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ABSTRACT 

 

The present study investigated whether protodioscin (PD), a steroidal saponin mainly 

found in rhizome of Dioscorea species, alleviates oxidative stress-induced damage of porcine 

oocytes during in vitro maturation. Oocytes were treated with different concentrations of PD 

(0, 1, 10, 100, and 200 μM) in the presence of 200 μM H2O2. Developmental competence 

was significantly poorer in the 0 μM PD-treated (control) group than in the non-treated 

(normal) and 10 μM PD-treated (10PD) groups. Although the reactive oxygen species level 

did not significantly differ between these three groups, the glutathione level and mRNA 

expression of antioxidant genes (SOD1, SOD2, Nrf2, and HO-1) were significantly higher in 

the normal and 10PD groups than in the control group. In addition, the percentage of oocytes 

with defective spindle and abnormal chromosomal alignment was significantly lower and the 

ratio of phosphorylated p44/42 to total p44/42 was significantly higher in the normal and 

10PD groups than in the control group. The total cell number per blastocyst was significantly 

higher in the 10PD group than in the control group. The percentage of apoptotic cells in 

blastocysts was highest in the control group; however, the difference was not significant. 

mRNA expression of development-related genes (POU5F1, CDX2, and NANOG) was 

consistently increased by addition of PD. These results indicate that PD effectively improves 

the developmental competence and quality of blastocysts by protecting porcine oocytes 

against oxidative stress. 

 

Key words: ROS, Oxidative stress, Antioxidant, Protodioscin, In vitro maturation  
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1. INTRODUCTION 

 

In vitro embryo production is an important tool in agriculture, biomedical research (Yao et 

al., 2019), and assisted reproductive technology (Hansen, 2020; Soto-Heras & Paramio, 

2020). Similar to the in vivo system, in vitro embryo production comprises three major 

consecutive steps: oocyte maturation, fertilization, and embryo culture. During oocyte 

development, unstable metabolites of oxygen known as reactive oxygen species (ROS) are 

generated as mitochondria produce energy via oxidative phosphorylation using oxygen or 

comes from their external environment (Al-Gubory, Fowler, & Garrel, 2010; Guerin, El 

Mouatassim, & Menezo, 2001). An excessive level of ROS, i.e., an imbalance between 

endogenous antioxidant defense and ROS, leads to DNA fragmentation and apoptosis, and 

thereby decreases the developmental capacity of oocytes and blastocyst quality (Adeoye, 

Olawumi, Opeyemi, & Christiania, 2018; W. Jiang et al., 2020). Thus, protection of oocytes 

against oxidative stress is important to improve the efficiency of in vitro embryo production 

(Paramio & Izquierdo, 2014; Soto-Heras & Paramio, 2020). Addition of antioxidants to 

media is one of the most fundamental and easiest strategies to improve embryo quality 

during in vitro culture (Jeong et al., 2006; Takahashi et al., 1993). 

Protodioscin (PD), a furostanol saponin obtained from the rhizome of Dioscorea species, 

has a wide array of biological activities such as anticancer (Hu and Yao, 2002), anti-

inflammatory (Santana et al., 2009), and antioxidant effects. PD reduces oxidative stress, as 

demonstrated by increases of superoxide dismutase (SOD) and glutathione (GSH) 

peroxidase activities, and decreases of ROS and malondialdehyde levels in neural cells. In 

addition, inhibition of oxidative stress and apoptosis was observed together with increased 

expression of heat shock proteins in the presence of PD (Shu & Zhang, 2019). Although 

several studies reported that PD has beneficial effects on oxidative stress-induced damage 
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and transcriptional regulation in neural cells, very little is known about the effect of PD in 

oocytes.  

In the present study, we hypothesized that PD protects porcine oocytes against H2O2-

induced oxidative stress during in vitro maturation (IVM) and investigated the quality of 

oocytes and embryos obtained by parthenogenetic activation (PA). Furthermore, we 

evaluated the ROS level, GSH activity, and mRNA expression of endogenous antioxidant 

and development-related genes. Cytoplasmic and nuclear maturation was also assessed to 

better understand the beneficial effects of PD. These findings may help to develop embryo 

production technology by facilitating further research of the mechanism via which PD 

inhibits oxidative stress in germ cells.  
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2. MATERIALS & METHODS 

 

2.1. Chemicals and reagents 

 

All chemicals and reagents were purchased from Sigma (St. Louis, MO, USA) unless 

stated otherwise. 

