigmoid activation. In the scaling 

module every feature map of the convolutional block is weighed according to the output of the 

side network. The transformation output is rescaled with the activations to generate the final output 

of the SE block. Figure 37, represents the squeeze-and-excitation block plugged into ResNeXt 

module where H is height of the feature map, W is width of the feature map and C is the number 

of channels of the feature map.  
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Figure 37: Schema of SE-ResNeXt module 

For our classification model, we have incorporated squeeze-and-excitation (SE) block into 

ResNeXt-152 64x4d network. SENet-154 was introduced in [134]. ResNeXt-152 adopts the 

stacking of blocks strategy of ResNet-152 [135] in the modified version of ResNeXt-101. The 

modifications that have been made to the ResNeXt-152 model apart from the incorporating the SE 

block are [134] 1) The initial 1x1 convolutional channels were halved for every building block. 2) 

Incorporated three 3x3 convolutional layer in place of first 7x7conv layer. 3) 3x3conv layer with 
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stride 2 was used instead of 1x1 downsampling convolutional layer with stride 2. 4) A dropout 

layer was added before the classification layer with a dropout ratio of 0.2. 5) Regularization (label 

smoothing) was [136] used for training. The overview of our proposed SENet-154-GE 

classification model is shown in Figure 38. The architecture is inspired from [137]. 

 

Figure 38: O verview of the SENet-154-GE model for classification 

The proposed model utilizes grouped convolution of ResNeXt architecture. Features of the 

first and the last convolutional layer is fused through element-wise multiplication and passed to 

the squeeze-and-excitation module. Features of the last convolutional layer are passed to the 

gather-excite (GE) module [138]. The GE module introduces a pair of step-wise deep convolution 

known as gather operator EG and an excite operator EE. The gather operator merges contextual 

information of each feature map on a large spatial scale and the excite operator conditions on the 

aggregates and modulates the feature maps. The excite operator distributes the merged information 

to the local features. By introducing the GE module, we exploit feature context of the microscopic 

single-cell images and improve the performance of feature extraction by focusing in detail on the 

local features. The layout of GE  
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Figure 39: Layout of gather-excite module 

model is shown in Figure 39. We get the attentional features by fusing the features of the GE 

and SE module through element-wise addition. Then, the fused feature of SE and GE module are 

fused with the feature of last convolutional layer. We then perform average pooling and use 

softmax for getting the classification results. The SENet-154-GE has been trained on twelve 

peripheral blood cell classes namely basophil, eosinophil, erythroblast, immature granulocyte, 

lymphocyte, monoblast, monocyte, myeloblast, neutrophil, platelet, promyelocyte and smudge 

cells.  

 

 

 

 

 

 

 

 

 

  



                                             77 

 

 Chapter 4: Experiments and Performance 

Analysis 

 
In this section, we discuss about the experiments we performed for each module presented in 

the proposed methodology section and we present the results and performance analysis of each 

proposed module. In section 4.1, we present the result analysis of stain normalization. Section 4.2 

presents the experiments and performance analysis for classifier-based generative adversarial 

networks. In section 4.3, performance of few-shot image generation is discussed. In next section 

4.4, we validate our proposed SENet-154-GE classification model and in the end in conclusion we 

present an ablation study for our proposed methodology to enhance classification of microscopic  

single-cell images obtained from peripheral blood smears. 

4.1 Performance Analysis of Stain Normalization 

We assess the quality of stain normalized images generated by cycle consistency GAN in this 

section. The training time for our proposed stain normalization GAN model was 10hr 36min. 

Comparison of computation or training time for CycleGAN, pix2pix and our proposed CycleGAN 

is presented in Table 13. We use three evaluation metrics Fréchet Inception Distance (FID), 

Structural Similarity Index Measure (SSIM) and Inception Score (IS). 

