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Abstract 

The size of a tropical cyclone (TC) has important implications in terms of disaster 

prevention as it can determine the area directly affected by storms. However, the TC 

size has not been studied extensively, mainly due to the lack of long-term and objective 

observation datasets and the issues such as difficulty in determining a reasonable TC 

size so far. This dissertation covers three topics related to TC size in terms of wind 

radii: (i) comparison of tropical cyclone wind radius estimated by Korean, Japanese, 

and U.S agencies, (ii) tropical cyclone wind radius prediction based on statistical-

dynamical approach and track pattern clustering, and (iii) prediction of the gale wind 

radius in western North Pacific based on Global Forecast System. 

First, this study compared estimates of gale–force wind radii (R30 or R34) and 

storm-force wind radii (R50) of tropical cyclones (TC) by three agencies—the Korea 

Meteorological Administration (KMA), the Japan Meteorological Agency (JMA), and 

the Joint Typhoon Warning Center (JTWC)—in the western North Pacific during 

2015–2018 and investigated the characteristics of these estimates. The results showed 

that the KMA’s R30 and R50 estimates were smaller (38% and 29%, respectively) than 

those of the JMA, and larger (11%) for R30 and smaller (12%) for R50 than those of 

the JTWC. The differences between these agencies seem to be largely determined by 

whether the agency estimates wind radii based only on a TC’s own winds or on TC 

winds combined with other mid-latitude synoptic systems to make TC warnings more 

comprehensive. The former is mainly the practice of the KMA and JTWC, whereas 

the latter is mainly the practice of the JMA. The factors considered for estimating wind 
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radii also differ between the agencies: the KMA heavily relies on TC intensity—the 

higher the intensity, the larger the radius—while the JMA and JTWC rely less on TC 

intensity than the KMA but additionally consider the latitude and storm translation 

speed in their estimations. In particular, the TC translation speed considered by the 

JMA and JTWC explains why their estimated wind radii exhibit, on average, greater 

asymmetries (i.e., greater differences between the longest and shortest radii) than those 

estimated by the KMA. 

Second, an operational scheme for predicting the symmetric R30 and R50 of WNP 

TCs has been developed using a statistical regression method and track pattern 

clustering. For model training, TC tracks classified at 5-day intervals were categorized 

into four clusters based on the fuzzy c-means clustering method. The statistical-

dynamical model employs multiple linear regressions of 2 to 8 variables selected from 

11 predictors at each cluster and forecast time. The dependent variable for prediction 

is the change in the 5-kt wind radius (R5)—a proxy of TC size—relative to initial time. 

To avoid overfitting and multicollinearity among variables, smart predictors are 

selected using an Elastic Net regression method. The performance of model is 

compared for training (2008~2016) and testing (2017~2018) periods. The effect of 

clustering on TC size prediction was evaluated by comparing the performance of non-

clustering and clustering models. The results showed that the clustering model 

improved the prediction of TC size by 3-24% at all lead times during the training 

period, especially with a significant improvement of up to 43% in Cluster 2. During 

the test period, the clustering model also reduced the mean error at all lead times, with 

the greatest improvement in Cluster 2, although the improvement was relatively small 
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compared to the training period. In cluster 2, most TCs develop strongly and continue 

to increase in size, which greatly reduced the standard deviations (or variability) in TC 

size through clustering, allowed for smarter predictor selection, and ultimately 

improved TC size prediction. In the real-time R30 and R50 predictions for 2017 and 

2018 TCs, the average mean absolute error at all lead times was 61±27 km and 21±9 

km for R30 and R50, respectively, and the error of the clustered model was 18-19% 

less than that of the non-clustered model. The analysis reveals that the real-time 

prediction errors of the current model increase due to the inherent errors of TC 

intensity prediction and R5 estimate as well as when the TC tracks are located between 

two clusters, making it difficult classify them into specific clusters.  

Finally, an automated system for objectively estimating and predicting the gale 

wind radius or R30 of WNP TCs has been developed using the predicted wind data of 

the Global Forecast System (GFS). To effectively estimate the longest and shortest 

R30 from the GFS dataset in the system, the filtering technique for extracting the TC 

itself winds is applied to the 1000 hPa and 850 hPa wind fields. The results showed 

that the use of an 850 hPa wind field with filtering has significant improvements to the 

performance of the R30 estimates, especially in the shortest R30. For real-time R30 

prediction, 5-day forecast wind fields are applied to the final system, including filtering 

technique and bias correction. The performance of predicted R30 before the 48-h 

forecast time has been greatly improved by the use of 850 hPa winds, with a mean 

absolute error of 53 km and 48 km, on average, in the longest and shortest axes, 

respectively. 
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TPC  track pattern clustering 

VM  current tropical cyclone intensity 

VWS  vertical wind shear 

WNP  western North Pacific 

XB  Xie and Beni index
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1. Introduction 

Tropical cyclones (TCs) are one of the most devastating natural disasters in the 

western North Pacific (WNP), resulting in enormous economic and human losses in 

coastal regions (Song et al., 2020). The destructive potential of a TC is not only related 

to its maximum sustained wind speed, but also to the TC size in terms of the radial 

extent of the near-surface wind (Powell and Reinhold 2007; Irish et al. 2008; Matyas 

2010). Therefore, understanding of the structures of TCs such as the evolution of the 

inner and outer cores (Kimball and Mulekar, 2004), and physical factors that cause TC 

size changes (Holland and Merrill 1984; Lin et al. 2014; Chavas et al. 2017; Chan and 

Chan 2018), it is important for improving the TC size prediction skill. 

In general, the structure of a TC vortex can be defined as a set of parameters: 

central pressure, maximum wind speed, a radius of maximum wind speed radius, and 

outer TC size, such as gale–force wind radius and radius of the outermost closed isobar 

(ROCI) (Weber et al., 2014). In early studies, Brand (1972) and Merrill (1984) used 

the ROCI as the metric of outer size. In particular, ROCI is known to be related to the 

tangential wind speed profiles. When the ROCI is larger (smaller), the TC’s tangential 

wind speed profile is broader (compact) (Merrill 1984). Since the launch of scatter-

meters in 1999, the satellite-based ocean surface winds have been utilized for a more 

realistic estimation of TC outer size in terms of wind fields by various metrics such as 

17 m s-1 (Chan and Chan, 2012), 15 m s-1 (Shoemaker 1989; Cocks and Gray 2002), 

and 12 m s-1 (Chavas and Emanuel, 2010; Chavas et al., 2016). Instead of surface wind 

data, Knaff et al. (2014) employed tangential winds at the 850 hPa and then estimated 
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an azimuthal mean radius of 5 kt (R5, about 2.5 m s-1) from a combination of satellite 

infrared data and a climatological linear model of the outer wind field. However, it is 

still difficult to estimate the vortex structure and define the TC size well, especially in 

terms of wind speed. First, when the TC is affected by the monsoon trough, it is 

difficult to determine where the monsoon westerlies or trade easterlies end and where 

TC circulation begins. Second, TCs frequently have large-scale asymmetries because 

it is highly influenced by the surrounding the TC background weather system (Weber 

et al., 2014). 

Global TC warning centers, including the National Hurricane Center (NHC), the 

Joint Typhoon Warning Center (JTWC), the Japan Meteorological Agency (JMA), and 

Korea Meteorological Administration (KMA), estimate the TC size based on the 

maximum radial extent of critical wind speed thresholds, such as 30-, 34-, 50-, and 64-

kt wind radii, from the storm center (hereafter R30, R34, R50, and R64 respectively). 

However, the time constraints under which forecasters operate and the subjectivity of 

the methods by agencies still make it challenging to issue accurate TC size advisory 

and warnings (Pérez-Alarcón et al., 2021). TC agencies generally use similar 

observations, such as satellite images and scatterometers in their postseason analysis 

to generate wind radius, but each agency has its own method of estimating TC wind 

radii, which results in different estimates of the same storm. These issues create 

difficulty in predicting and evaluating wind radius from the global TC warning centers 

(Cangialosi and Landsea; 2016). Currently, there are a few techniques based on 

satellite-derived data, numerical weather predictions (NWPs), and statistical 

regression models for real-time estimating and predicting the wind radius, but it is still 
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challenging, and the number of reliable forecasting tools also remains limited (Knaff 

et al., 2017). 

TC size is known to be related to a number of factors. The relationship between 

TC maximum wind speed (Vmax) and R34, which shows a strong positive correlation, 

has been widely used in operations (Weatherford and Gray, 1988; Chan and Chan, 

2012; Song and Klotzbach, 2016). However, the outer wind radius can be shrink at 

strong Vmax, and can be extended at weak Vmax (Kimball and Mulekar, 2004). This 

implies that knowing the Vmax is not enough information to determine the TC’s wind 

field structure (Knaff et al., 2014). Latitude is the most frequently used factor for TC 

size estimations after Vmax—the higher the latitude, the larger the TC size (Merrill, 

1984; DeMaria and Pickle, 1988). Contrastively, Chan and Chan (2014) found that the 

TC vortex size is not necessarily greater at higher latitudes in the numerical study. The 

latitude and TC translation speed are key factors affecting not only wind radii but also 

their asymmetries: the higher the latitude and the faster the TC translation speed 

(TCTS), the greater the asymmetry (Frank and Gray, 1980; Dougherty and Davis, 2014; 

Knaff et al., 2016). Storm age is closely related to Vmax and latitude (Kossin et al., 

2007; Knaff et al., 2016; Dolling et al., 2016; Schenkel et al., 2017). 

Furthermore, TC size is affected by the various environmental systems. First, 

synoptic flow patterns are associated with TC size. Liu and Chan (2002) found that 

TCs can expand as it enters the break of a strong subtropical ridge and westerly flow 

poleward of the ridge, while can shrink in the dominant region of the strong subtropical 

region. Initially larger TC generally has a larger size at a later stage (Chan and Chan 

2014; Kilroy and Smith 2017; Xu and Wang 2010). Xu and Wang (2010) showed that 
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TCs with a large initial size lead to the development of spiral rainbands with a large 

radial extent, and then outward extension of the tangential wind fields by the released 

latent heat flux in the rainband. In addition, large TC size is related to higher 

environmental relative humidity (Hill and Lackmann 2009; Wang 2012; Xu and Wang 

2010) and sea surface temperature (Chavas et al. 2016; Lin et al. 2015) releases more 

latent heat flux. More recently, Wang and Toumi (2022) found that the growth of TC 

outer size is primarily dominated by four factors such as the initial size, growth 

duration, mean growth latitude, and mean effective inflow angle and highlighted that 

the inflow angle is a crucial physical variable of TC size growth by linking the effects 

of internal and external conditions. 

This dissertation focuses on key three topics, and contains the introduction, 

summary, and discussion in each section. In section 2, we compare the estimates of 

R30 and R50 among the TC agencies over the WNP. In section 3, an operational 

scheme for predicting the symmetric R30 and R50 of a WNP TC has been developed 

using a statistical regression method and track pattern clustering, and verified the 

model performance of a developed statistical model. In section 4, the system for 

estimating the longest and shortest R30s objectively has been developed based on the 

wind fields of the Global Forecast System, and tested for applicability of real-time 

prediction. Finally, this thesis will be concluded in section 5. 
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2. Comparison of tropical cyclone wind radius estimates between 

KMA, JMA, and JTWC 

This chapter has been published in“Asia-Pacific Journal of Atmosphere Science” by 

the authors (Kim et al. 2022). 

 

2.1. Introduction 

The size of a tropical cyclone (TC), which is directly related to the extent of its 

damage area, is important information that global TC warning centers provide as part 

of their TC advisory and warning processes. Global TC warning centers estimate the 

TC size based on the maximum radial extent of critical wind speed thresholds, such as 

30-, 34-, and 50-kt wind radii, from the storm center (hereafter R30, R34, R50, 

respectively). The TC size is mainly used for wind-based risk and impact assessments, 

as well as wave and surge forecasting (Knaff et al., 2017). However, studies on the TC 

size have received little attention compared to studies using other metrics, such as TC 

track and intensity, despite the importance of the TC size in operational forecasts 

(Chavas et al., 2015). This is partly because the TC size is usually estimated in a 

subjective way, which reduces the accuracy and consistency of the data (Landsea and 

Franklin, 2013; Knaff et al., 2017, Cha et al., 2020), making the study of the TC size 

difficult. Indeed, although global TC warning centers make significant efforts to 

produce accurate TC size data, they exhibit significant differences between them (Song 

and Klotzbach, 2016). 