 

2.2. In vitro maturation of porcine oocytes 

 

Prepubertal porcine ovaries were collected from a local slaughterhouse and transported to 

the laboratory in saline supplemented with 75 μg/mL penicillin G and 50 μg/mL 

streptomycin sulfate within 2 hr at 30–33°C. Cumulus-oocyte complexes (COCs) were 

aspirated from follicles with a diameter of 2–8 mm using an 18-gauge needle and a 

disposable 10 mL syringe. COCs were washed three times in tissue culture medium (TCM)-

199–HEPES containing 0.1% (w/v) bovine serum albumin (BSA). Thereafter, COCs were 

matured in groups of 50 in 500 μL TCM‐199 (Gibco, Grand Island, NY, USA) containing 

Earle’s salts, 0.57 mM cysteine, 10 ng/mL epidermal growth factor, 0.5 μg/mL follicle-

stimulating hormone, 0.5 μg/mL luteinizing hormone, and 10% (v/v) porcine follicular fluid 

under mineral oil for 44 hr at 38.8°C in 5% CO2 in air. Various concentrations [0 (control 

group), 1, 10, 100, and 200 μM] of PD were added together with 200 μM H2O2. For the 

normal group, neither PD nor H2O2 was added. Each experiment was independently repeated 

six times, with 50–60 oocytes per experiment. All data are presented as the means ± SEM. 

 

2.3. Parthenogenetic activation (PA) and embryo culture 

 

Following maturation, cumulus cells were removed by pipetting in the presence of 
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1 mg/mL hyaluronidase for 2–3 min. PA was induced by treating oocytes with porcine zygote 

medium‐5 containing 0.4% (w/v) BSA (in vitro culture (IVC) medium) and 5 μM Ca2+ 

ionomycin for 5 min. After 3 hr of culture in IVC medium containing 7.5 μg/ml cytochalasin 

B, embryos were washed three times with IVC medium and cultured for 7 days in the same 

medium at 38.8°C in a humidified atmosphere of 5% CO2 and 95% air. On day 5, half the 

medium was removed and replaced with PZM-5 containing 10% (v/v) fetal bovine serum. 

On day 7, blastocysts were washed in Dulbecco's phosphate‐buffered saline (DPBS), and 

either fixed in 3.7% (w/v) paraformaldehyde for 20 min and stored at 4°C, or lysed and snap‐

frozen in liquid nitrogen and stored at -80°C, depending on the experiment. 

 

2.4. Measurement of intracellular ROS and GSH levels 

 

DCFHDA and CMF2HC were used to determine the intracellular levels of ROS and GSH, 

respectively, as previously described (Yang et al., 1998; You, Kim, Lim, & Lee, 2010) with 

slight modifications. Briefly, cumulus cells were removed from COCs by pipetting in the 

presence of 0.1% (w/v) hyaluronidase. Denuded oocytes were incubated in DPBS containing 

50 μM DCFHDA or 100 μM CMF2HC in the dark for 20 min at 38.8°C. Thereafter, oocytes 

were washed more than five times with DPBS containing 0.1% (w/v) BSA to completely 

remove excess dye and immediately analyzed by epifluorescence microscopy (Olympus, 

Tokyo, Japan). The ROS level was measured using excitation and emission wavelengths of 

450–490 nm and 515–565 nm, respectively. The excitation and emission wavelengths of 

CMF2HC are 371 and 464 nm, respectively. Grayscale images were acquired with a digital 

camera (Nikon, Tokyo, Japan) attached to the microscope, and mean grayscale values were 

calculated using ImageJ software (NIH, Bethesda, MD, USA). Background fluorescence 
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values were subtracted from the final values before statistical analysis. Each experiment was 

independently repeated 6–7 times, with 20–30 oocytes per experiment. 