Table 13: Comparison of computation or training time for different models 

CycleGAN [49] pix2pix [50] Proposed CycleGAN 

12hr 6min 13hr 4min 10hr 36min 

 

Fréchet Inception Distance (FID) is a popular evaluation metrics for GANs that computes the 

distance between features vectors of original data and features of generated data. Fréchet Inception 
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Distance (FID) score was introduced by Martin Heusel et al. as an improved version of inception 

score (IS) [139]. Through Fréchet distance, we can measure the distance between the real and the 

synthetic data distribution as well as similarity between curves that considers the order of points 

and the location along the curves. Fréchet distance for a univariate normal distribution is computed 

as shown in Equation 48: 

FD(A,B) = (μA−μB)
2+ (σA −σB)

2                    ( 48 ) 

Where, A and B are two normal distributions and μ and σ are mean and standard deviation 

of the distributions. The Fréchet distance for evaluating GAN uses Inception V3 pre-trained model 

on the Imagenet dataset and therefore the name is Fréchet Inception Distance (FID). FID uses the 

activations from the inception V3 pre-trained model and the activations are taken from the last 

pooling layer. There are 2048 activations in the output layer and every image is predicted as 2048 

activation feature vector. The feature vector is predicted both for real and synthetic images and 

the output contains both the collection of 2048 feature vectors for original and synthetic images. 

The FID for multivariate normal distribution can be defined as in Equation 49: 

FID = ∥∥μR− μS∥∥2
2+Tr (CR+CS − 2(CRCS)

1

2)  ( 49 ) 

Where, (μR ,CR)and(μS,CS)arethemean and covariance of real and synthetic features and 

Tr is the trace of the matrix. 

The structural similarity index measure (SSIM) between two images ranges between zero and 

one. One indicates the two images are very similar and zero indicates the two images are different. 

The SSIM score is computed with a combination of three features: luminance, contrast and 

structure. Luminance is calculated by taking the average over all pixel values. The measure of 

standard deviation of all pixel values gives the contrast. The input is divided with its standard 

deviation to obtain a result containing unit standard deviation and by this we get a structural 

comparison. So, we define luminance (L), contrast (C) and structure (S) as shown in Equation 50, 
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51 and 52: 

L(real , gen )=
2μreal μgen +C1

μreal 
2 +μgen 

2 +C1
    ( 50 ) 

C( real , gen ) =
2σreal σgen +C2

σreal 
2 +σgen 

2 +C2
    ( 51 ) 

S( real, gen )=
σrealgen +C3

σreal σgen +C3
    ( 52 ) 

Where μ and σ represents the mean and standard deviation and C1,C𝟐 and C𝟑 are constants 

for introducing numerical stability. Therefore, the SSIM can be defined as in Equation 53: 

SSIM(real,gen) = [L(real,gen)]α ⋅ [C(real, gen)]β ⋅ [S(real,gen)]γ        ( 53 ) 

Where α, β and γ are the weighting factors and signifies the importance of each metrics. 

Inception score (IS) measures the quality of the images generated by the generative models. 

It uses an Inception v3 network which is pretrained on the ImageNet dataset to evaluate the 

performance of the network on the generated images. The inception score (IS) can be computed 

with Equation 54: 

IS(G) = exp(𝔼x∼pgenKLD(p(y ∣∣ x ) ∥ p(y)))  ( 54 ) 

Where, x ∼ p𝐠𝐞𝐧 denotes that image x is sampled from the distribution pgen. KLD(p||q) 

indicates the KL divergence between p distribution and q distribution. p(y|x) represents 

conditional class distribution, p(y) is the marginal class distribution and exp is used for easier 

comparison of values.  
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             Table 14: FID scores between real, generated and reconstructed images for domain A and B  

FID CycleGAN [49] pix2pix [50] Proposed CycleGAN 

Areal vs. Agen 9.9732 14.5771 4.9834 

Areal vs. Arec 5.6637 9.8405 3.7155 

Breal vs. Bgen 11.7466 13.5682 4.2130 

Breal vs. Brec 6.4624 8.3391 3.7126 

 

In Table 14., we compare the FID scores of CycleGAN for stain normalization as proposed 

by [140], pix2pix and our proposed modified CycleGAN for stain normalization. FID scores 

between real and generated as well as reconstructed images are presented in Table 14. A represents 

domain A (Mendeley dataset stain) and B represents domain B (Cancer imaging archive data stain). 

Areal denotes real image in domain A and Agen represents the generated image through the 

adversarial networks. Similarly, Breal is real image in domain B and Bgen denotes generated images. 