In general, TC wind radii are estimated based on available information using 

numerical models, statistical wind radius climatology and persistence (CLIPER) 
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models, and satellite-derived data from various operational agencies (McAdie, 2004; 

Sampson and Knaff, 2015; Knaff et al., 2016). In particular, satellite winds are primary 

observation sources for estimating the wind radius by agencies instead of aircraft 

reconnaissance and surface observations that are not routinely available (Brennan et 

al., 2009). In U.S. TC warning centers, namely the National Hurricane Center, the 

Central Pacific Hurricane Center (NHC), and the Joint Typhoon Warning Center 

(JTWC), numerous scatterometers such as Quick scatterometer (Lungu and Callahan, 

2006), WindSat, Oceansat-2, Advanced Scatterometer (ASCAT) (Bentamy et al., 

2008), Scatterometer Satellite (Misra et al., 2019) and more recently Haiyang-2 

scatterometer (Zhao and Zhao, 2019) are used to postseason subjective and objective 

reanalysis of wind radii (Sampson et al., 2017, 2018; Knaff et al., 2021). In the Japan 

Meteorological Agency (JMA), TC parameters including R30 and R50 are determined 

with overall available observations such as Himawari-8 satellite images, Radar, 

surface synoptic observations, ship, buoy, and ASCAT. In the absence of necessary 

observations, the JMA estimates R30 and R50 from regression equation between 

central pressure and wind radius (Muroi, 2018). In the Korea Meteorological 

Administration (KMA), the postseason analysis of wind radii is primary based on 

direct estimates from satellite observations such as ASCAT, Multiplatform Tropical 

Cyclone Surface Wind Analysis (MTCSWA) (Knaff et al., 2011), and Microwave 

Radiometers (Hong and Shin, 2013). When these data are not available, the KMA 

indirectly estimates TC wind radii from the regression between wind radii and 

maximum wind speed (Vmax) using the KMA infrared satellite data (Kwon, 2012; Lee 

and Kwon, 2015). As such, agencies generally use similar data in their postseason 
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analysis to generate wind radius, but each agency has its own method of estimating 

TC wind radii, which results in different estimates of the same storm. For instance, 

Song and Klotzbach (2016) found a considerable discrepancy in wind radius estimates 

between the JMA and the JTWC due to differences in their detailed estimation 

techniques. 

Understanding such differences in wind radius estimates among agencies is a 

prerequisite for performing TC size–related studies. The International Best Track 

Archive for Climate Stewardship (IBTrACS) has been providing TC wind radii since 

version 4, in which the JMA has provided the longest and shortest R30 and R50, 

respectively, from 1979 to the present (Knaff et al., 2021). Meanwhile, the JTWC has 

provided R34 and R50 data from 2001 to the present (Lee et al., 2010). The KMA has 

also provided postseason reanalysis or best tracking of wind radii, which include the 

longest and shortest R30 and R50, since 2015 (KMA, 2019). However, how the wind 

radius estimates of the KMA, JMA, and JTWC differ from each other and whether 

they have unique characteristics have not yet been evaluated. 

The TC size is known to be related to the Vmax, latitude, TC translation speed 

(TCTS), and storm age (Merrill, 1984; Weatherford and Gray, 1988; Bell and Ray, 

2004; Kimball and Mulekar, 2004; Knaff et al., 2007; Kossin et al., 2007; Wu et al., 

2012). Such parameters are used for the development of statistical models, such as the 

CLIPER model, which is one of the operational models of the NHC and the JTWC 

(Knaff et al., 2007). In particular, the relationship between Vmax and R34, which show 

a strong positive correlation, has been widely used in operations (Weatherford and 

Gray, 1988; Chan and Chan, 2012; Song and Klotzbach, 2016). Latitude is the most 
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frequently used factor for TC size estimations after Vmax—the higher the latitude, the 

larger the TC size (Merrill, 1984; DeMaria and Pickle, 1988). It has also been reported 

that fast poleward-moving TCs increase their angular momentum, which is associated 

with an increase in TC size, suggesting that the TC size can be affected by the TCTS 

as well as the latitude (Chan and Chan, 2013). The latitude and TCTS are key factors 

affecting not only wind radii but also their asymmetries: the higher the latitude and the 

faster the TCTS, the greater the asymmetry (Frank and Gray, 1980; Dougherty and 

Davis, 2014; Knaff et al., 2016). Storm age is closely related to Vmax and latitude—

as storm age increases, the TC moves to higher latitudes and Vmax tends to increase 

(Knaff et al., 2016), resulting in a high correlation between storm age and TC size 

(Kossin et al., 2007; Dolling et al., 2016; Schenkel et al., 2017). Therefore, it is 

important to know how each agency considers these TC size–related parameters in its 

wind radius estimations, as this helps to understand wind radius estimation 

discrepancies among agencies. 

This study aimed to investigate the characteristics of R30, R34, and R50 estimated 

by three agencies—the KMA, JMA, and JTWC—including their asymmetrical 

characteristics in terms of Vmax and spatial distributions. We also aimed to examine 

how each agency considers TC size–related factors (Vmax, latitude, TCTS, and storm 

age) in its TC wind radius estimations by comparing the correlation coefficients 

between these factors and the TC wind radii. The rest of this chapter is organized as 

follows. Section 2.2 describes the data and methods used. Section 2.3 presents the 

results of the comparison of wind radius estimates between the three agencies. Section 

2.4 describes how each agency considers the factors affecting the TC size. The final 

section summarizes the results and concludes the chapter.  
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2.2. Data and methods 

JMA and JTWC best track data from 2015–2018 were obtained from IBTrACS 

version 4, which includes TC position, intensity, and wind radius information at 6-h 

intervals. KMA best track data were obtained from the National Typhoon Center of the 

KMA. For a unified analysis, all wind radius data (R30, R34, and R50) were 

reconstructed by averaging the longest and shortest radius estimates of the KMA and 

JMA and four-quadrant wind radii (northeast, southeast, southwest, and northwest) for 

the JTWC based on KMA information. The R30 data were the 30-kt wind radii used 

by both the JMA and the KMA based on 10-min mean wind speeds, while the R34 data 

were the 34-kt wind radii used by the JTWC based on 1-min mean wind speeds. The 

definition difference in wind speeds between the JMA/KMA and the JTWC can make 

a direct comparison between R30 and R34 difficult. However, a sensitivity experiment 

that converted the data to the same wind speed definition showed that the difference 

had a minor effect. This may be because 34 kts in 1-min mean wind speed intervals is 

about 30 kts in 10-min mean wind speed intervals when a conversion factor of 1.14 is 

used (Barcikowska et al., 2012). Therefore, we directly compared R30 and R34 

(hereafter, for convenience, the JTWC’s R34 is used as R30). Meanwhile, the JTWC’s 

R50 have been analyzed after applying the conversion factor. 

The ways in which each agency considers TC size–related factors (Vmax, latitude, 

and TCTS) in its TC wind radius estimations were examined by comparing the 

correlation coefficients between these factors and the estimated TC wind radii. The 

results were also used to investigate the agency-dependent asymmetrical 
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characteristics of wind radii. The TCTS was calculated using centered time 

differencing based on changes in latitude and longitude at 12-h intervals, except for 

the first and last cases, in which one-sided time differencing was used (Xu and Wang, 

2018). The asymmetries in wind radii used in this study are consistent with methods 

suggested by Song and Klotzbach (2016). For the KMA and JMA, the asymmetries 

were calculated as the differences between the longest and shortest radii of the TCs 

divided by 2. Meanwhile, the JTWC are calculated as follows: 

AsymmetryJTWC =  
1

2
√(RNE − RSW)2+(RSE − RNW)2           (2.1) 

Here, the terms RNE , RSW , RSW,  and RNW  indicate wind radii in the northeast, 

southwest, southeast, and northwest quadrants, respectively.   
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2.3. Results 

2.3.1. Comparison of wind radius estimates between the three agencies  

To examine the characteristics of the TC wind radii estimated by the KMA, JMA, 

and JTWC, the correlations and mean values were first compared between the three 

agencies. The first observation was that the correlation coefficient (0.75–0.81) of R30 

was overall higher than that of R50 (0.57–0.70). This suggests that the agencies have 

greater difficulty estimating TC wind radii in stronger winds due to the relatively 

smaller sample and few tools available for radius estimation. The KMA and JMA 

showed the strongest correlations in R30 and R50 (0.81 and 0.70, respectively; Figure 

2.1a, d), while the KMA and JTWC showed the weakest correlations (0.75 and 0.57, 

respectively; Figure 2.1b, e). The JMA showed strong R30 and R50 correlations with 

the other two agencies (Figure 2.1a, c, d, and f). 

A comparison between the mean values of each agency showed that the JMA had 

the largest mean value (334 ± 134 km) for R30, followed by the KMA (242 ± 92 km) 

and the JTWC (216 ± 95 km). The mean R30 value of the JMA was about 91 and 117 

km larger than those of the KMA and JTWC, respectively (Table 2.1). The KMA’s 

mean R30 was smaller than that of the JMA but larger than that of the JTWC. For R50, 

the JMA also had the largest mean value (129 ± 52 km), followed by the JTWC (113 

± 45 km) and the KMA (100 ± 35 km). The KMA’s mean value was about 12–29 km 

smaller than those of the other two agencies. 
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Table 2.1. Comparison of mean tropical cyclone wind radius values and their standard 

deviations between the KMA, JMA, and JTWC. “N” indicates the number of samples. The 

parenthetical values represent the difference between KMA and other agencies, and the ratio 

of the difference to the KMA value. 

 KMA JMA JTWC 

R30  

(Num= 1913) 
242.3±92.3 km 

333.7±133.6 km 

(-91.4 km, -38%) 

216.2±95.4 km 

(26.1 km, 11%) 

R50  

(Num= 1081) 
100.4±34.5 km 

129.3±51.5 km 

(-28.9 km, -29%) 

112.7±45.0 km 

(-12.3 km, -12%) 

 

 

 

 

Figure 2.1. Scatter plots of tropical cyclone wind radius estimates of the KMA, JMA, and 

JTWC. The top (R30) and bottom (R50) panels compare the KMA and JMA (a, d), the KMA 

and JTWC (b, e), and the JMA and JTWC (c, f). Correlation coefficients (r) and mean 

differences (MD) between the agencies are indicated in the bottom right corner of each panel. 

The unit of MD is km. 
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Figure 2.2. Mean differences in wind radius estimates between the KMA and JMA (black), 

between the KMA and JTWC (red), and between the JMA and JTWC (blue) for each bin of 

R30 (a) and R50 (b). The bins were divided based on the tropical cyclone wind radius estimates 

of the KMA. The error bars indicate standard deviations. The gray bar graph represents the 

numbers (N) of R30 and R50 samples for each bin at 100- and 50-km intervals, respectively. 

The filled circles indicate significant differences at the 95% level. 

 

 

To determine the range in which differences in TC wind radii mainly appeared 

between the agencies, the differences were compared by dividing R30 and R50 into 

bins at 100- and 50-km intervals, respectively (Figure 2.2). In R30, the difference 

between the JMA and JTWC showed positive values in all ranges, while the difference 

between the KMA and JMA had negative values (blue and black lines, respectively, in 

Figure 2.2a). This suggests that the JMA estimated larger R30 values than the JTWC 

and KMA in all ranges. The JTWC had larger R30 values than the KMA in wind radii 

of less than 100 km but smaller values than the KMA in radii of over 200 km. The 

absolute differences between the agencies increased as the TC wind radii increased. 
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In R50 (Figure 2.2b), the differences both between the KMA and JMA (black) and 

between the KMA and JTWC (red) had negative values except over 200 km. This 

suggests that the KMA estimated smaller R50 values than the JMA and JTWC in most 

ranges. The JTWC had smaller R50 values than the JMA except over 200 km. Unlike 

R30, the absolute differences between the agencies did not change significantly as the 

TC wind radii increased. 

 

 

 

Figure 2.3. Comparisons of the spatial distributions of tropical cyclone R30 (top panels) and 

R50 (bottom panels) between the KMA (a, d), JMA (b, e), and JTWC (c, f) during 2015–2018. 