 

2.5. Immunofluorescence 

 

Meiotic spindles and nuclei of oocytes were visualized after maturation. Cumulus cells 

were removed from porcine COCs matured for 44 hr and then oocytes were fixed overnight 

at 4°C in 4.0% (w/v) paraformaldehyde prepared in phosphate-buffered saline (PBS). Fixed 

oocytes were incubated for 30 min at 38.8°C with 0.5% (v/v) Triton X-100. After blocking 

for 1 hr with 1% BSA (w/v) prepared in PBS (blocking solution I), oocytes were incubated 

overnight at 4°C with a fluorescein isothiocyanate-conjugated anti-α-tubulin antibody 

(diluted 1:200 in blocking solution I). Nuclei were stained with Hoechst 33342 (1 μg/mL) for 

30 min. Finally, oocytes were washed three times with PBS containing 0.1% (w/v) BSA, 

mounted on glass slides, and observed under an inverted Olympus IX-71 microscope. To 

further investigate the effect of PD on spindle organization, spindles without abnormalities 

were classified as normal, whereas those in which chromosomes failed to align at the 

metaphase plate were classified as abnormal (Lenie, Cortvrindt, Eichenlaub-Ritter, & Smitz, 

2008). Each experiment was independently repeated three times, and at least 20 oocytes were 

examined per group. 

 

2.6. Terminal deoxynucleotidyl transferase dUTP nick-end labeling and Hoechst 

staining 

 

On day 7 after PA, blastocysts were fixed overnight at 4°C with 4.0% (w/v) 

paraformaldehyde prepared in PBS, washed three times with PBS containing 0.1% BSA, and 

then incubated with 0.1% Triton X‐100 at 38.8°C for 30 min. Blastocysts were incubated 
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with fluorescein‐conjugated dUTP and terminal deoxynucleotidyl transferase (In Situ Cell 

Death Detection Kit; Roche, Manheim, Germany) in the dark for 1 hr at 38.8°C. Thereafter, 

nuclei were stained with Hoechst 33342 (1 μg/mL) for 30 min, and stained blastocysts were 

washed with PBS containing 0.1% BSA. Washed blastocysts were mounted on glass slides 

and examined under an inverted Olympus IX‐71 fluorescence microscope. The experiment 

was independently repeated 7–8 times, and at least 10–20 blastocysts were examined per 

group. 

 

2.7. mRNA extraction and complementary DNA synthesis 

 

mRNA was isolated from more than three biological replicates, with 30–40 oocytes per 

replicate, using a Dynabeads mRNA Direct Kit (Invitrogen, Carlsbad, CA, USA) according 

to the manufacturer's instructions. mRNA was collected in 10 µL elution buffer provided 

with the kit. Eluted RNA was reverse‐transcribed into complementary DNA using an oligo 

(dT) 20 primer and SuperScript II reverse transcriptase (Invitrogen) according to the 

manufacturer's instructions. 

 

2.8. Real-time RT-PCR 

 

The protocol used was basically the same as that described previously (Lee, Sun, Choi, 

Uhm, & Kim, 2012). Real‐time RT‐PCR was performed using the primer sets listed in Table 

2 and a StepOnePlus Real‐time PCR System (Applied Biosystems, Warrington, UK) with a 

final reaction volume of 20 µL containing SYBR Green PCR Master Mix (Applied 

Biosystems). The PCR conditions were as follows: 10 min at 95°C, followed by 39 cycles of 

15 s at 95°C and 60 s at 54°C or 60°C. Samples were then cooled to 12°C. Relative gene 

expression levels were analyzed by the 2-ΔΔCt method (Livak & Schmittgen, 2001) after 
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normalization against the expression level of the housekeeping gene β‐actin. The experiment 

was independently repeated five times. 

 

Table 1. Primers used for real-time RT-PCR 

Gene 
GenBank 

accession no. 
Primer sequence* 

Annealing 

temperature 

(°C) 

Product 

size 

(bp) 