Arec and Brec are the reconstructed image in domain A and domain B. The lower the FID score the 

better the quality of the generated images. As can be seen in Table 14 our proposed modified 

CycleGAN produces lower FID score as compare to general CycleGAN model and pix2pix model 

with an average score of 4.9834 for real vs. generated images in domain A, 3.7155 for real vs. 

reconstructed in domain A, 4.2130 for real vs. generated images in domain B and 3.7126 for real 

and reconstructed images in domain B.  
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                           Table 15: SSIM scores between real and reconstructed images 

SSIM CycleGAN [49] pix2pix [50] Proposed CycleGAN 

Areal vs. Arec 0.9535 0.9122 0.9834 

Breal vs. Brec 0.9662 0.9256 0.9869 

 

                                    Table 16: Inception score comparison 

 CycleGAN [49] pix2pix [50] Proposed CycleGAN 

IS 88.34 85.67 96.26 

 

In Table 15, we present the SSIM score between real and reconstructed images in domain A 

and domain B. We compare the result of CycleGAN and pix2pix with proposed modified 

CycleGAN for stain normalization. The SSIM score as mentioned earlier ranges from 0 to 1 and 

the score nearer to 1 represents images with higher similarity. As can be seen in Table 15, proposed 

CycleGAN achieved highest SSIM score compared to CycleGAN and pix2pix.  

In Table 16, we provide the inception score of the three models and proposed CycleGAN 

achieved highest inception score indicating our model can generate various distinct images. In 

Figure 40, we present the training loss of modified CycleGAN for stain normalization on our 

dataset. It has been trained for 150 epoch and as we can see from Figure 40, the loss became stable 

at around 130 epochs which means the proposed modified CycleGAN model reached Nash 

Equilibrium and therefore the training was stopped at 150 epochs. The loss value was between 

0.2-0.5 for every network.  
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Figure 40: Loss of proposed CycleGAN for stain normalization 

We have performed stain normalization for six cell types: basophil, eosinophil, erythroblast, 

lymphocyte, immature granulocyte and monocyte. Except for lymphocyte, the stain from the 

Cancer Imaging Archive dataset has been normalized to the stain of the Mendeley dataset (B → 

A) as images were less for each cell types in the Cancer Imaging Archive dataset. For lymphocyte 

images in the Mendeley dataset was more so we performed stain normalization from (A → B). 

For the other cell types, we have not performed stain normalization since images contained the 

same stain color. From Figure 41 to Figure 46, we present the few samples of real, stain normalized 

and the reconstructed images of six cell types using our proposed modified CycleGAN.  

Reconstructed images are fake or synthetic images which should look and possess characteristics 

exactly like the original image.  
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Figure 41: Real, stain normalized and reconstructed images for Basophil 
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Figure 42: Real, stain normalized and reconstructed images for Eosinophil 
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Figure 43: Real, stain normalized and reconstructed images for Erythroblast 
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Figure 44: Real, stain normalized and reconstructed images for Immature Granulocytes 
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Figure 45: Real, stain normalized and reconstructed images for Lymphocyte  
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Figure 46: Real, stain normalized and reconstructed images for Monocyte  
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4.2 Performance Analysis of Classifier-Based Generative 

Adversarial Networks 

For evaluating our proposed classifier-based generative adversarial networks (C-WGAN-GP) 

we have used various evaluation metrics. The training time for C-WGAN-GP was 9hr 13min. We 

compared the performance of C-WGAN-GP model with auxiliary classifier GAN (AC-GAN), 

conditional Wasserstein GAN with gradient penalty (CWGAN-GP), information maximizing 

GAN (Info-GAN) [141], deep convolutional GAN (DCGAN) [142] and conditional GAN 

(CGAN). Comparison of computation or training time for above mentioned model with our 

proposed model is presented in Table 17. The evaluation metrics which we have used for 

quantitative analysis of our proposed model are Fréchet inception distance (FID), precision, F1 

score, learned perceptual image patch similarity (LPIPS), recall, inception score (IS), peak signal-

to-noise ratio (PSNR), structural similarity index measure (SSIM), l1 and l2 error.  