In each grid, the values were averaged along a moving window of 4° by 4° to smooth the wind 

radius of each grid.  
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To compare the spatial distributions of estimated TC wind radii between the 

agencies, the wind radii of all TCs occurring during the study period were averaged 

for the grid of  2° × 2° using a moving window of 4° by 4° to remove outliers with 

large spatial variability (Figure 2.3). In R30, all three agencies had larger values than 

average in the central region of the WNP (120–160°E, 15–45°N) and relatively small 

values at low latitudes (below 15°N), the South China Sea, and the inland area of East 

Asia (Figure 2.3a–c). The difference between the KMA and JMA showed negative 

values (Figure 2.4a), while the difference between the JMA and JTWC showed 

positive values (Figure 2.4c). This suggests that the JMA estimated larger R30 values 

than the JTWC and KMA in most regions. In particular, the JMA had larger R30 values 

than the other two agencies at higher latitudes. The JTWC had larger R30 values than 

the KMA in the inland area of China and along the coast of the Korean Peninsula but 

smaller R30 values than the KMA at latitudes below 20°N (Figure 2.4b 

In R50, the JMA and JTWC showed similar spatial distributions, especially in that 

they have large values near Japan and Taiwan, but the KMA showed different 

distributions overall (Figure 2.3d–f). The spatial differences between the agencies 

showed that the KMA had smaller R50 values than the JMA and JTWC in most regions 

except low latitudes below 10°N (Figure 2.4d and e). For the JMA and JTWC 

significant differences were found in the open seas east of 150ºE (Figure 2.4f). 
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Figure 2.4. Comparisons of the spatial distributions of mean differences in tropical cyclone 

R30 (top panels) and R50 (bottom panels) between the KMA and JMA (a, d), between the 

KMA and JTWC (b, e), and between the JMA and JTWC (c, f) during 2015–2018. In each 

grid, the values were averaged along a moving window of 4° by 4° to smooth the wind radius 

of each grid.  
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2.3.2. Relationship between wind radii and potential TC size–related 

environmental variables 

To examine the extent to which the four key parameters related to the TC size 

(Vmax, latitude, TCTS, and storm age) affected the three agencies’ estimations of TC 

wind radii, the correlations between the four parameters and the TC wind radii were 

examined (Table 2.2). The results showed that of the four parameters, Vmax had the 

strongest correlations with R30 and R50 overall, with stronger correlations in the KMA 

(0.61–0.62) estimations than in the estimations of the other two agencies (0.27–0.44). 

The similarity of the spatial distribution of Vmax to that of R30 and R50 supports the 

strong correlation between them (see Figure 2.5a and Figure 2.3). 

Latitude did not correlate with wind radii in the KMA estimates (−0.04 to 0.05) 

but had weak correlations in the JMA and JTWC estimates (0.20–0.28). Similarly, the 

TCTS showed little correlation with wind radii in the KMA estimates (−0.02 to 0.06) 

and weak correlations in the JMA and JTWC estimates (0.10–0.19). These results 

indicate that the KMA mainly consider only Vmax when estimating TC wind radii 

(Lee and Kwon, 2015), while the JMA and JTWC additionally consider the latitude 

and TCTS in addition to Vmax (Knaff et al., 2007). 

Meanwhile, storm age had a significant correlation with wind radii of all agencies 

(JMA, 0.35~0.37; JTWC, 0.23~0.41; KMA, 0.18~0.37). The high correlations can be 

explained by the fact that storm age is correlated with Vmax (0.34~0.43) and latitude 

(0.40~0.46), respectively. On the other hand, the large difference in wind radii 

(especially in R50) between the KMA and other agencies in the East Sea and the 

eastern seas of Japan (Figure 2.3) seems to be due to the influence of TCTS and storm 
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age, which have large values in the vicinity (Figure 2.5b and c). This is because the 

KMA considers TCTS and storm age relatively less than other agencies. 

 

 

Table 2.2. Pearson’s correlation coefficients and their p-values between tropical cyclone wind 

radii (R30, R50) and tropical cyclone size–related environmental variables (maximum wind 

speed, latitude, TC translation speed, and storm age) for the three agencies. The units of Vmax, 

Latitude, TCTS, and Storm age are kt, ºN, m s−1 and day, respectively. 

TC wind radii 

 Correlation coefficient 

 KMA JMA JTWC 

R30 

Vmax 
0.62 

(p < 0.01) 

0.38 

(p < 0.01) 

0.44 

(p < 0.01) 

Latitude 
0.05 

(p < 0.01) 

0.24 

(p < 0.01) 

0.28 

(p < 0.01) 

TCTS 
0.06 

(p < 0.01) 

0.18 

(p < 0.01) 

0.19 

(p < 0.01) 

Storm age 
0.37 

(p < 0.01) 

0.37 

(p < 0.01) 

0.41 

(p < 0.01) 

R50 

Vmax 
0.61 

(p < 0.01) 

0.41 

(p < 0.01) 

0.27 

(p < 0.01) 

Latitude 
-0.04 

(p = 0.90) 

0.20 

(p < 0.01) 

0.24 

(p < 0.01) 

TCTS 
-0.02 

(p = 0.26) 

0.10 

(p < 0.01) 

0.17 

(p < 0.01) 

Storm age 
0.18 

(p < 0.01) 

0.35 

(p < 0.01) 

0.23 

(p < 0.01) 

 



 19   

 

 

Figure 2.5. Spatial distributions of maximum wind speed (Vmax) (a), TC translation speed 

(TCTS) (b), and storm age (Age) (c) based on the KMA best track data during 2015–2018. In 

each grid, the values were averaged along a moving window of 4° by 4° for smoothing.  
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To determine the range in which the wind radius differences between the three 

agencies were large for Vmax, latitude, TCTS, and storm age, the mean wind radii and 

their standard deviations were compared by dividing the parameters into bins at 

intervals of 10 kts, 5°, 2 m s−1, and 1 day, respectively. The spacing of bins were 

determined such that the sample size of each bin was sufficient for statistical analysis. 

In terms of Vmax (Figure 2.6a and e), R30 and R50 tended to increase as Vmax 

increased in all agencies’ estimations. Specifically, the JMA had the largest R30 values 

in all bins, followed by the KMA and JTWC. For R50, the JMA also had the largest 

values in all bins, followed by the JTWC and KMA. The order, by agency, for R30 and 

R50 is also generally similar for latitude, TCTS, and storm age (Figure 2.6b–d and f–

h). 

Regarding latitude (Figure 2.6b and f), R30 and R50 tended to increase as the 

latitude increased in the JMA and JTWC estimates but did not change significantly in 

the KMA estimates. These results are consistent with the finding that the TC wind radii 

in the KMA estimates did not correlate with latitude. Because of this tendency, the 

KMA’s estimates of wind radii at low latitudes were similar to those of other agencies, 

but the differences gradually increased at higher latitudes. The TCTS trends were 

similar to the latitude trends (Figure 2.6c and g). This is because the TCTS correlates 

strongly with latitude, increasing with higher latitudes. For storm age, as it increases, 

R30 and R50 tended to increase in all agencies (Figure 2.6d and h), which can be 

explained by the fact that storm age is significantly correlated with both Vmax and 

latitude. In particular, for a high storm ages of more than 6 days, it is more similar to 

the trend of latitude than Vmax. 
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Figure 2.6. Comparison of the mean values (circles) and standard deviations (error bars) in 

each bin of maximum wind speed (Vmax) (a, e), latitude (b, f), TC translation speed (TCTS) 

(c, g), and storm age (Age) (d, h) for R30 (top panels) and R50 (bottom panels) estimates of 

the KMA (black), JMA (red), and JTWC (blue). The bins are divided into intervals of 10 kts, 

5°N, 2 m s−1, and 1 day for Vmax, latitude, TCTS, and storm age, respectively.   
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2.3.3. Asymmetrical characteristics 

The asymmetries in wind radii estimated by the three agencies were investigated, 

and the ways in which they were related to Vmax, latitude, TCTS, and storm age in 

each agency’s estimations were specifically examined. First, a comparison of the mean 

R30 asymmetry values between the agencies showed that the KMA had the smallest 

value (29.7 km), followed by the JTWC (43.6 km) and JMA (48.6 km) (Table 2.3). For 

the normalized asymmetries, the order was changed—the smallest KMA (0.14) and 

JMA (0.14), followed by JTWC (0.21). In terms of the spatial distributions of the 

asymmetries (Figure 2.7a–c), the KMA showed uniform distributions with relatively 

small values (20–40 km) in most regions, while the JMA and JTWC showed significant 

regional variations, with large (small) values in the eastern seas of Japan and near the 

KP (South China seas and tropical seas). The regional differences in the estimated 

asymmetries between the agencies depended on how each agency considered the 

factors affecting them. A comparison of the mean R30 asymmetries related to Vmax, 

latitude, TCTS, and storm age in each agency’s estimations is shown in Figure 2.8a-d. 

The JMA and JTWC showed a tendency toward increased asymmetries as the latitude 

and STS increased, whereas the KMA estimates did not depend on the latitude or the 

TCTS. 
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Table 2.3. Same as in Table 2.1, but for mean asymmetry of tropical cyclone wind radii. 

Normalized values are shown in parentheses  

 

 

For R50’s asymmetry, mean and normalized values were the smallest in the KP 

(4.7 km and 0.04) and the greatest in the JTWC (21.5 km and 0.19) (Table 2.3). In 

normalized comparisons, the JTWC estimates show, on average, the greatest 

asymmetries for both R30 and R50. On the other hand, the KP showed almost zero 

asymmetries for R50 in most regions, except for the eastern seas of Japan (Figure 2.7b 

and e), while the KMA and JTWC showed similar patterns in the spatial distributions 

of R30 and R50 (Figure 2.7a, c, d, and f). This suggests that the KMA and JTWC used 

similar techniques for R30 and R50 estimations, whereas the JMA seems to have used 

a different method for each. 

Mean Asymmetry KMA JMA JTWC 

R30 29.7±10.8 km 48.6±47.3 km 43.6±31.1 km 

(Normalized) (0.14±0.06) (0.14±0.13) (0.21±0.15) 

R50 11.5±5.7 km 4.7±13.3 km 21.5±15.7 km 

(Normalized) (0.13±0.07) (0.04±0.09) (0.19±0.12) 
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Figure 2.7. Same as in Figure 2.3, but for mean asymmetry values of tropical cyclone wind 

radii. 

 

In R50, the JTWC heavily relied on the latitude and TCTS, whereas the KMA 

hardly relied on these variables (Figure 2.8e–h). The JMA showed constant and weak 

asymmetries at low latitudes (below 20°) and at slow TCTSs (below 6 m s−1), but the 

asymmetries tended to increase rapidly at higher latitudes and at faster TCTSs (more 

than 8 m s−1; Figure 2.8f–g). For storm age, the JTWC and JMA showed a similar 

pattern of asymmetry increasing with storm age up to 8–9 days, but decreasing 

thereafter, whereas the KMA did not depend on storm age (Figure 2.8e–h). On the 

other hand, Vmax did not influence the asymmetries for either R30 or R50 in any 

agency’s estimations (Figure 2.8a and e). 
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Figure 2.8. Same as in Figure 2.6, but for mean asymmetry values of tropical cyclone wind 

radii. 
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2.3.4. Case studies comparing TC wind radius estimates 

The TC cases that showed significant differences in mean values and asymmetries 

in wind radii estimates between the three agencies (reported in the previous section) 

were selected to investigate the respective wind radius estimation characteristics. The 

first case was Typhoon Jebi (2018), which showed a large difference in mean R30 

between the JMA and the other two agencies (Figures 2.9 and 2.10). Around 00:00 

UTC on August 31, when Jebi had the strongest intensity (gray line in Figure 2.9), the 

mean R30 values of the three agencies were similar. Subsequently, as Jebi weakened, 

the difference between the JMA and KMA/JTWC gradually increased, reaching over 

500 km at the decay stage of the typhoon (12:00 UTC on September 4; red, blue, and 

green lines in Figure 2.9). Interestingly, the JMA, unlike the KMA and JTWC, 

estimated a sharp increase in R30 as Jebi rapidly weakened. 

To examine why the JMA estimated a significantly larger R30 value than the other 

two agencies during the rapid weakening stage, we compared the R30 values of the 

three agencies with a 1000-hPa wind field from the Global Forecast System (GFS) 

analysis data (Figure 2.10). The model-estimated mean R30 (MM-R30, solid black 

lines) decreased as Jebi weakened, as in the KMA and JTWC estimates, whereas the 

model-estimated mean R30 in the top 20% (M20-R30, dashed black line) increased 

sharply, as in the JMA estimate. In fact, at 18:00 UTC on September 4, when the 

difference between MM-R30 and M20-R30 was the largest, the radial wind profile of 

the top 20% was 15 m s-1 at two points—A (284 km) and B (786 km) (Figure 2.10). 

These are candidates that can be estimated to be R30. Interestingly, at this time, KMA 

and JTWC estimated the value near A as R30 (blue and green dashed line in Figure  
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2.10) and JMA estimated the value near B as R30 (red dashed line). This suggests that 

when determining R30, the JMA included a wide area of gale–force winds, far from 

the TC center, induced by an extratropical transition of the TC, mid-latitude pressure 

system, and topography. 

 

 

Figure 2.9. Comparison of mean R30 value estimates of the KMA (blue), JMA (red), and 

JTWC (green) with the mean (solid black line) and top 20% (dashed black line) R30 values 

estimated from GFS winds at 1000 hPa for Typhoon Jebi (2018) from 00:00 UTC on August 

31 to 18:00 UTC on September 12 at 6-h intervals. The solid gray line represents the maximum 

wind speed (Vmax) estimated by the JMA. The triangles indicate the times of the spatial 

distributions presented in Figure 2.11. 
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Figure 2.10. Mean radial wind profiles of 1000-hPa GFS wind at 18:00 UTC on September 4 

when Typhoon Jebi (2018) rapidly weakened. Thin and thick black lines indicate mean and 

top-20% mean values, respectively. Blue, red, and green dashed lines indicate R30s estimated 

from the KMA, JMA, and JTWC, respectively. Points A and B are where Vmax is 15 m s−1. 