β-actin AY550069.1 
F: AGATCATGTTCGAGACCTTC 

R: GTCAGGATCTTCATGAGGTAGT 
49 220 

SOD1 GU944822.1 
F: GTGTTAGTAACGGGAACCAT 

R: GGATTCAGGATTGAAGTGAG 
54 120 

SOD2 NM_214127.2 
F: AGACCTGATTACCTGAAAGC 

R: CTTGATGTACTCGGTGTGAG 
54 110 

Nrf2 Gu991000.1 
F: CTATGGAGACACACTGCTTG 

R: ACAGGCTGTGTTTTAGGACT 
54 99 

HO-1 NM001004027.1 
F: ACCCAGGACACTAAGGACCA 

R: CGGTTGCATTCACAGGGTTG 
54 227 

POU5F1 NM_001113060 
F: AGTGAGAGGCAACCTGGAGA 

R: TCGTTGCGAATAGTCACTGC 
54 166 

CDX2 AM778830 
F: AGCCAAGTGAAAACCAGGAC 

R: TGCGGTTCTGAAACCAGATT 
48 178 

NANOG DQ447201 
F: TTCCTTCCTCCATGGATCTG 

R: ATCTGCTGGAGGCTGAGGTA 
53 214 

*F, forward; R, reverse. 
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2.9. Western blot analysis 

 

The protocol was basically the same as that described previously (Lee et al., 2012). In 

brief, oocytes (40 per sample) were solubilized in 20 µL of 1× sodium dodecyl sulfate (SDS) 

sample buffer (62.5 mM Tris‐HCl, pH 6.8, containing 2% (w/v) SDS, 10% (v/v) glycerol, 

50 µM dithiothreitol, and 0.01% (w/v) bromophenol blue or phenol red) and heated for 5 min 

at 95°C. Proteins were resolved on 5–12% Tris SDS-polyacrylamide gel electrophoresis gels 

for 1.5 hr at 80–100 V. Samples were then transferred to Hybond‐ECL nitrocellulose 

membranes (Amersham, Buckinghamshire, UK) at 300 mA for 2 hr in transfer buffer 

(25 mM Tris, pH 8.5, containing 200 mM glycine and 20% [v/v] methanol). After blocking 

with 5% (w/v) nonfat milk prepared in PBS for 1 hr, the membranes were incubated for at 

least 2 hr with an anti‐p44/42 MAPK or anti‐phospho‐p44/42 MAPK antibody diluted 1:500 

in blocking solution (1× Tris‐buffered saline, pH 7.5, containing 0.1% [v/v] Tween‐20% and 

5% [w/v] nonfat milk). Thereafter, the membranes were washed three times in TBST 

(20 mM Tris‐HCl, pH 7.5, containing 250 mM NaCl and 0.1% [v/v] Tween‐20) and 

incubated for 1 hr with anti-rabbit IgG‐horseradish peroxidase diluted 1:2,000 in blocking 

solution. After three washes with TBST, immunoreactive protein bands were visualized on 

X-ray films using the chemiluminescent reagent luminol (Invitrogen) in a dark room. The 

experiment was independently repeated three times. 

 

2.10. Statistical analysis 

 

The general linear model procedure within the Statistical Analysis System (SAS User’s 

Guide, 1985, Statistical Analysis System Inc., Cary, NC, USA) was used to analyze data 

from all experiments. The paired Tukey’s multiple range test was used to determine 
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significant differences. p values less than 0.05 were defined as statistically significant. 

  



１１ 

 

3. RESULTS 

 

3.1. PD enhances in vitro development of porcine oocytes exposed to oxidative stress 

 

To determine the optimal concentration of PD, porcine oocytes were matured for 44 hr 

with 0, 1, 10, 100, and 200 μM PD (control, 1PD, 10PD, 100PD, and 200PD groups, 

respectively) in the presence of 200 μM H2O2. Oocytes in the normal group were matured in 

IVM medium without any supplements. Following PA, the percentage of cleaved oocytes on 

day 2 did not significantly differ between the groups (normal, 80.1 ± 2.5%; control, 78.6 ± 

2.3%; 1PD, 74.8 ± 4.0%; 10PD, 78.4 ± 4.0%; 100PD, 80.7 ± 3.6%; and 200PD, 81.9 ± 2.6%). 

However, the percentage of oocytes that reached the blastocyst stage on day 7 was 

significantly higher in the normal and 10PD groups than in the control and 1PD groups, but 

did not significantly differ between these four groups and the 100PD and 200PD groups 

(normal, 38.9 ± 1.4%; control, 30.5 ± 3.3%; 1PD, 30.8 ± 3.4%; 10PD, 41.8 ± 2.9%; 100PD, 

35.8 ± 4.7%; and 200PD, 38.5 ± 3.8%; Table 1). Therefore, the normal, control, and 10PD 

groups were compared in subsequent experiments. 