Table 17: Comparison of training time of GAN models 

AC-GAN CWGAN-GP InfoGAN DCGAN CGAN C-WGAN-GP 

11hr 12min 13hr 10min 12hr 33min 16hr 3min 14hr 2min 9hr 13min 

 

We have used recall for analyzing the quantity of synthetic images created by the generative 

models. Precision has been used to evaluate the quality of the generated microscopic cell images 

and also to evaluate the performance of C-WGAN-GP on generating images that can be classified 

correctly by the classifier. The F1 score measures the harmonic mean between the recall and the 

precision. Higher value of F1, precision and recall indicate better performance of the model. To 

compute the distance between image patches, we have used LPIPS metrics. Smaller distance 

indicates more similarity and better output. PSNR measures the peak signal-to-noise ratio between 

the reconstructed or generated image and the original image. Higher the value of PSNR, better is 



                                             90 

 

the quality of the generated image. We compute the error rate through l1 and l2 loss function where 

l1 computes the least absolute deviation and l2 computes the squared differences between the real 

and generated data. We have used C-WGAN-GP to generate images of eight cell types i.e. basophil,  

eosinophil, erythroblast, immature granulocyte, lymphocyte, monocyte, myeloblast and platelet. 

In Table 18, Table 19 and Table 20, we present the quantitative analysis result for different GAN 

models and compare the performance with our proposed C-WGAN-GP model. As can be seen 

from Table 18, precision, recall and F1-Score are higher for C-WGAN-GP on our dataset 

indicating that our proposed model performs better compared to existing GAN models. Also, in 

Table 19, proposed C-WGAN-GP achieves high inception score and lower FID and LPIPS 

reflecting better quality generation of images. We have presented in Table 20, that our model 

generates lower error rates, higher structural similarity and better-quality images. 

                          Table 18: Q uantitative analysis of different GAN models  

Models Precision Recall F1-Score 

AC-GAN 93.98 92.16 93.55 

CWGAN-GP 87.23 87.46 88.74 

InfoGAN 91.66 87.11 87.46 

DCGAN 88.62 88.90 88.33 

CGAN 94.78 92.33 93.60 

C-WGAN-GP 97.93 97.60 97.15 

 



                                             91 

 

                   Table 19: FID, IS and LPIPS score comparison of different GAN models 

Models FID IS LPIPS 

AC-GAN 62.66 13.32 ± 0.59 0.28 

CWGAN-GP 72.48 9.83 ± 0.25 0.36 

InfoGAN 70.32 9.91 ± 0.10 0.33 

DCGAN 77.91 8.44 ± 0.32 0.43 

CGAN 71.33 11.59 ± 0.62 0.32 

C-WGAN-GP 57.82 17.73 ± 0.11 0.21 

 

                     Table 20: PSNR, l1, l2 and SSIM comparison of various GAN models 

Models PSNR SSIM L1 L2 

AC-GAN 35.62 0.9134 12.94% 8.92% 

CWGAN-GP 33.46 0.8762 13.26% 9.11% 

InfoGAN 29.04 0.9316 10.91% 7.47% 

DCGAN 30.83 0.9232 11.63% 8.32% 

CGAN 29.99 0.9461 13.22% 8.11% 

C-WGAN-GP 40.18 0.9862 6.91% 3.26% 

 

In Figure 47, we have presented sample images of eight cell types generated by proposed C-

WGAN-GP. The generated results show that C-WGAN-GP could understand the features of each 

cell type perfectly and the generated images are worthy of using it for classification of cell types 

for medical diagnosis and research purpose.  
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Figure 47: Sample of images generated by C -WGAN-GP 
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4.3 Evaluation of Few-Shot Image Generation 

For evaluating our proposed few-shot image generation model we have used FID, IS and 

LPIPS evaluation metrics. The few-shot image generation model has been used to generate images 

for three cell types: Smudge cells, promyelocyte and monoblast. We have trained the model for 

twenty thousand episodes and the training time was five hours eleven minutes. In below Table 21 

and Table 22 we compare the performance of our proposed few-shot image generation model with 

existing few-shot image generation models. We compare proposed model with Few-shot Image 

Generation with Reptile (FIGR) [143], FastGAN [144], DiffAugment [145], MineGAN [146] and 

our proposed classifier-based GAN model. 

The diversity in the generation of images were verified by the inception score. The more the 

inception score, the more capable the model is in generating various images that are distinct from 

each other. As we can see from Table 21, our proposed few-shot image generation model achieves 

higher inception score than existing few-shot image generation model as well as our proposed C-

WGAN-GP model. Table 21 proves the need for building the few-shot image generation model 

instead of using only the C-WGAN-GP for producing images for every cell type in our dataset. 