At 18:00 UTC on September 4, all mean radial winds (thin black line) were less than 15 m s-1, 

which explains why the model-estimated mean R30 was zero in Figure 2.9.  
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This characteristic was evident when the spatial distributions of model winds with 

R30 were compared between the three agencies (Figure 2.11). At 06:00 UTC on 

September 1 and 3, when Jebi was in the open ocean, the model’s wind field was 

symmetrical, and the model-estimated R30 was similar to that estimated by the three 

agencies (Figure 2.11a–b). However, at 06:00 UTC on September 4, when Jebi made 

landfall in Japan, the strong wind area at the storm center disappeared, and an 

asymmetrical strong wind region appeared outside the TC, mostly on the ocean side 

(Figure 2.11c). At 18:00 UTC on September 4, when Jebi weakened further, strong 

wind regions were distributed from the southern to the northern tip of Japan, far from 

the TC center (Figure 2.11d), which is related to the low pressures system that existed 

before Jebi made landfall (Le et al., 2019). At that time, the JMA estimated the R30 to 

be as large as 740 km, including most of the strong wind region outside the TC, while 

the KMA and JTWC estimated it to be 210 km and 273 km, respectively, considering 

only weakened winds near the storm (Figure 2.11d). This is attributed to differences 

in the three agencies’ policies for defining gale–force TC winds. Specifically, the JMA 

considers the gale–force wind radius to include areas where strong winds occur, even 

if they are far from the storm’s center. On the other hand, the KMA and JTWC seem 

to determine the gale–force wind radius by focusing on the strong wind area of the TC 

itself. 
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Figure 2.11. Comparison of R30 (gray contour) estimated from the GFS winds (shade) at 1000 

hPa with the mean R30 values estimated by the JMA (red circle), KMA (blue circle), and 

JTWC (green circle) for Typhoon Jebi (2018) at 06:00 UTC on September 1 (a), 06:00 UTC 

on September 3, 06:00 UTC on September 4 (c), and 18:00 UTC on September 4 (d). The red 

crosses indicate the tropical cyclone’s center. The maximum wind speed (Vmax) estimated by 

the JMA and the mean R30 values of the three agencies are shown in each panel. 

 

 

To further explore the characteristics of the asymmetry differences between the 

three agencies, Typhoon Soulik (2018) was used in another case study. Overall, the 

KMA showed a small asymmetry (20–40 km) with no significant change over Soulik’s 

lifetime, while the JMA and JTWC showed significant variations (0–83 and 10–90 km, 
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respectively), similar to the variations in the TCTS (Figure 2.12a and b), with the 

asymmetry increasing and decreasing as the TCTS increased and decreased. In line 

with the results obtained from the previously mentioned correlation analysis (Table 

2.3; Figure 2.8c), this result suggests that the KMA does not consider the TCTS when 

estimating wind radii 

 

 

 

Figure 2.12. Comparison of the R30 asymmetries (a) estimated by the KMA (blue), JMA (red), 

and JTWC (green) with the TC translation speed (TCTS) (b) for Typhoon Soulik (2018) from 

00:00 UTC on August 16 to 06:00 UTC on August 24 at 6-h intervals. The triangles represent 

the times of the spatial distributions presented in Figure 2.13.  
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A comparison of the spatial distribution of the model wind with the best-track R30 

illustrated the characteristics of the agency-dependent asymmetries (Figure 2.13). First, 

in the early stages of TC development at 12:00 UTC on August 16 (Figure 2.13a), the 

model winds showed a clear asymmetrical distribution, which seems to have been 

related to the relatively fast TCTS (8.7 m s−1). At that time, the JMA and JTWC showed 

a significant difference between the longest and shortest radii, whereas the KMA 

showed a relatively small difference (compare the solid and dashed lines or the values 

in Figure 2.13a). At 00:00 UTC on August 19, when the TC was moving slowly (2.5 

m s−1) and increasing in intensity, the model-estimated R30 showed a nearly 

symmetrical distribution with small differences between the longest and shortest radii 

in the three agencies’ estimates (Figure 2.13b). At 06:00 UTC on August 22, the model 

wind and JMA’s R30 were relatively symmetrical, while those of the KMA and JTWC 

were asymmetrical (Figure 2.13c). Finally, at 00:00 UTC on August 24, when the TC 

made landfall over the KP and began to decay, the model wind was particularly 

asymmetrical (Figure 2.13d), with the gale–force winds more widely distributed 

outside the northeast than near the TC center. At that time, considering the weakening 

of the TC, the JTWC and KMA estimated both the longest and shortest radii to be 

small, while the JMA estimated the longest radius to be very large by including strong 

wind areas outside the TC, which resulted in a significant asymmetry. 
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Figure 2.13. Comparison of R30 (gray contours) estimated from the GFS winds (shade) at 

1000 hPa with the longest and shortest R30 values estimated by the JMA (red circle), KMA 

(blue circle), and JTWC (green circle) for Typhoon Soulik (2018) at 12:00 UTC on August 16 

(a), 00:00 UTC on August 19 (b), 06:00 UTC on August 22 (c), and 00:00 UTC on August 24 

(d). The solid and dashed circles indicate the longest and shortest R30. The red crosses indicate 

the tropical cyclone’s center. The maximum wind speed (Vmax) estimated by the JMA and the 

longest and shortest R30 of the three agencies are shown in each panel.  
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In summary, the KMA considers weak asymmetries—greater than the JMA 

estimates and smaller than the JTWC estimates—which do not change significantly 

during the lifetimes of TCs. The JTWC estimates the wind radius, on average, most 

asymmetrically, with significant variations according to the latitude and TCTS. The 

JMA tends to estimate the wind radius completely symmetrically before TCs approach 

higher latitudes (around 20°N) and highly asymmetrically thereafter. Again, this is 

because the JMA estimates gale–force wind radii, including areas where strong winds 

occur, even if they are far from the storm’s center.  
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2.4. Summary and discussion 

TC wind radii, which constitute some of the most important information for 

predicting disasters caused by TCs, have been provided by the KMA, JMA, and JTWC 

since 2015. However, the detailed characteristics of the wind radii estimated by each 

agency have hitherto not been investigated. This study compared the mean values and 

asymmetries in the three data sets of TC wind radii (R30 and R50) in the western North 

Pacific between 2015 and 2018 and explored the factors that each agency mainly 

considers when estimating wind radii.  

First, a comparison between the mean values both R30 and R50 of the three 

agencies showed that the JMA had the largest mean value—about 91 and 118 km for 

R30 (about 29 and 17 km for R50) larger than the mean values of the KMA and JTWC, 

respectively (Table 2.1). The differences increased as the mean wind radii and latitude 

increased (Figure 2.2; Figure 2.6b and f). A correlation analysis revealed that the KMA 

considered only Vmax when estimating TC wind radii, while the JMA and JTWC 

considered not only Vmax but also the latitude and TCTS partially (Table 2.2). 

Differences in wind radius between the three agencies were also found in the 

estimated asymmetries, defined as the differences between the longest and shortest 

wind radii (Table 2.3). The KMA showed the smallest mean asymmetry (29.7 km) for 

R30, which was uniformly distributed within 20–40 km in most regions. The JMA and 

JTWC showed greater mean asymmetries (48.6 and 43.6 km, respectively) than the 

KMA, with considerable regional variations. The mean asymmetry for R50 was 

smallest in the JMA estimates (4.7 km) and greatest in the JTWC estimates (21.5 km). 
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The asymmetries in the JMA and JTWC estimates tended to increase with the latitude 

and TCTS, whereas the KMA did not rely on these parameters, thus estimating locally 

uniform wind radii. 

Through two case studies (Typhoons Jebi and Soulik in 2018), we confirmed the 

different characteristics of the wind radius estimations of the three agencies. When 

determining R30, JMA includes a wide area of gale–force winds, far from the TC 

center, induced by an extratropical transition of the TC, mid-latitude pressure system, 

and topography. This increases the estimated longest wind radius, especially at higher 

latitudes (above 20ºN), which in turn increases the mean wind radius and asymmetry 

in the JMA data. On the other hand, the KMA and JTWC generally estimate the TC 

wind radius by focusing on the strong wind area of the TC itself, which explains why 

their mean R30 and asymmetries are on average smaller than those of the JMA. 

This study provides quantitative information on the characteristics of and 

differences in gale–force and storm-force wind radii between the three agencies. We 

found that the wind radii in best track data differ significantly between the three 

agencies not only in mean values but also in asymmetrical characteristics and spatial 

distributions. These differences are primarily due to agency-specific policies defining 

the wind radius and determining whether the estimations should focus on the TC itself 

or include the wind outside the TC for damage and disaster prevention purposes. At 

this point, it is impossible to conclude which policy is the best or which wind radius 

estimation method is the most reliable because each agency’s policy has been 

established for its own purposes. However, it is clear that due to these policy 

differences, the TC radius data are too uncertain and inconsistent to be used in research, 
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although previous studies have found that the wind radii in best track data constitute 

sufficiently reliable information (Knaff et al., 2016; Dolling et al., 2016). Therefore, it 

is essential for researchers to know in advance the characteristics of the wind radius 

estimations of each agency and to select and use the data according to each study’s 

purpose. This study provides useful information for making the appropriate selection. 

The results can also be used as the basis for developing a method for consistent wind 

radius estimations by various agencies.  
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3. Tropical cyclone wind radius prediction based on a statistical-

dynamical approach and track pattern clustering 

3.1. Introduction 

Tropical cyclones (TCs) are one of the most devastating natural disasters over the 

western North Pacific (WNP). To prevent the TC-induced disasters, TC agencies and 

researchers are making their efforts to improve the TC prediction skill based on 

available dataset and advanced technologies. Various studies have been conducted so 

far to improve the accuracy of predicting the TC track and intensity (Powell and 

Reinhold, 2007; Houston et al., 1999; Irish et al., 2008), but relatively little research 

has been done on the TC size in terms of the maximum radial extent of strong TC 

winds, which is an important factor in determining the possible TC-induced damage 

area (Quiring et al., 2014). In particular, since TC-induced storm surges and ocean 

waves increase as TCs grow larger (Powell and Reinhold, 2007; Irish et al., 2008; 

Sampson et al., 2010), the TC sizes is also important information for storm surge and 

wave forecasting. However, due to the lack of observation data available for estimating 

the TC size (Dolling et al., 2016), the uncertainty of TC size data is large (Landsea and 

Franklin, 2013), and even for the same TC, the best-track data show different values 

depending on the TC agency (Landsea and Franklin, 2013; Song and Klotzbach, 2016; 

Kim et al., 2022) which makes accurate TC size predictions more difficult (Knaff and 

Harper, 2010; Cangialosi and Landsea, 2016). 

Global TC warning centers routinely publish the TC advisories, including 

forecast of wind radius of active TCs within their areas of responsibility (Dolling et 
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al., 2016). For example, U.S TC agencies—the National Hurricane Center (NHC), the 

Central Pacific Hurricane Center, and the Joint Typhoon Warning Center (JTWC)—

provides the forecasts for maximum radial extent of critical wind speed thresholds 

such as 34-, 50-, and 64-kt winds based on 1-min maximum sustained winds (hereafter 

referred to as R34, R50, and R64, respectively) in four quadrants (northeast, southeast, 

southwest, and northwest quadrants) from storm heading. The NHC, which 

administers the hurricanes over the North Atlantic and Eastern Pacific, started 

providing 24-h predictions for R50 in 1958, and then began forecasts for R34 and R50 

more than the 72-h forecast times since 2001 (Knaff et al., 2021). For the JTWC, which 

covers the remaining Southern Hemisphere, Indian Ocean, and WNP, the R34, R50, 

and R64 forecasts have been extended to 120 h after 2016 (Sampson et al., 2018). 

Operational skills for TC wind radii prediction have been developed based on 

available data including satellite-derived winds, numerical weather predictions (NWP), 

statistical model results, and consensus forecasts. In particular, the statistical-based 

models have been widely used operational TC centers to overcome the large prediction 

error of the wind radius, which is common in NWP after a 48-h lead time. Knaff et al. 

(2007) has been developed a statistical model based on a simple linear regression using 

three available climatology and persistence predictors (latitude, storm translation 

speed, and storm maximum winds) for the first time. Recently, the model updated the 

regression coefficients of predictors used in WNP TCs (Knaff et al., 2018). The 

updated statistical model showed an initial error of about 20 n mi (1 n mi = 1.85 km), 

and a prediction error of 26 and 38 n mi at the 24-h and 120-h lead times, respectively, 

in the WNP. On the other hands, Knaff et al. (2017) developed a global statistical-
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dynamical TC wind radii forecast scheme based on TC size proxy estimated from 

satellite-derived 850-hPa tangential winds and 13 predictors calculated from global 

NWP model results with a concept similar to the Statistical Hurricane Intensity 

Prediction Scheme (SHIPS). The statistic-dynamical model used a new consensus 

technique based on the results of three NWP models, leading to better performance 

than the general statistical prediction model using individual NWP results (Sampson 

et al., 2018). 