 

Table 2. Effect of PD treatment of porcine oocytes in vitro on subsequent embryo development 

Treatment 

group 

H2O2 

Concentration 

(μM) 

PD 

concentration 

(μM) 

No. of 

germinal 

vesicle 

oocytes 

No. (%) of 

Surviving 

Oocytes1 

cleaved 

oocytes on Day 22 

Blastocysts 

on Day 73 

Normal 0 0 300 282 (94.0 ± 1.5) 226 (80.1 ± 2.5) 88 (38.9 ± 1.4)b 

Control 200 0 300 280 (93.3 ± 1.6) 220 (78.6 ± 2.3) 67 (30.5 ± 3.3)a 
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1PD 200 1 300 282 (94.0 ± 1.3) 211 (74.8 ± 4.0) 65 (30.8 ± 3.4)a 

10PD 200 10 300 287 (95.7 ± 1.4) 225 (78.4 ± 4.0) 94 (41.8 ± 2.9)b 

100PD 200 100 300 280 (93.3 ± 1.3) 226 (80.7 ± 3.6) 81 (35.8 ± 4.7)ab 

200PD 200 200 300 282 (94.0 ± 1.5) 231 (81.9 ± 2.6) 89 (38.5 ± 3.8)ab 

1The percentage of oocytes that reached MII. 2The percentage of oocytes that underwent cleavage. 
3The percentage of cleaved oocytes that reached the blastocyst stage on day 7. Values are means ± 
SEM of independent experiments. Values with different superscript letters are significantly different (a-

bp < 0.05). PD, protodioscin.  
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3.2. PD protects porcine oocytes against oxidative stress 

 

The effects of PD on the ROS and GSH levels were assessed by staining oocytes with 

dichlorohydrofluorescein diacetate (DCFHDA) and CellTrackerTM Blue 4-chloromethyl-6,8-

difluoro-7-hydroxy-coumarin (CMF2HC), respectively (Figure 1A). The ROS level did not 

significantly differ between the three groups. The GSH level was significantly higher (p < 

0.05) in the normal and 10PD groups than in the control group. 

Expression of the antioxidant genes SOD1, SOD2, nuclear factor erythroid 2-related factor 

2 (Nrf2), and HO-1 was analyzed by real-time reverse transcription polymerase chain 

reaction (RT-PCR) (Figure 1B). mRNA expression of SOD1 was significantly higher 

(p < 0.05) in the normal group than in the control group, and was substantially higher in the 

10PD group than in the control group; however, this difference was not significant. mRNA 

expression of SOD2 was significantly higher (p < 0.05) in the 10PD than in the normal and 

control groups, but did not significantly differ between the latter two groups. mRNA 

expression of Nrf2 was significantly higher in the normal and 10PD groups than in the 

control group. The mRNA expression pattern of HO-1 was similar to that of Nrf2. 
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Figure. 1. Antioxidant effect of PD on porcine oocytes in vitro. A: Epifluorescence images 

of oocytes stained with DCFHDA (green) and CellTrackerTM Blue CMF2HC (blue), and the 

fluorescence intensities of intracellular ROS and GSH staining. a and a’: normal group; b 

and b’: control group; and c and c’: 10PD group. a, b, and c: ROS staining; a’, b’, and c’: 

GSH staining. B: Relative expression of the antioxidant genes SOD1, SOD2, Nrf2, and HO-1. 

Data were derived from 3-8 independent replicates per group. Data are the means ± SEM (a–

bp < 0.05). Scale bar = 120 μm. 
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3.3. PD prevents aberrant spindle formation and abnormal chromosomal alignment in 

porcine oocytes exposed to oxidative stress 

 

The percentage of oocytes with a normal meiotic spindle and normal chromosomal 

alignment was significantly higher in the normal (p < 0.01) and 10PD (p < 0.05) groups than 

in the control group, and was similar in the normal and 10PD groups (normal, 80.5 ± 3.1%; 

control, 56.8 ± 6.4%; and 10PD, 78.0 ± 4.1%; Figure 2). 