The image quality is evaluated through the FID score. The lower the FID score, the better is the 

quality of the generated images. Our proposed few-shot image generation model produced the 

lowest FID score indicating better performance than the existing models. We measure LPIPS to 

evaluate the similarity between the original and the synthetic data or the generated images for each 

cell types. So, lesser distance indicates greater similarity between the original and the generated 

images. Our proposed model produces images that are most similar to the original data compared 

to other models. In Table 22, we compare the training time of each model on our dataset, the total 

number of episodes to achieve the best result and the number of parameters consumed by each 

model. Comparison shows that our proposed model requires less parameters, less epoch and less 
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training time than existing models.  

              Table 21: FID, IS and LPIPS comparison of various few-shot image generation models  

Models FID IS LPIPS 

FIGR 98.83 15.77 ± 0.23 0.6721 

FastGAN 67.33 09.91 ± 0.10 0.4517 

DiffAugment 102.27 19.52 ± 0.58 0.7783 

MineGAN 88.90 12.32 ± 0.44 0.6013 

C-WGAN-GP 70.36 10.03 ± 0.27 0.5934 

Proposed 51.62 03.16 ± 0.28 0.2956 

 

                   Table 22: Time, episodes and number of parameters used by each model 

Models Time Episodes No. of Parameters 

FIGR 19hr 80000 11.5 Million 

FastGAN 7hr 30min 45000 7.6 Million 

DiffAugment 21hr 12min 850000 13.4 Million 

MineGAN 17hr 13min 42000 10.2 Million 

C-WGAN-GP 8hr 23min 40000 9.7 Million 

Proposed 5hr 11min 20000 5.8 Million 

 

In Figure 48, Figure 49 and Figure 50, we present the sample images from episode 0, 2500, 

5000, 7500, 10000, 12500, 15000, 17500, 20000 for each cell types in the generation phase of the 

few-shot image generation model i.e. promyelocyte, smudge cells and monoblast. As we can see 

from Figure 48, for promyelocyte we get almost realistic images after 15000 episodes, for smudge 



                                             95 

 

cells it takes around 19000 episodes to generate realistic images and for monoblast it takes around 

17500 episodes to generate realistic images that can be used for enhancing classification accuracy. 

 

Figure 48: Promyelocyte cell type - Sample of images for 0, 2500, 5000, 7500, 10000, 12500, 15000, 17500 and  

20000 episodes 
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Figure 49: Smudge cell type - Sample of images for 0, 2500, 5000, 7500, 10000, 12500, 15000, 17500 and  

20000 episodes 
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Figure 50: Monoblast cell  type - Sample of images for 0, 2500, 5000, 7500, 10000, 12500, 15000, 17500 and  

20000 episodes 
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4.4 Evaluation of SENet-154-GE Classification Model 

In this section, we present the evaluation results for our proposed classification model SENet-

154-GE. For all our experiments we have utilized the system configuration mentioned in Table 23. 

First, we present the training and validation accuracy and loss in Figure 51. Our model achieved 

a training accuracy of 99.8% and a validation accuracy of 98.7%. Training loss for SENet-154-

GE was 0.04 and validation loss was 0.12. We trained the model for two hundred epochs which 

took around one hour twenty minutes time. There were two hundred fifty-six iterations for each 

epoch. The data was split into 70% training and 30% testing. For validation, we used 10% of the 

training data.  

Table 23: Details of implementation environment 

System Component Description 

Operating System Ubuntu 20.04.2 LTS 

Operating System Type 64-bit 

Processor Intel® Core™ i7-8700 CPU @ 3.20GHz × 12 

Graphics NVIDIA Corporation TU104 [GeForce RTX 2080 SUPER] 

RAM 32 GB 

Programming Language Python 3.6 

 

 

Figure 51: Training and validation accuracy and loss graph 
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We compare the performance of SENet-154-GE with existing classification models like VGG-

19 [147], ResNet-50 [148], InceptionV3 [149], Xception [150], EfficientNet [151], ResNeXt-101 

[152], Naïve Bayes [153], SE-ResNeXt-50 [154], and Sequential CNN. We have presented the 

accuracy comparison of different classification model on our stain normalized and balanced 

dataset in Figure 52. VGG-19 achieved an accuracy of 83.6%, accuracy of ResNet-50 is 85.38%. 