Previous studies have demonstrated that the seasonal TC predictions (Kim et al., 

2012) and intensity predictions (Kim et al., 2018) can be improved by using a track 

pattern clustering method because the factors affecting the TC genesis and intensity 

differ depending on the TC tracks (Camargo et al., 2007a,b; Chu et al., 2010; Chu and 

Zhao, 2011; Kim et al., 2011). However, the clustering technique has not been applied 

for TC size prediction so far. Song et al. (2020) investigated the changes in TC intensity 

and R30 according to the two TC track types—recurving and straight-moving TCs—

in the WNP and found that the interaction between the mid-latitude circulations leading 

to the baroclinic expansion may increases the size for recurving TCs. This suggests 

that the TC size may have different characteristics depending on the track pattern, like 

other TC metrics (genesis frequency and intensity), and that a clustered model may 

help to improve the performance of TC size prediction. 

This study aims to develop an operational scheme for predicting the symmetric 

R30 and R50 of WNP TCs based on a statistical-dynamical approach using 11 

environmental predictors estimated from dynamical results and a track pattern 

clustering method. In particular, this study examines the effect of track pattern 
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clustering on TC size prediction by comparing the results of clustered and non-

clustered models. Section 3.2 describes the data, predictors, and dependent variable 

used in this study and how to construct the statistical-dynamical model. Section 3.3 

explains the effects of clustering, the characteristics of classified clusters, and selected 

smart predictors. Section 3.4 indicates the model performance during the training and 

testing periods, and real-time predictions of developed model and case studies in 2017 

and 2018 TCs. Section 3.5 presents model performance for training, testing, and real-

time predictions. The final section provides the summary and discussion in this study. 
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3.2. Data and methods 

3.2.1. Data 

A total of two types of TC information are used for training the model and real-

time prediction. To build the present statistical-dynamical model during the training 

(2008-2016) and testing periods (2017-2018), the TC size information is obtained from 

Japan Meteorological Agency (JMA). The data provides latitude, longitude, 10-min 

maximum sustained surface winds, central pressure, and longest and shortest axis of 

R30 and R50 at 6-hourly intervals. TC tracks are reconstructed at 5-day intervals, 

resulting in a total of 3574 (1050) for R30 and 1934 (488) for R50 in training (testing) 

cases, respectively. For real-time prediction, predicted 5-day track data were obtained 

from the Korea Meteorological Administration (KMA) during 2017-2018. 

Global Forecast System (GFS) analysis datasets are used to calculate the dependent 

variable and atmospheric potential predictors for training and testing period. The data 

is provided in six-hourly intervals at 0.5°×0.5° horizontal resolutions by the National 

Centers for Environmental Prediction (NCEP) since 2008. For real-time prediction 

tests in 2017 and 2018, atmospheric predictors were calculated using GFS forecasts 

with 0.25°× 0.25° resolution. Sea surface temperature (SST) is obtained from the 

Hybrid Coordinate Ocean Model (HyCOM) and Navy Coupled Ocean Data 

Assimilation (NCODA) nowcast/forecast system with daily 0.08° horizontal 

resolution and is used for calculating oceanic predictors. 
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3.2.2. Calculation of dependent variable and predictors 

Knaff et al. (2014) have been developed a new proxy for the TC size using the 

azimuthally averaged 850-hPa tangential wind at the radius of 500 km (V500) instead 

of the traditional metrics of the radius of the outermost closed isobar (ROCI) or R34. 

Here, the 5-kt tangential wind at 850 hPa is assumed to be essentially the same as the 

background flow and defined as R5, which is the radius where the TC wind field is 

indistinguishable from the background flow in a climatological environment. The 

climatological R5 used in our model is defined as follows: 

R5 =  R5̅̅̅̅ +  α (
V500−V500c

V500c−V1000c
)                  (3.1) 

 

where α = 4.5° latitude, R5̅̅̅̅ = 8.6° latitude, the climatological values of tangential 

wind at 500 and 1000km radius is V500c = 5.05 m s-1 and V1000c = 2.23 m s-1. The 

unit of R5 calculated from Equation (3.1) is degrees latitude (1 degrees latitude = 

111.11 km). In the present statistical regression model, the dependent variable is 

defined as the change in R5 (∆R5) relative to the initial time. 
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Figure 3.1. Tangential winds estimated from the GFS analysis winds (shade, m s-1) at 850 hPa 

for Typhoon Trami (2018) at 12:00 UTC on September 29 (a), 18:00 UTC on October 1 (b), 

00:00 UTC on October 3 (c), and 00:00 UTC on October 6 (d). The solid circles indicate the 

500 km radius from the storm center (black cross) for calculating V500 and R5 (right corner 

in each panel). The maximum wind speed (Vmax) from JMA best track is shown in the bottom 

left corner of each panel, respectively. 

 

For example, the tangential wind distributions at the four periods (on September 

29 at 12 UTC, on October 1 at 18 UTC, on October 3 at 00 UTC, and on October 6 at 

00 UTC) of Typhoon Trami (2018) and their V500 and R5 calculated from Equation 

(3.1) are shown in Figure 3.1. In general, the calculated V500 and R5 revealed different 

results depending on the TC structure rather than the Vmax. On October 1 at 18 UTC, 

which capture an asymmetric structure with relatively strong intensity (105 knots), had 
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the largest TC size–related parameters, by about 20 m s-1 for V500 and 32 degrees 

latitude for R5 (Figure 3.1c). Meanwhile, the V500 and R5 have similar values in the 

two periods with different characteristics: the periods with a relatively symmetric 

structure and strongest Vmax during Trami’s lifetime (on October 1 at 18 UTC, Figure 

3.1b), the period with the violent asymmetry during the decaying TC stage (on October 

6 at 00 UTC, Figure 3.1d). If the TC is weak and accompanied by an incomplete 

structure, V500 and R5 had significantly smaller values (Figure 3.1a). 

Eleven potential predictors are used for the model development (Table 3.1). Most 

of the potential predictors, including static and environmental variables, were 

generally selected by Knaff et al. (2017). First, initial R5 (iSIZE) is estimated as 

Equation (3.1). Three static predictors, such as current intensity (VM), intensity 

change within 12h (DVMX), and sine latitude of TC (LAT), are extracted from track 

information. Next, the three oceanic predictors are estimated at the location of the TC’s 

center. Potential intensity (PI) is defined with the SST-based empirical equations 

(DeMaria and Kaplan, 1994; Whitney and Hobgood; 1997) as introduced in Equation 

(3.2). 

PI = A + B𝑒(𝑇−𝑇0)                  (3.2) 

where T and T0 denote the SST (℃) and specified reference SST (30℃), respectively. 

Constant coefficients are given by A=19.7 kt, B=88.0 kt, and C=0.1909 in the WNP 

(Knaff et al., 2017). Relative SST (RSST) is defined as regional SST minus tropical 

mean SST (30°N-30°S) (Lin et al., 2015). RSST in the tropics is purported to covary 

closely with local mid-tropospheric environmental relative humidity (RH) (Stephens 

1990; Emanuel et al. 1994). 
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Table 3.1. List of static and synoptic potential predictors used in the present statistical-

dynamical model. 

 

 

Four atmospheric predictors are used in the present model: RH in the middle layer 

(500 and 700 hPa) of the atmosphere, divergence at 200 hPa (D200), relative vorticity 

at 850 hPa (RV850), and vertical wind shear (VWS) between 200 and 850 hPa (Table 

3.1). RH is calculated as an averaged value between 200 and 800km from the storm 

center, in which doughnut-shape averaging is used to remove the TC effects included 

in the dataset. D200, RV850, and VWS are calculated as u- and v- component winds 

and averaged within a 1000-km radius for D200 and RV850 and 500 km for VWS 

from the storm center. 

Number Predictors Description 

1 iSIZE Initial R5 (degree latitudes) 

2 VM Current TC intensity (kt) 

3 DVMX 12-h change in intensity 

4 LAT Sine of latitude at the TC location 

5 SST Sea surface temperature at the TC location (℃) 

6 RSST Relative SST at the TC location (Lin et al., 2015) 

7 PI Potential intensity based on empirical equation at the TC 

location 

8 RH Area-averaged (200-800 km) relative humidity at 500-700 hPa 

9 VWS Area-averaged (0-500 km) 200-850 hPa vertical wind shear  

10 D200 Area-averaged (0-1000 km) divergence at 200 hPa 

11 RV850 Area-averaged (0-1000 km) relative vorticity at 850 hPa 
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3.2.3. Clustering method and its effect 

Considering the selection of the predictor pool of TCs with locally similar tracks, 

we carried out track pattern clustering (TPC) and examined the clustering effects on 

improving the TC size prediction. A fuzzy c-means clustering method (FCM) (Bezdek, 

1981) was used to classify TC tracks at 5-day intervals (Kim et al. 2011). The track 

input used here is uniformly interpolated to 21 latitude and longitude points, 

respectively. 

The FCM is the most popular algorithm in the fuzzy cluster theory, which suggests 

the possibility that an observation value (𝑥𝑖) belongs to any group (𝑐𝑗). This study 

calculates track membership coefficients (𝑤𝑖𝑗 ), indicating the possibility that each 

typhoon (𝑥𝑖) belongs to a classified cluster (𝑐𝑗) (Equation (3.3)). The calculation of 

𝑤𝑖𝑗  is determined by the partial derivative of the existing method for the sum of 

squared error (SSE, Equation (3.4)) in fuzzy clusters given by the following: 

𝑤𝑖𝑗 =  
1

∑ (
‖𝑥𝑖−𝑐𝑗 ‖

‖𝑥𝑖−𝑐𝑘‖
)

2
𝑚−1

𝑐
𝑘=1

                   (3.3) 

𝑆𝑆𝐸 =  ∑ ∑ 𝑤𝑖𝑗
𝑚𝑐

𝑗=1 ‖𝑥𝑖 − 𝑐𝑗‖
2𝑛

𝑖=1                  (3.4) 

where ‖𝑥𝑖 − 𝑐𝑗‖
2
  is the distance between each TC track and mean track for each 

cluster. 

Additionally, this study investigates the optimal number of clusters based on three 

representative measures of scalar validity such as partition coefficient (PC), Xie-Beni 

index (XB), and the Dunn index (DI) (Figure 3.2). The PC measures the final 

partitioned cluster using a fuzzy partition matrix, and a larger value indicates the best 
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partitioning values. (Figure 3.2a). Considering the membership coefficient and the 

structure of datasets, Xie and Beni proposed the XB index to measure the overall 

average compactness and separateness, and the smaller its value, the better the partition 

result (Figure 3.2b). Finally, the DI index has calculated the ratio of inter-cluster and 

intra-cluster relationships, the larger value means the best number of clusters (Yeh et 

al., 2013, Figure 3.2c). The PC and XB indices were chosen as a too small or large 

number of clusters, by 2 and 7 clusters, respectively. We classified the clusters into 

four groups according to the results of the DI index (Figure 3.2c). 

 

 

 

 

Figure 3.2. Value of three scalar validity measures according to the number of clusters. (a) 

Partition coefficient (PC), (b) Xie and Beni’s index (XB), and (c) alternative Dunn index (DI).  
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To examine the clustering effect on TC size prediction, we evaluated quantitatively 

reduction rates of the standard deviation of the ∆R5 before (𝜎𝑎𝑙𝑙, Equation (3.5)) and 

after the use of clustering (𝜎𝑐, Equation (3.6)) for each cluster and at 24-, 48-, 72-, 96-, 

and 120-h lead times. The method is as follows (Kim et al., 2018): 

𝜎𝑎𝑙𝑙 =  √
∑(𝑋𝑐−�̅�𝑎𝑙𝑙)2

𝑛𝑐
                          (3.5) 

𝜎𝑐 =  √
∑(𝑋𝑐−�̅�𝑐)2

𝑛𝑐
                          (3.6) 

where, 𝑋𝑐 refers to the ∆R5 of an individual storm; �̅�𝑐 is the mean ∆R5 for each 

cluster; �̅�𝑎𝑙𝑙 is the mean ∆R5 for the entire sample; and 𝑛𝑐 the number of samples 

for each cluster.   
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3.2.4. Regression method of statistical-dynamical model 

The present statistical–dynamical wind radii prediction scheme is developed based 

on a perfect-prognosis approach (Kalnay, 2003) and Elastic Net multiple linear 

regression. Elastic Net is a hybrid regression method that linearly combines the L1 and 

L2 norm of the least absolute shrinkage and selection operator (LASSO, third term in 

Equation (3.7)) and Ridge regression (second term in Equation (3.7)). This method has 

the advantages of both variable selection by shrinking unnecessary coefficients for 

LASSO regression and prevention of multicollinearity for Ridge regression. The 

Elastic Net regression equation consists of the sum of the residual sum of squares (RSS, 

Equation (3.8)) and the penalty term: 

(�̂�, �̂�) = RSS + 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  + 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1            (3.7) 

RSS = 
1

𝑛
∑ (𝑦𝑖 − 𝛼 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 )

2𝑛
𝑖=1            (3.8) 

where, 𝜆 is a non-negative regularization parameter and is set to balance the accuracy 

of the regression equation based on the number of predictors used (Lin et al., 2017). 