 

 

Figure. 2. Effect of PD on meiotic spindle morphology in porcine oocytes in vitro. 

Normal and abnormal chromosomal alignment and meiotic spindle formation in oocytes and 

percentage of oocytes in which the morphologies of chromosomes and the meiotic spindle 

were normal. Data were derived from 3-4 independent replicates per group. Data are the 

means ± SEM (a–bp < 0.05). Scale bar = 50 μm. 
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3.4. PD increases expression of a cytoplasmic maturation marker in porcine oocytes 

exposed to oxidative stress 

 

Several studies have suggested that mitogen-activated protein kinase (MAPK) 

phosphorylation is an important marker to evaluate cytoplasmic maturation. Therefore, we 

investigated whether PD improves porcine oocyte maturation via the MAPK signal 

transduction pathway. Lysates from the normal, control, and 10PD groups were 

immunoblotted with an anti-phosphorylated MAPK antibody and subsequently re-probed 

with an anti-MAPK antibody to normalize the densitometric results. MAPK migrates as a 

doublet at 44 and 42 kDa, representing p44/42 MAPK (ERK1/2). The ratio of 

phosphorylated MAPK (phospho-p44/42 MAPK), which is the active form, to total MAPK 

was significantly lower (p < 0.05) in the control group than in the normal and 10PD groups 

and was significantly higher (p < 0.05) in the 10PD group than in the normal group (normal, 

1.0 ± 0.0; control, 0.8 ± 0.1; and 10PD, 1.2 ± 0.1; Figure 3). 

 

 

Figure. 3. Effect of PD treatment of porcine oocytes in vitro on MAPK activity. Data 

were normalized against the levels in the control group and were derived from 6-7 

independent replicates per group. Data are the means ± SEM (a–cp < 0.05). 
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3.5. PD improves the quality of blastocysts derived from porcine oocytes exposed to 

oxidative stress in vitro 

 

To investigate whether PD treatment during IVM of porcine oocytes influences 

subsequent embryo development and quality, the total cell number and genomic DNA 

fragmentation in blastocysts were assessed (Figure 4A). The total cell number per blastocyst 

was significantly higher (p < 0.05) in the 10PD group than in the control group, and was 

slightly lower in the control group than in the normal group; however, this difference was not 

significant (normal, 78.0 ± 5.0; control, 73.2 ± 4.1; and 10PD, 85.0 ± 2.9; Figure 4B). The 

percentage of apoptotic cells in blastocysts determined by assessment of genomic DNA 

fragmentation was higher in the control group than in the normal and 10PD groups; however, 

this difference was not significant (normal, 2.6 ± 0.6%; control, 2.7 ± 0.3%; and 10PD, 

1.8 ± 0.4%; Figure 4C). 

 

 

Figure. 4. Effect of PD treatment of porcine oocytes in vitro on subsequent embryo 

quality after PA. A: Blastocyst staining. B: Total cell number per blastocyst. C: Percentage 

of apoptotic cells in blastocysts. Data were derived from 7-8 independent replicates per 

group. Data are the means ± SEM (a–bp < 0.05). 
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3.6. PD alters expression of development-related genes in porcine oocytes exposed to 

oxidative stress 

 

Expression of the development-related genes POU5F1, CDX2, and NANOG at the 

blastocyst stage was analyzed by real‐time RT‐PCR (Figure 5). mRNA expression of 

POU5F1 was slightly decreased by addition of H2O2 and increased by supplementation of 

PD, but did not significantly differ between the three groups. mRNA expression of CDX2 

was significantly higher (p < 0.05) in the 10PD group than in the normal and control groups, 

and was similar in the latter two groups. mRNA expression of NANOG was slightly lower in 

the control group than in the normal group, and was significantly higher (p < 0.05) in the 

10PD group than in the control group. 

 

 

Figure. 5. Effect of PD treatment of porcine oocytes in vitro on expression of 

development-related genes. Data were derived from 3-4 independent replicates per group. 