InceptionV3 has an accuracy of 90.19%, Xception model has a lower accuracy of 84.20%, 

EfficientNet achieved 92.44% accuracy, ResNeXt-101 reached 93.32% accuracy. Naïve Bayes  

achieved an accuracy of 81.85%, SE-ResNeXt-50 performed well with an accuracy of 95.90%. 

Sequential CNN also performed good with an accuracy of 96.83% and our proposed model 

achieved an accuracy of 98.4%. The accuracies mentioned above and as shown in Figure 52 are 

the accuracies obtained on the test dataset. For all the model the data was split into 70% training, 

30% testing and 10% of training data was considered as validation dataset. Also, comparison of 

training time for different classification model is presented in Table 24.  

 

               Figure 52: Accuracy comparison of various classification model on balanced dataset  

The performance of our proposed classifier SENet-154-GE for each cell type is shown in  
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Table 24: Training time comparison of different classification models  

VGG-19 EfficientNet Inception V3 SE-

ResNeXt-50 

ResNeXt-

101 
SENet-154-GE 

16hr 

22min 

12hr 47min 13hr 11min 9hr 6min 10hr 55min 8hr 3min 

Figure 53 and Figure 54. We present the accuracy, specificity and sensitivity of each cell type 

for the original data and the balanced dataset. For the original dataset, myeloblast achieves the 

highest accuracy of 94% and the lowest accuracy of 91% is for smudge cells and lymphocyte. In 

the original dataset we achieve an overall accuracy of 92.41% on the test dataset. In the original 

dataset as shown in Figure 53, myeloblast has the highest value for sensitivity i.e. 94.5 and 

basophil, immature granulocyte, monoblast and promyelocyte has the lowest value i.e. 92.5. 

Similarly, specificity is highest for myeloblast (93.5) and lowest for smudge cells and lymphocyte 

(91.2). SENet-154-GE achieves an overall value of 92.16 for specificity and 92.66 for sensitivity.  

 

Figure 53: Performance of SENet-154-GE on individual cell types for original dataset 

In Figure 54, we present the accuracy, specificity and sensitivity of individual cell type for the 

stain normalized and balanced dataset we prepared. SENet-154-GE produces the highest accuracy 
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of 99.4% for immature granulocytes and lowest accuracy of 97% for monocyte and smudge cells. 

The highest specificity value of 99.6 is for neutrophil and the lowest is for monocyte with a score 

of 97.3. Basophil, eosinophil and immature granulocyte achieved the highest sensitivity value of 

99.5 and the lowest sensitivity score of 96.7 was for monocyte. The overall accuracy for the 

balanced dataset is 98.4% with a specificity score of 98.21 and sensitivity score of 98.58. Our 

proposed approach of stain normalization, classifier-based GAN model and few-shot image 

generation increased the accuracy rate by 6%.  

 

Figure 54: Performance of SENet-154-GE on individual cell types for balanced dataset  

In Figure 55 and Figure 56, we present the screen grabs of classification results for the twelve 

cell types. Our implementation of SENet-154-GE model provides how much percentage the model 

is certain about the classified cell type for a test image. In Figure 55 and Figure 56, the cell type 

mentioned in the bracket is the original cell type in our dataset and the cell type with the percentage 

written is the classified cell type with the confidence score by SENet-154-GE. For example, 

Lymphocyte 100% (Lymphocyte) would represent that the original cell type is lymphocyte and 

SENet-154-GE could classify lymphocyte correctly with 100% confidence. In Figure 55 and 
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Figure 56, 0-11 represents the labels of the cell types. 0 for basophil, 1 is eosinophil, 2 is 

erythroblast, 3 is immature granulocytes, 4 is for lymphocyte, 5 is for monoblast, 6 for monocyte, 

7 represents myeloblast, 8 is neutrophil, 9 is platelet, 10 is promyelocyte and 11 is smudge cells.  

 

Figure 55: Samples of classification result for basophil, eosinophil, erythroblast, immature granulocyte,  

Lymphocyte and monoblast 
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Figure 56: Samples of classification result for monocyte, myeloblast, neutrophil, platelet,  promyelocyte and smudge 

cells 
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In Figure 57, we show the screen grabs of some incorrect result or misclassification result. As 

mentioned earlier, the cell type in the bracket is the original cell type mentioned in the dataset.  