Alpha hyperparameter is a tuning parameter, and as the value increases, more 

regression coefficients converge to 0. Here, the alpha in this regression equation is set 

to 0.8. Likewise, the smart predictors and their regression coefficients are selected by 

performing k-fold 10 cross-validations to avoid the  model overfitting. In each model, 

only predictors whose correlation coefficient with the dependent variable is significant 

at a 95% confidence level are used for variable selection. 
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3.2.5. Estimation of symmetric wind radius 

For estimation of the R30 and R50 using the predicted ∆R5, the regression 

equations are composed of the symmetrically averaged wind radii and TC intensity (W) 

of the best track data and R5 estimated from the model analysis dataset during 2008-

2016 (same as the training period) as the method proposed by Knaff et al. (2014). The 

fitted regression coefficients for R30 (Equation (3.9)) and R50 (Equation (3.10)) are 

given in the following equations: 

R30 =  −1.86 +  0.51W + 14.5R5                (3.9) 

R50 =  −42.8 +  0.88W + 4.60R5                (3.10) 

Figure 3.3 shows the scatter plots of wind radius estimated from Equations (3.9) 

and (3.10) compared to the JMA best-track estimates. In the training period, the R30 

and R50 have the mean absolute errors (MAEs) of 54.9 km and 22.9 km and correlation 

coefficients of 0.84 and 0.78, respectively (Figures 3.3a and c). When the same 

equations apply to 2017 and 2018 TC cases, MAEs increased by about 8 km for R30 

compared to the results of the training period but showed a similar error of less than 1 

km for R50. Meanwhile, both wind radii have strong correlations (0.83-0.85) but 

underestimate by about 17 km and 6 km for R30 and R50, respectively, compared to 

the estimates of the best track. In particular, the fitted R30 and R50 values are 

estimated smaller, especially for the relatively large wind radius (Figure 3.3b and d). 

The equations are used for R30 and R50 predictions with the predicted TC intensity 

and R5 (initial R5 + ∆R5 prediction). 
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Figure 3.3. Scatter plots of averaged R30 (top panels) and R50s (bottom panels) between 

estimates from JMA best track data (x-axis) and estimates as a function of the TC intensity 

and R5 (y-axis, Equation (3.9) and (3.10) for R30 and R50, respectively) during the training 

(2008-2016, left panels) and testing (2017-2018, right panels) periods. The correlation 

coefficient (r), mean absolute error (MAE), number of samples (N), and bias (only testing 

period) are presented in the right bottom corner of each panel.  
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3.3. Statistical-dynamical TC wind radius prediction scheme 

3.3.1. Effect of clustering on dependent variable 

This section examined the characteristics of the track pattern and dependent 

variable (∆R5) of four clusters classified by the fuzzy c-means clustering method and 

the effect of clustering on the prediction improvement of ∆R5. Track patterns of the 

four clusters (C1-C4) are classified as TCs passing the Kuroshio Extension (C1), TCs 

developing in the open ocean (C2), TCs landfall mainly in the Philippines and South 

China (C3), and TCs affecting the Korean peninsula (KP), Japan, and East China (C4) 

(Figure 3.4). The largest number of cases among the four clusters is C3 (1157, 32%), 

following as C4 (1024, 29%), C2 (720, 20%), C1 (673, 19%). 

First, the characteristics of the ∆R5 for each cluster classified over the forecast lead 

time are compared (Table 3.2). If the dependent variable has unique characteristics, 

smarter predictors suitable for each cluster can be selected, contributing to better 

performance for that clustering model. On average, the tendency of ∆R5 increases in 

most clusters (0.01~3.98) and decreases in C3 (-0.25). In particular, C2 has the most 

significant increase of ΔR5 tendency compared to other clusters and all TC cases, with 

the most notable features of growing R5 at all prediction times. For C3, ΔR5 became 

smaller at most lead times, and gradually increased the variability (-0.4~-1.3) and 

standard deviations (± 6.1~6.2) of ∆R5, especially after 96-h lead time. Meanwhile, 

complex and inconsistent increasing and decreasing values of R5 at each lead time for 

C1 and C4 led to insignificant mean values compared to C2 and C3. From this, it can 

be expected that the use of clustering in C2 and C3 with distinct R5 characteristics has 
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a good possibility of improving the current TC size prediction skill compared to that 

of C1 and C4. 

 

 

 

Figure 3.4. TC tracks in the western North Pacific classified using the fuzzy c-Means 

clustering method for the training period from 2008-2016. Each panel represents the TC tracks 

in classified four clusters (light gray) and their mean track of C1 (dark gray), C2 (red), C3 

(blue), and C4 (green) with the number of cases in parentheses. For the classified similar tracks, 

TC tracks are interpolated equally 21 storm positions with 5-day tracks.  
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Table 3.2. Comparison of mean values of ∆R5 for four clusters and all TCs at 24-, 48-, 72-, 

96-, and 120-h forecast lead times during training period. The standard deviations of mean 

values are indicated in parentheses. The unit is degrees latitude (in parentheses in the first 

column). 

 Forecast  

time (h) 

Cluster 

C1 C2 C3 C4 all TCs 

∆R5 

(degrees 

latitude) 

24 0.21 

(±3.74) 

1.58 

(±2.77) 

-0.23 

(±3.70) 

0.27 

(±3.73) 

0.36 

(±3.61) 

48 -0.03 

(±5.82) 

3.11 

(±4.44) 

-0.14 

(±5.10) 

0.19 

(±5.67) 

0.77 

(±5.40) 

72 -0.42 

(±6.86) 

4.51 

(±5.91) 

0.05 

(±5.84) 

0.04 

(±7.15) 

1.35 

(±6.71) 

96 0.27 

(±5.97) 

5.56 

(±6.91) 

-0.39 

(±6.11) 

-0.50 

(±8.08) 

1.94 

(±7.54) 

120 1.47 

(±5.82) 

6.07 

(±7.59) 

-1.29 

(±6.23) 

-0.84 

(±8.74) 

2.49 

(±8.28) 

Mean 0.09 

(±5.29) 

3.98 

(±5.84) 

-0.25 

(±5.05) 

0.01 

(±6.15) 

1.01 

(±5.92) 
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As seen in Table 3.2, the classified clusters showed unique characteristics in terms 

of the tendency of R5 change. We further examined the effect of the use of clustering 

through the comparison of the standard deviations of each cluster before ( 𝜎𝑎𝑙𝑙 , 

Equation (3.5)) and after clustering (𝜎𝑐, Equation (3.6)) at each lead time (Table 3.3). 

This result can be determined the possibility of model improvement depending on how 

much the ∆R5 variability decreases when the clustering is applied compared to all TC 

cases. Overall, the 𝜎𝑐 decreased by about 1.7~10.3% at all prediction times compared 

to 𝜎𝑎𝑙𝑙 , and the reduction rate increased at relatively late prediction time. For the 

reduction rate of standard deviation for each cluster, C2 had the largest decrease in the 

range of 9 to 13% of 𝜎𝑐 . This result suggests that in C2, which has the highest 

variability of ∆R5 in Table 3.2, the use of clustering is highly likely to significantly 

reduce variability in ∆R5 and improve TC size prediction in the present statistical-

dynamical model (Table 3.3). Likewise, C3 shows a significant decrease in the 𝜎𝑐 at 

most forecast lead times following that of C2 (maximum 17%) (Table 3.3). Meanwhile, 

C1 and C4 showed a slight improvement compared to those of C2 and C3, although 

the 𝜎𝑐  decreased from less than 7% in most prediction times (Table 3.3). That is 

related to the unclear ∆R5 variability shown in C1 and C4 (Table 3.2). On the other 

hand, for C2 and C3, which showed a district variability of ∆R5 by each forecast lead 

time (Table 3.2), the clustering effect in both clusters is expected to have a significant 

impact on the improvement of ∆R5 prediction in the present TPC-based model (Table 

3.3).  
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Table 3.3. Comparisons of standard deviations (𝜎𝑎𝑙𝑙 and 𝜎𝑐) of ∆R5 using their mean value 

for each cluster and at each forecast lead time. The reduction rates of 𝜎𝑐  relative to 𝜎𝑎𝑙𝑙 are 

indicated in parentheses with bold text. 

Forecast 

time (h) 

 Cluster 

C1 C2  C3 C4  All 

24 𝜎𝑎𝑙𝑙 3.43 2.96 3.70 3.60 3.48 

𝜎𝑐 3.42 

(0.1%) 

2.71 

(9.3%) 

3.65 

(1.3%) 

3.60 

(0.0%) 

3.42 

(1.7%) 

48 𝜎𝑎𝑙𝑙 5.28 4.91 5.13 5.50 5.21 

𝜎𝑐 5.23 

(0.9%) 

4.34 

(13.1%) 

5.75 

(1.6%) 

5.47 

(0.5%) 

5.05 

(3.2%) 

72 𝜎𝑎𝑙𝑙 6.12 6.57 5.89 6.99 6.45 

𝜎𝑐 5.92 

(3.3%) 

5.79 

(13.4%) 

5.75 

(2.5%) 

6.87 

(1.7%) 

6.13 

(5.3%) 

96 𝜎𝑎𝑙𝑙 4.99 7.63 6.42 8.07 7.21 

𝜎𝑐 4.80 

(3.9%) 

6.75 

(13.0%) 

6.01 

(7.0%) 

7.73 

(4.5%) 

6.66 

(8.2%) 

120 𝜎𝑎𝑙𝑙 4.4 8.10 7.18 9.03 7.90 

𝜎𝑐 4.3 

(1.6%) 

7.32 

(10.6%) 

6.14 

(17.0%) 

8.44 

(7.0%) 

7.16 

(10.3%) 
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3.3.2. Characteristic and selection of predictor 

To examine how the unique differences of ∆R5 by cluster presented in the previous 

section affect the selection of predictors, we compared the correlation coefficients 

between ∆R5 and static, atmospheric, and oceanic predictors for each cluster over the 

forecast lead times (Figure 3.5). 

Among the four static predictors, iSIZE is found in a strong negative correlation 

with ∆R5 (Figure 3.5a) and chosen as one of the smart predictors in most of the clusters 

and all TC cases, except for C2 at 24 and 48-h lead times (Figure 3.6). In particular, 

TCs in C2 shows a weak correlation with ∆R5 rather than other clusters and non-

clustering cases, since the TCs have a relatively little value and standard deviation of 

iSIZE (19.3 ± 5.2 degrees latitude, Table 3.4) compared to significant variations in 

∆R5 (red circle lines with Figure 3.5a). 

For the other three static predictors, VM and DVMX have the tendency of similar 

correlation coefficients among clusters (Figures 3.5b and c), while LAT has different 

characteristics for each cluster (Figure 3.5d). In the two predictors related to TC 

intensity, DVMX has a stronger relationship than VM in some predictors (Figures 3.5b 

and c), but VM is found to be selected as a more key predictor than DVMX (Figure 

3.6). Among the clusters, C4 shows the strongest positive and negative correlations in 

VM and LAT, respectively (green lines in Figures 3.5b and d). This may be because 

the variations for weakening intensity (decrease from 67.7 to 57.7) as the TC moves 

poleward (increase from 0.43 to 0.52) have a great effect on ∆R5 in C4, especially at 

96- and 120-h prediction times (Table 3.4). 

For C1, VM and LAT have a clear positive correlation at 120-h forecast time, at 
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which ∆R5 increases significantly (1.5 ± 5.8) (gray lines in Figures 3.5b and d, Table 

3.2). Meanwhile, TCs in C3 are located at a relatively lower latitude with a small value 

of standard deviation (0.32 ± 0.06) (Table 3.4) compared to the variability of ∆R5, 

leading to a low correlation coefficient for LAT predictor at all prediction times (blue 

line in Figure 3.5d). Results from most clusters are consistent with the previous 

findings that TCs located at high latitudes can promote the growth of TC size (Merrill, 

1984).  



 60   

 

Table 3.4. Same as Table 3.2, but a comparison of the three static predictors, iSIZE, VM, and 

LAT. Only the standard deviations of the overall mean value for each cluster and all TCs are 

shown in parentheses. 