Data are the means ± SEM (a–bp < 0.05). 
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4. DISSCUSTION 

 

Oxidative stress caused by ROS is an important cause of apoptosis, inhibition of oocyte 

maturation and early embryonic development (Agarwal, Gupta, & Sharma, 2005; W. J. Jiang 

et al., 2020). Several studies have shown that PD elicits antioxidant effects and reduces 

apoptosis caused by oxidative stress in neural cells (Shu & Zhang, 2019; Song, Fajol, Chen, 

Ren, & Shi, 2018). This study investigated the effects of PD on H2O2-induced oxidative 

stress in porcine oocytes. In the present study, we showed that addition of H2O2 during IVM 

significantly diminished the developmental capacity of porcine oocytes. However, 

supplementation of 10 μM PD significantly improved oocyte quality, which is impaired by 

H2O2 in a concentration-dependent manner, and consequently enhanced embryo development 

as reflected by the percentage of oocytes that reached the blastocyst stage (Table 1). 

Blastocyst formation is a critical indicator of the efficiency of embryo development and 

culture conditions (Deng et al., 2020; Watson, Natale, & Barcroft, 2004). Although the 

percentages of surviving oocytes at metaphase of the second meiotic division (MII) stage and 

cleaved oocytes did not significantly differ between the three groups, the percentage of 

oocytes that reached the blastocyst stage was significantly higher in the 10PD and normal 

groups than in the control group. 

To find out whether changes in MⅡ oocytes matured in an environment inducing oxidative 

stress affect subsequent embryo development, alterations in the ROS and GSH levels and 

spindle morphology of MⅡ oocytes were investigated. Addition of PD to IVM medium 

containing H2O2 did not affect the ROS level in oocytes at the MⅡ stage in comparison with 

the normal and control groups. However, the GSH level was significantly lower in the 

control group than in the normal group, and was slightly higher in the 10PD group than in 

the normal group. This suggests that the beneficial effect of PD on porcine oocytes is 
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attributable to an increase in endogenous antioxidants rather than a decrease in the ROS 

content. Similarly, mRNA expression of antioxidant genes (SOD1, SOD2, Nrf2, and HO-1) 

was consistently lower in the control group than in the normal and 10PD groups. This 

demonstrates that H2O2 remarkably decreases transcription of antioxidant genes and PD 

alleviates the effects of H2O2 and upregulates relative mRNA expression of these genes. 

During meiotic maturation, formation of the spindle is very important for alignment of 

chromosomes, which is directly related to separation of chromosomes and normal 

development of embryos in meiosis, and failure of this process results in genetic disorders 

and aneuploid embryos (Huang et al., 2011; Yin, Sun, Schatten, & Sun, 2008). Several 

studies have shown that oxidative stress affects microtubule assembly in interphase cells, 

suggesting that ROS may affect spindle formation (Banan et al., 2002). For example, a delay 

of spindle formation was observed in a study using HeLa cells exposed to oxidative stress. 

Moreover, the appearance of misaligned chromosomes and multipolar spindles in metaphase 

is substantially increased in the presence of H2O2 (Wang et al., 2017). Likewise, in our study, 

the percentage of oocytes with normal spindle morphology was remarkably lower in the 

control group than in the normal and 10PD groups. Consistently, an aberrant configuration of 

chromosomes was observed more often in the control group than in the other groups. These 

results demonstrate that addition of H2O2 negatively affects spindle formation and leads to 

abnormal chromosomal alignment. However, PD attenuates the negative effects of H2O2 and 

promotes normal development of oocytes and embryos in meiosis. 

PD treatment also considerably increased the phosphorylated MAPK level. MAPK 

plays crucial roles in regulation of oocyte maturation along with MPF, which is a complex of 

cyclin B and Cdc2. MAPK plays a vital role in early embryo development processes, such as 

initiation of the first meiotic division in GV stage, promotion of nuclear maturation, and 

oocyte maintenance at the MII stage (Zhao et al., 2020). Several studies also suggested that 
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phosphorylation of MAPK is an important marker to evaluate cytoplasmic maturation along 

with cyclin B2 levels (Sun, Lai, Bonk, Prather, & Schatten, 2001). In our study, the increased 

level of phosphorylated MAPK suggests that PD enhances MAPK activity in H2O2-treated 

oocytes. 