For example, in Figure 57, for the first image original cell type is basophil but SENet-154-GE 

misclassified it as neutrophil with a confidence rate of 71% but it was 29% it classified it as 

basophil. In the second image the original cell type was lymphocyte, but SENet-154-GE was 

confused between three cell types: myeloblast, lymphocyte and monocyte. For the third image, 

the original cell type was erythroblast, but SENet-154-GE misclassified it as promyelocyte with 

97% confidence rate.  

 

Figure 57: Screen grabs of misclassification result by SENet-154-GE 
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Chapter 5: Conclusion and Discussion 

 
For robust and automated diagnosis, the goal of various deep learning researchers is to build 

accurate and efficient segmentation and classification model for white blood cell and red blood 

cell [155,156]. Deep learning model requires powerful and compatible resources and often that 

leads to barriers in accessibility [157]. Also, data imbalance and data scarcity are a major problem 

that complicates the training of deep learning models or algorithms [158]. In medical image 

analysis, especially for work dealing with blood cells, stain plays an important role that can affect 

the accuracy of any classification model. If the dataset contains multiple stain colors, sometimes 

it becomes difficult for the classification model to identify similar cell types with different stain 

colors. In our work, we first collect microscopic single cell images obtained from peripheral blood 

smears, from two different sources. We took the help of medical experts to eliminate redundancy 

of data and to filter the data in the data preprocessing stage.  

After data preprocessing, we perform stain normalization through modified cycle consistency 

GAN since our dataset is from two different sources with two different stain colors. We compare 

the number of images only between the common and similar cell type in the two datasets. The cell 

type containing less images in a dataset is stain normalized to the stain color of the other dataset 

containing higher number of images for that particular cell type. After stain normalization, we 

merge the two datasets to form a single dataset. We merge images from the same cell type and 

also cell types belonging to the same cell family to form a single cell type or group. The final 

dataset contained images of twelve cell types. After forming the final dataset, we use a classifier-

based GAN (C-WGAN-GP) network to generate images for cell types containing more than 

thousand images. For eight cell types, we used our proposed C-WGAN-GP model that consists of 
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a generator, a discriminator and a classifier. The generator in C-WGAN-GP is trained from the 

feedback of both the discriminator and the classifier. For cell types containing less than hundred 

images, we implemented few-shot image generation that follows meta learning concept. We 

perform few-shot image generation for three cell types. Neutrophil was excluded from the image 

generation phase since it already contained a lot of images. After few-shot image generation, we 

combined the original and the synthetic data to form the balanced dataset. The balanced dataset is 

then fed to the proposed SENet-154-GE classification model. The combination of balanced dataset 

and SENet-154-GE model achieves a classification accuracy of 98.4% which is 6% more than the 

original data.  

We presented the evaluation results for stain normalization module with FID, SSIM and 

inception score. For C-WGAN-GP, we used precision, recall, F1-score, LPIPS, FID and IS as 

evaluation metrics. Also, we used PSNR, SSIM and L1 and L2 for evaluating the quality of the 

generated images. For few-shot image generation we used FID, LPIPS and IS as evaluation 

metrics. Also, we have compared the time of training, the number of episodes and the number of 

parameters for our proposed model with different existing few-shot image generation models. At 

last, we evaluated our proposed SENet-154-GE classification model. Results for each section 

shows how our proposed approach achieves better outputs quantitatively and qualitatively 

compared to existing methodologies. For each module, we also provided the visual results of the 

images showing the transformation happening from each proposed module. Results show that our 

GAN models and classification model performs significantly better than existing models. But in 

this section, we would also like to discuss how removing each module would affect the 

performance of the classification model and to what extent it would impact the accuracy of the 

classification model. We perform an ablation study to demonstrate the importance of each module 

in our proposed methodology. In Figure 58, we show the results for ablation study, i.e., how the 
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accuracy of SENet-154-GE classification model is impacted when individual modules are not 

implemented or included in the proposed methodology. Ablation refers to the removal of AI 

components to investigate how a system would perform if certain components are removed. This 

study helps in understanding the contribution of every component in a proposed system. The 

overall accuracy of the model is 98.4%, but when the GE module from the proposed SENet-154-

GE classification model is removed and only SENet-154 model is used for classification, the 

accuracy reduces to 96.9%, which indicates the GE module is relevant in improving the accuracy 

of the proposed approach. When the stain normalization module is removed and we use images of 

same cell types with different stain colors, the accuracy reduces to 95.8%. Stain normalization is 

important as different stain colors has different intensities and leads to misclassification. We also 

experimented by using only few-shot image generation process for each cell type rather than using 

C-WGAN-GP. Results show that the accuracy reduces by 3.4% from the original accuracy. 