 Forecast  

time (h) 

Cluster 

C1 C2 C3 C4 all TCs 

iSIZE 

(degrees latitude) 

24 22.1 19.2  18.4 24.4 20.9 

48 22.5 19.4 18.7 24.9 21.3 

72 23.0 19.4 18.5 25.1 21.3 

96 23.6 19.3 18.6 25.1 21.1 

120 24.0 19.2 18.8 25.1 20.8 

Mean 22.6 

(±8.7) 

19.3 

(±5.2) 

18.6 

(±5.3) 

24.8 

(±7.6) 

21.1 

(±7.0) 

VM 

(kt) 

24 57.6 69.3 60.9 67.7 63.9 

48 57.4 78.7 62.5 67.2 66.9 

72 56.0 82.2 60.8 65.4 67.7 

96 54.7 81.2 57.1 61.7 67.0 

120 54.2 76.6 54.0 57.7 65.5 

Mean 56.8 

(±15.9) 

77.3 

(±20.5) 

60.3 

(±20.5) 

65.5 

(±18.5) 

66.0 

(±20.7) 

LAT 

24 0.49 0.26 0.30 0.43 0.36 

48 0.51 0.28 0.31 0.45 0.38 

72 0.53 0.31 0.33 0.48 0.39 

96 0.54 0.34 0.34 0.50 0.40 

120 0.56 0.37 0.36 0.52 0.42 

Mean 0.51 

(±0.08) 

0.31 

(±0.09) 

0.32 

(±0.06) 

0.46 

(±0.08) 

0.38 

(±0.11) 
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Figure 3.5. Correlation coefficients between eleven predictors, (a) iSIZE, (b) VM, (c) DVMX, 

(d) LAT, (e) VWS, (f) RH, (g) D200, (h) RV850, (i) SST, (j) RSST, and (k) PI and the change 

in TC size (∆R5) for four clusters of C1-C4 (gray, red, blue, and green circle lines) and all TC 

cases (black and bold lines) using all TCs at 6-, 24-, 48-, 72-, 96-, and 120-h forecast lead 

times during the training period (2008-2016). 
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The correlation coefficients between the ∆R5 and four atmospheric predictors, 

such as VWS, RH, D200, and RV850 are compared in Figure 3.5e-h. Results showed 

that most of the atmospheric predictors have stronger correlations in most clusters 

rather than non-clustering cases. Particularly in C2, which had the most distinct 

variability with increasing ∆R5, the largest effect on clustering is clearly shown in 

atmospheric predictors with the strongest positive correlations (red lines with circle in 

Figure 3.5e-h). According to previous studies, strong VWS and high RH and D200s 

are related to the extension of TC size (Hill and Lackmann, 2009; Xu and Wang, 2010; 

Knaff et al, 2017). In addition, RV850 is associated with the growth of TC, which is 

often formed in the northern monsoon trough environment (Chan and Chan, 2013 & 

2015), and is consistent with a strong relationship for C2 (Figure 3.5h). 

For three oceanic predictors, correlation coefficients are similar to each other, but 

showed a higher correlation in PI compared to SST and RSST, especially for C1 and 

C4 (Figure 3.5i-k). The TCs in C1 and C4 reacted more sensitively than other clusters 

in the oceanic environment because TC experiences a large variation in SST as it 

moves to high latitudes. C2 shows a relatively strong correlation before the 72-h 

forecast lead time, suggesting that TC intensification in the favorable environment 

(warm SST) for TC development may have influenced the variation in ∆R5 (Table 3.4, 

red lines with circle in Figure 3.5i-k).  
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Figure 3.6. Maps of regression coefficients (shade) of final selected predictors (y-axis) for All 

TC cases and four clusters of C1-C4 (x-axis) using Elastic Net multiple linear regression at 

24- (a), 48- (b), 72- (c), 96- (d), and 120-h (e) forecast lead times during the training years of 

2008-2016. Number of selected predictors are indicated in parentheses with gray text (ranging 

2-8 predictors).  
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Based on the Elastic Net regression method, the smart predictors are selected for 

each cluster and each forecast time. In general, the predictors are chosen within the 

range of 2~8 numbers according to each model (Figure 3.6). Among the clusters, C1 

has the smallest number of selected predictors (ranging from 2~6) in all prediction 

times compared to other models. Even when compared with the predictors in all TCs, 

C1 has very few unique and smart predictors in most prediction times and weak 

regression coefficients, in which is likely to significantly effect on reduction of the 

model performance. On the other hand, the C2 model uses the most eight predictors at 

all prediction times, including the smart predictors with relatively high regression 

coefficients compared to other clusters. 

Although most static predictors are chosen as one of the predictor pools in four 

clusters and all TCs, only VM and LAT are used as important factors for some models 

and forecast lead times. VM is chosen as one of the key predictors, especially in all 

TCs, C2, and C4 after 72-h predictions (Figure 3.6c-e). Likewise, LAT has a strong 

negative regression coefficient, especially at all prediction times in C4 (Figure 3.6a-e), 

and at 96-h lead times in C2 (Figure 3.6d). For atmospheric predictors, RV850 is 

chosen as one of the powerful predictors that can make a huge contribution to the 

model performance, except for C3. In particular, the RV850 generally shows the 

strongest regression coefficients in C2 after 72-h prediction times (Figure 3.6d-e). The 

oceanic predictors are lower regression coefficients than other predictors. Each model 

set as selected predictors will be verified in the following section.  
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3.4. Comparison of model performances 

3.4.1. Training and testing periods 

The performance of current statistical-dynamical models based on the perfect-

prognosis approach is evaluated by comparing non-clustering (use of all TCs) and four 

clustering results during the training (2008-2016) and testing (2017-2018) periods 

using the JMA best-track, GFS analysis, and HyCOM–NCODA reanalysis datasets. 

Figure 3.7 shows the comparison between clustering and non-clustering results for 

∆R5 from two statistic techniques, such as mean absolute error (MAE) and coefficient 

determination (𝑅2 ), which can explain the model performance, during the training 

period. The result showed that the clustering model has been improved in both the 

MAE and 𝑅2  compared to the non-clustering model in most prediction times. On 

average, the clustering model (327 ± 93 km) revealed an about 44 km decrease in MAE 

compared to the non-clustering model (371 ± 114 km) (Figure 3.7a). 

The relative error reductions of MAEs between the non-clustering and four 

clustering models at 24-, 48- 72-, 96-, and 120-h forecast lead times are shown in Table 

3.5. Overall, the MAEs in the clustering model are reduced in the range of about 3~24% 

at all prediction times. In each prediction time of clusters, the model performance has 

been improved significantly after 72-h forecast time, by up to 3% for C1 (72-h), 43% 

for C2 (96-h), 28% for C3 (120-h), and 24% for C4 (72- and 96-h). Among the clusters, 

C4 shows the greatest error reduction rate (6~19% improvements) compared to other 

clusters, prior to the 48-h forecast time. On the other hand, C1 shows a slight 

improvement in the clustering model and relatively small error reduction at all forecast 
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lead times compared to other clusters. The performance in C1 may be due to the limited 

selection for smart predictors, with weak correlations between ∆R5 and most of the 

predictors (less than six numbers) (Figure 3.6). Overall, the 𝑅2 of ∆R5 shows 0.62-

0.71 for the clustering model and 0.49-0.60 for the non-clustering model at 72-120-h 

prediction times, indicating that the use of clustering can improve the performance of 

∆R5 prediction (Figure 3.7b). 

 

 

Figure 3.7. Comparisons of MAEs (a, c), 𝑅2  (b, d), and bias (only testing, e) for ∆R5 

predictions between the clustering (four clusters, black and solid lines) and non-clustering 

cases (all TCs, black dashed lines) at each lead time during the training (2008-2016, a-b) and 

testing periods (2017-2018, c-e). The unit of ∆ R5 is km (1 degrees latitude = 111.11km). 

Sample sizes are indicated in parentheses at bottom of each panel for 0-, 24-, 48-, 72-, 96-, and 

120-h forecast lead times. 
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Table 3.5. Comparison of relative error reduction of ∆R5 predictions for four clusters (C1-

C4) compared to all TCs during training and testing periods at 24-, 48-, 72-, 96-, and 120-h 

forecasting times. Negative values in bold here indicate that the clustering model has improved 

by that result. The sample sizes are shown in parentheses at the bottom of each relative error 

reduction. 

 Forecast  

time (h) 

Cluster 

C1 C2  C3 C4  Mean 

Training 

(2008-2016) 

24 1.81% 

(673) 

-4.18% 

(716) 

-2.29% 

(1148) 

-5.44% 

(1017) 

-2.77% 

(3554) 

48 0.48% 

(469) 

-0.98% 

(669) 

-8.34% 

(851) 

-19.1% 

(818) 

-8.01% 

(2807) 

72 -3.23% 

(307) 

-36.3% 

(624) 

-12.3% 

(603) 

-32.1% 

(606) 

-23.5% 

(2140) 

96 0.57% 

(176) 

-43.0% 

(577) 

-21.7% 

(393) 

-10.9% 

(414) 

-24.1% 

(1560) 

120 -2.67% 

(91) 

-23.7% 

(515) 

-27.6% 

(239) 

-12.4% 

(253) 

-20.1% 

(1098) 

Testing 

(2017-2018) 

24 -0.06% 

(236) 

1.42% 

(127) 

-2.25% 

(203) 

-8.29% 

(255) 

-2.44% 

(821) 

48 1.07% 

(159) 

4.65% 

(121) 

0.19% 

(120) 

-5.50% 

(217) 

-0.47% 

(617) 

72 3.56% 

(100) 

-70.6% 

(115) 

5.37% 

(62) 

9.18% 

(177) 

-7.95% 

(454) 

96 8.11% 

(61) 

-66.2% 

(107) 

-11.7% 

(28) 

21.2% 

(135) 

-9.10% 

(331) 

120 11.8% 

(46) 

-4.56% 

(97) 

-22.5% 

(17) 

2.13% 

(82) 

-0.33% 

(242) 

  



 68   

 

Similarly, Figure 3.7c-e shows a comparison of ∆R5 performance (MAE, 𝑅2, and 

bias) of clustering and non-clustering models for testing cases in 2017 and 2018 TCs 

based on the best track and model analysis datasets. The analysis shows that the use of 

clustering models still contributes to the improvement of ∆R5 prediction in both MAE 

and 𝑅2  compared to non-clustering models (Figure 3.7c-d). Although the error 

reduction has not improved as much as the result of the training period, the use of 

clustering showed an average reduction of about 15 km of MAE and an improvement 

of up to 9% (at 96-h prediction time) during the testing period (Figure 3.7c, Table 3.5). 

Likewise, the R2 showed the improvement of the clustering model during the testing 

period, which seems to have been mainly influenced by the C4 and C2 results before 

and after 48-h prediction times, respectively (Figure 3.7d). The biases of ∆R5 show 

different results between the clustering and non-clustering models before and after the 

48-hour prediction time (Figure 3.7e). Before 48-h prediction time, both models 

showed near-zero or slightly over-predicted results compared to ∆R5 estimates. 

However, after 48-h forecast lead time, the ∆R5 generally underestimated in the 

clustering model and overestimated in non-clustering model, respectively. 

For each cluster, the relative error reduction of MAEs shows different 

characteristics by forecast lead time during the testing period (Table 3.5). Among the 

clusters, C2 has the greatest improvement of MAEs, by 5-71% at 72-120-h prediction 

times. The most distinct characteristics in terms of the ∆R5 tendency in C2, as well as 

reduced variability in clustering (𝜎𝑐) (Tables 3.2 and 3.3) would have led to a better 

improvement in the TC size prediction. In addition, the use of smarter predictors after 

72-h forecast time would also have helped the error reduction in C2 along with 𝜎𝑐 
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decrease (Figure 3.6). In contrast, C4 showed a 6~8% decrease in MAEs only in some 

prediction times before 48-h during the testing period, unlike significant improvements 

in the clustering model that appeared at all prediction times during the training period 

(Table 3.5). We further explore the ∆ R5 prediction for C2 and C4 with different 

improvements in training and testing periods when using the clustering model after the 

72-h prediction time. 