The percentage of blastocysts obtained by PA and the average total cell number per 

blastocyst were higher in the 10PD group than in the control group. The total cell number per 

blastocyst indicates the quality of blastocysts (Knijn et al., 2003). It is a standard criterion 

for evaluating the quality of embryos and indicates how well embryos are developed. By 

contrast, increased apoptosis is an important indicator of inadequate in vitro conditions for 

oocytes (Kim et al., 2008). Apoptosis is a process of programmed cell death that occurs 

regularly to ensure a homeostatic balance between the rates of cell formation and cell death, 

and involves many genes. However, excessive apoptosis can induce degeneration of oocytes 

and death of early embryos, and also affect normal blastocyst formation (Chen et al., 2020). 

In this study, the average percentage of apoptotic cells in blastocysts was lower in the 10PD 

group than in the normal and control groups; however, this difference was not significant. 

To further understand the effect of PD on development of embryos, we assessed 

expression of development-related genes. POU5F1 and NANOG play important roles in 

maintaining the pluripotency of embryonic stem cells and promoting cell proliferation 

(Boyer et al., 2005). Knockout of POU5F1 and NANOG inhibits blastocyst development 

(Simmet et al., 2018). Similarly, CDX2 is essential for viability and proliferation of 

blastocyst cells (Bou et al., 2017). Expression of POU5F1, CDX2, and NANOG was 

consistently higher in the 10PD group than in the normal and control groups. This 

demonstrates that the improvement of early embryonic development by PD is closely 

correlated with upregulation of these genes. 
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In conclusion, our data indicate that H2O2 negatively affects the development of oocytes 

and reduces the quality of embryos and blastocysts derived from these oocytes, while 

supplementation of PD improves the developmental rate and enhances the quality of oocytes, 

and increases expression of antioxidant and development-related genes. Our results also 

demonstrate that PD protects porcine oocytes against H2O2-induced oxidative stress by 

inducing production of several antioxidant enzymes, including SOD1, SOD2, Nrf2, and HO-

1, and further promotes normal early embryo development by supporting meiosis, especially 

spindle formation, to occur at an appropriate time and in an appropriate manner. PD only 

subtly affected the ROS level and percentage of apoptotic cells in blastocysts in this study, 

but these differences may be more substantial at different stages of development. Further 

research is necessary to clarify the mechanisms by which PD affects development of porcine 

oocytes.  
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ABSTRACT IN KOREAN 

 

본 연구는 체외성숙과정 동안 발생하는 산화스트레스에 대해서 Dioscorea 종에 

주로 존재하는 스테로이드 사포닌인 프로토다이오신 (PD)의 처리가 돼지 

난모세포의 손상을 완화시킬 수 있는지를 조사하였다. 적정농도를 선출하기 

위하여 미성숙 난모세포의 성숙용 배양액에 여러가지 농도의 PD (0, 1, 10, 100, 200 

μM)가 첨가되었으며, 좀 더 확실한 산화스트레스 모델을 위하여 200 μM 의 

과산화수소도 추가로 첨가되었다. 발달능은 0 μM PD (control) 그룹에서 

아무것도 처리하지 않은 normal group 에 비해 현저히 감소하였으며 10 μM 의 

PD group(10PD)에서는 발달능의 감소가 나타나지 않았다. 활성산소 수치에는 

세 그룹간에 큰 차이가 없었지만 글루타티온 수치와 항산화 유전자 (SOD1, 

SOD2, Nrf2 및 HO-1)의 mRNA 발현은 control 그룹에 비해 normal 그룹과 

10PD 그룹에서 상당히 높게 나타났다. 또한, 10PD 그룹에서는 스핀들 형성들 

형성 및 염색체 정렬에서의 결함이 적게 관찰되었으며, 전체 p44/42 에 대한 

인산화된 p44/42 MAPK 비율이 10PD 그룹에서 높게 나타났다. 10PD 그룹에서 

배반포 단계의 총 세포수는 control 그룹에 비해 크게 증가하였으며 세포사멸의 

비율에는 큰 차이가 없었다. 발달과 관련된 유전자 (POU5F1, CDX2 및 

NANOG)의 발현 역시 10PD 그룹에서 control 그룹보다 일관적으로 높게 

나타났다. 이러한 결과는 PD 가 산화스트레스로부터 난모세포를 보호하며 

발달능을 효과적으로 향상시킨다는 것을 나타낸다. 
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