Removing C-WGAN-GP, we achieved an accuracy of 95%. But at the same time if we try to 

generate images of the cell type containing less than hundred images by using C-WGAN-GP, the 

accuracy of the classification model is further reduced to 94.3% which depicts that few -shot image 

generation plays an important role in enhancing the accuracy of our proposed approach. 

 

Figure 58: Ablation study- impact on accuracy on removing individual modules 
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In Figure 59, Figure 60, Figure 61 and Figure 62, we demonstrate how the removal of 

individual modules impact the classification accuracy, specificity and sensitivity of each cell type. 

In Figure 59, we show the results on removing the stain normalization module from the proposed 

methodology. As we can see from the figure, accuracy specificity and sensitivity reduce for the 

cell types basophil, eosinophil, erythroblast, immature granulocyte, lymphocyte and monocyte for 

which we had performed stain normalization in the actual proposed methodology for enhancing 

classification of microscopic single-cell images obtained from peripheral blood smears. For each 

of this mentioned cell types, the accuracy, specificity and sensitivity reduce by almost 5%.  

 

Figure 59: Impact on accuracy, specificity and sensitivity of individual cell type on removing stain 

normalization module 

In Figure 60, we present the impact on classification accuracy, specificity and sensitivity of 

individual cell types on removing the GE module proposed in SENet-154-GE classification model. 

The overall accuracy of the model reduces by 1.5% on removing the GE module from the 

classification model. For all the cell types, almost 1-2.5% classification accuracy is reduced and 

so as the value for specificity and sensitivity.  

Similarly, we remove the few-shot image generation module from the proposed approach to  
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Figure 60: Impact on accuracy, specificity and sensitivity of individual cell type on removing the GE module 

from SENet-154-GE classification model 

present its impact on accuracy, specificity and sensitivity of each cell type. We try to generate 

images of each cell type through C-WGAN-GP model. As we can see from Figure 61, accuracy, 

specificity and sensitivity significantly reduces for the cell types containing less than hundred 

images, i.e., smudge cells, promyelocyte and monocyte. This indicates that few -shot image 

generation plays an important role in improving the performance of the classification model an is 

a necessary inclusion for the proposed approach.  

 

Figure 61: Impact on accuracy, specificity and sensitivity of individual cell type on removing the few-shot image 

generation model 
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Figure 62:Impact on accuracy, specificity and sensitivity of individual cell type on removing the C -WGAN-GP 

model from the proposed methodology 

Also, we have tried to generate images of each cell type using the few-shot image generation 

module by removing the C-WGAN-GP model as shown in Figure 62. The overall classification 

accuracy reduces by 4.1% indicating that C-WGAN-GP performs better in scenarios where there 

are more than thousand images present for every cell type. The ablation study helps us in 

demonstrating the importance and necessity of each module in our proposed approach for 

enhancing classification of microscopic single-cell images obtained from peripheral blood smears.  

Single-cell images are used for training and testing of machine learning and deep learning 

models for microscopic image-based hematological diagnosis [159-164]. It can also be used for 

training models for segmentation as well as automatic classification of peripheral blood cells that 

helps in detecting abnormalities in cells [160-163]. Single-cell image dataset can be used as a 

model weight initializer. This means we can use the available images to pre-train learning models, 

which can be further trained for disease diagnosis [159-164]. We plan to apply our proposed 

SENet-154-GE model for classifying multiple cells in a single image in our future studies. To 

apply SENet-154-GE for multiple cell images, we need annotated data. We need to prepare .xml 

files of annotation and train the model with the labeled images. Finetuning the model by changing 
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the last or the classification layer can help in generating the desired output for multiple cell 

classification in a single image.  
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