 

 

 

Figure 3.8. Scatter plots of ∆ R5 predictions using a clustering (black circle) and non-

clustering model (orange cross) compared with ∆R5 estimates (x-axis) at 72-h (a, d), 96-h (b, 

e), and 120-h (c, f) forecast lead times for C1 (a-c) and C4 (d-f) during the testing period 

(2017-2018). The bias of the results is indicated in the bottom right corner of each panel by 

clustering (black text) and non-clustering model (orange text). The unit of ∆R5 is km.  
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Figure 3.8 shows a comparison of the ∆R5 predictions after 72-h prediction time 

when using clustering models for C2 and C4 and non-clustering models. For C2, the 

∆ R5 predictions using the clustering model generally showed a much smaller bias 

compared to the non-clustering model, by 93~152 km differences, especially in the 

increasing ∆R5 (more than 2000 km) at 72-h and 96-h prediction times (Figure 3.8a-

c). In general, C4 seems to have a greater spread of the ∆R5 prediction in the clustering 

model than in the non-clustering model and appears overestimated results by 85~206 

km in both models (Figure 3.8d-f). In particular, at the 72-h prediction time of C4, the 

clustering model showed an overprediction of ∆R5 at a large negative value (near -

1000 km) compared to the non-clustering model, but showed better performance as 

∆R5 increased to a positive value (Figure 3.8d). We found that the clustering model 

can lead to improvements in ∆R5 predictions at some forecast times in both clusters 

as ∆R5 increases significantly. However, the relatively large outlier and spreads in the 

∆R5 predictions of the C4 model compared to the non-clustering model still need to 

be further investigated.  
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3.4.2. Real-time predictions of dependent variable, R30, and R50 

According to the procedure shown in Figure 3.9, the current TPC-based statistical-

dynamical scheme for predicting real-time R30 and R50 is constructed as follows: (i) 

the 5-day KMA forecast tracks, the 6-hourly GFS atmospheric forecast data, and the 

daily real-time HyCOM/NCODA ocean surface data are collected, (ii) the dependent 

variable and eleven predictors are calculated for each forecast lead time, (iii) a cluster 

is found for the current TC forecast track using FCM, and then the model is performed, 

(iv) finally, the outputs of the symmetric R30 and R50 are calculated from Equations 

(3.8) and (3.9) using the predicted dependent variable (∆R5), the initial R5 estimated 

from the GFS analysis dataset, and the current intensity from the TC forecast track.  

This section verifies the performances of real-time ∆R5, R30, and R50 predictions 

for 2017 and 2018 TCs. Firstly, the performances of the predicted ∆R5 in real-time 

using the clustering and non-clustering models are statistically examined (Figure 3.10). 

Overall, the MAE and bias of the clustering model reduced significantly in most 

prediction times (Figures 3.10a and c), but R2 showed poor performances compared to 

the non-clustering model (Figure 3.10b). 
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Figure 3.9. Schematic diagram of the present statistical-dynamical model for real-time R30 

and R50 predictions.  
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Figure 3.10. The same as Figure 3.7, but for MAEs (a), R2 (b), and bias (c) of real-time 

predictions of ∆R5. 

 

To identify the cause of the large errors and biases and low R2 of the real-time cases 

compared to testing cases in Figure 3.7c-e, we examined the ∆R5 predictions in 2017 

and 2018 TCs at five forecast lead times (Figure 3.10). First, when compared with ∆R5 

estimates, the real-time predictions have been shown to underpredict in both clustering 

and non-clustering model over forecast lead time (black and orange cross in Figure 

3.11). One reason for the overall underprediction in real-time ∆R5 is the difference in 

predictor values which can occur by using forecast track and model datasets. At 96-h 

prediction time, where a clear large bias is clear compared to the testing case (Figure 

3.11d), we found that the VM and wind fields shown in the forecast data sets (track 

and model) are relatively weaker predicted compared to the best track and analysis 

fields. Here, VM is weaker, by 4 knots on average (maximum 85 knots) in the KMA 

track. In addition, relative vorticity, which is used as the key predictor in the current 

statistical regression model, is predicted to be weaker by about 1.3 10-6 s-1 compared 

with the analysis dataset. 
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Additionally, we examined why the use of the clustering model in real-time 

prediction has poor performance compared to the non-clustering model. A significant 

number of predicted outliers in the clustering model are most pronounced, especially 

at the 72-hour forecast time (black cross in Figure 3.11c), which contributed to the 

lowest R2 (black cross in Figure 3.10b). The large errors are mainly observed in five 

TCs: Lan (2017), Jebi (2018), Mankhut (2018), Trami (2018), and Kong-rey (2018). 

The track pattern of most TCs corresponded to C4, and key predictors such as RV850, 

RH, LAT, and VM are used for ∆R5 predictions at 72-h forecast time (Figure 3.6c). 

We found that the RV850 and LAT predictors, which were not used in the non-

clustering model, were affecting large errors and outliers. Analysis showed that the 

predicted RV850s were smaller by -1.7 10-6 s-1 for all cases and -2.3 10-6 s-1 for C4 

compared to the model analysis dataset, leading to small ∆R5 predictions and large 

errors. Meanwhile, the predicted LAT is on average about 1°N higher than the best 

track. Since the regression coefficient of the LAT predictor has a negative value in 

Figure 3.6c, the higher LAT shows a larger negative result. That is, this implies that 

relatively high latitude in the forecast track may have contributed to the small ∆R5 

predictions. 
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Figure 3.11. Scatter plots of ∆ R5 predictions using a clustering (black cross) and non-

clustering models (orange cross) of real-time cases and clustering model of testing cases (gray 

circles) compared with ∆R5 estimates (x-axis) at 24-h (a), 48-h (b), 72-h (c), 96-h (d), and 

120-h (e) forecast lead times for all TC cases in 2017 and 2018. The unit of ∆R5 is km. 
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Figure 3.12. Comparisons of MAEs for real-time R30 (a) and R50 (b) predictions between the 

clustering (four clusters, black solid lines) and non-clustering cases (all TCs, black dashed 

lines) at each lead time. The unit of MAE is km. 

 

 

The MAEs of real-time R30 and R50 predictions mostly increased over the forecast 

lead time. When averaged the errors in all prediction times, the MAEs are 61 ± 27 (72 

± 31) km for R30 and 21 ± 9 (25 ± 10) km for R50 in the clustering model (non-

clustering model) (Figure 3.12, Table 3.6). Comparing the real-time prediction errors 

for both models in terms of MAE and normalized MAE (NMAE) by each cluster, both 

MAE and NMAE of the clustering model are reduced in most clusters, except C3. For 

C2, although the absolute value of the error is the largest compared to other clusters, 

both MAE and NMAE have been significantly reduced in the clustering model, by 

about 14 (5) km and 0.04 (0.03) km for R30 (R50), respectively (Table 3.6).  
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Table 3.6. Comparison of averaged MAE and NMAEs of real-time R30 and R50 predictions 

using the clustering and non-clustering models for four clusters. 

 
 

Cluster 

C1 C2  C3 C4 Mean 

R30 

Clustering 47±19 

(0.15±0.06) 

77±39 

(0.20±0.08) 

63±39 

(0.21±0.08) 

50±21 

(0.13±0.05) 

61±27 

(0.17±0.07) 

Non-

clustering 

58±23 

(0.17±0.07) 

91±43 

(0.24±0.10) 

62±29 

(0.21±0.10) 

66±26 

(0.17±0.07) 

72±31 

(0.20±0.08) 

R50 

Clustering 16±6 

(0.15±0.06) 

29±13 

(0.20±0.08) 

23±8 

(0.22±0.10) 

16±6 

(0.11±0.10) 

21±9  

(0.16±0.07) 

Non-

clustering 

19±7 

(0.18±0.07) 

33±15 

(0.23±0.09) 

21±7 

(0.19±0.08) 

20±8 

(0.15±0.06) 

25±10  

(0.19±0.08) 
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Figure 3.13. TC tracks of Typhoon Sanvu (blue line) and Lan (red line) in 2017, and Typhoon 

Mangkhut (yellow line) and Soulik (purple line) in 2018. The thick black lines in map 

represent the mean track for four clusters. 

 

To further explore the real-time R30 predictions, representative four TCs are 

chosen for the following case study: Sanvu (2017) for C1, Lan (2017) for C1, C2, and 

C4, Mangkhut (2018) for C2 and C3, and Soulik (2018) for C2 and C4 (Figure 3.13). 

Regarding each TC case, the R30 predictions are examined in association with TC 

intensity and the membership coefficients along with the mean tracks for each cluster, 

as well as comparisons with the R30 estimates (Figure 3.14). 

Typhoon Sanvu, which belongs to C1 during the TC’s lifetimes, shows relatively 

high membership coefficients between each predicted track and their mean track 

ranging from 0.67 to 0.93 (blue lines in Figure 3.14e and blue track in Figure 3.13). 

However, Sanvu’s R30 predictions show significant differences from the R30 

estimates during the TC’s lifetime (black and gray solid lines in Figure 3.14a). This 

may be associated with the unpredictable variability of R30 that appears regardless of 
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the TC intensity and locations (red line in Figure 3.14e), which leads to difficulties in  

R30 predictions. Both the R30 estimate and their predictions are relatively smaller than 

estimates from JMA best track, by about 296 km, supporting that estimation of Sanvu’s 

wind radius during the TC lifetime was quite difficult (Figure 3.14a). 

In the case of the other three typhoons, Lan, Mangkhut, and Soulik, they have 

undergone cluster changes more than two times during their TC lifetime and had 

mostly similar R30 estimates between the model and best track datasets commonly 

(Figure 3.14b-d). In three TCs, we found that the relatively low track membership 

coefficients that appeared mostly when the clusters changed affected the increase in 

the R30 prediction error in the present TPC-based model, for Lan (on Day2), 

Mangkhut (on Day 4), and Soulik (on Day 1), respectively (gray lines in Figure 3.14b-

d and blue lines in Figure 3.14f-h). 

Typhoon Lan experienced large and abrupt changes in R30 estimates from 200 to 

600 km during the C2 (before Day 2), resulting in poor performance as the R30 

predictions did not keep up with these changes (Figure 3.14b). Likewise, R30 showed 

a large prediction error on Days 3-5 in C4, because the large intensity error between 

the actual and forecast track (up to 17 knots) caused by the rapid intensification of Lan 

contributed significantly (Figure 3.14b and red line in Figure 3.14f). For Typhoon 

Mangkhut, except for Day 4, which undergoes a cluster change from C2 to C3, the 

R30 predictions showed the most ideal result that relatively well followed the results 

of TC intensity and R30 estimates during the storm’s lifetime (Figures 3.14c and g). 

Finally, the predictions of Typhoon Soulik are most similar to R30 estimates during 

Days 2~6 (Figure 3.14d). However, after Day 7, the performance of the R30 prediction 
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is relatively poor, which may be because the weakening TC intensity is considered 

more (Figure 3.14h). 

Through the case studies, this suggests that the performance of R30 prediction is 

strongly influenced by how similar the mean track is to that track in each cluster, which 

also reconfirms the possibility of track-based cluster analysis to improve the model 

performances for TC wind radii. 

 

 

 

Figure 3.14. Results of individual R30 predictions (gray lines) using a present TPC-based 

statistical-dynamical model (a-d) and time series of the track membership coefficient (blue 

lines) and intensity (red lines) of TC (e-f) for Typhoons Sanvu (a, e), Lan (b, g), Mangkhut (c, 

f), and Soulik (d, f). The black solid and dashed lines in (a-d) indicate R30 estimates of the 

model and best track. The numbers at the bottom of the panels of (a-d) denote corresponding 

cluster number.  
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3.5. Summary and discussion 

A statistical-dynamical model used for the symmetric R30 and R50 predictions in 

the WNP was developed using the Elastic Net regression methods, track pattern 

clustering, and eleven static/synoptic potential predictors. This study was defined the 

TC size proxy as R5 calculated from 850-hPa tangential winds and focused on 

predictions of change in R5 (∆R5) relative to initial time. By using the fuzzy c-means 

clustering method, the tracks of TCs were classified into four clusters, and the specific 

characteristics of each cluster and effects of using clustering were examined.  

In general, the final smart predictors were chosen within the range of 2~8 numbers 

for each cluster and each forecast time. Among the predictors, VM, LAT, and 

atmospheric predictors were used as important variables for most of models and 

forecast lead times. To examine the effects of using clustering in ∆R5 prediction, the 

performance was evaluated by training (2008-2016) and testing periods (2017-2018) 

based on the model analysis and best track datasets. Analysis showed that use of 

clustering significantly reduced the MAEs in training period (3-24% improvements at 

24-120-h lead times) compared to non-clustering cases, but slightly reduced in testing 

period (maximum 8-9% at 72-96-h lead time). Among the clusters, C2 had greatest 

improvement of MAEs in both periods similarly, by about 24-43% for training period 

and 5-71% for testing period at 72-120-h lead times. We found that C2 had the most 

distinct characteristics in terms of the tendency to ∆ R5 as well as to reduce of 

variability in clustering (𝜎𝑐), leading to a better improvement in the forecast of TC size. 

Meanwhile, for the other three clusters, the clustering model showed performance 
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improvement only at some lead times (C3-C4) or no improvement at all (C1), during 

the testing period. It seems that the models were not significantly improved because 

the unique predictors was not chosen for each cluster due to the relatively low 𝜎𝑐 of 

∆R5, unlike C2. 

The current system based on statistical-dynamical approach and track pattern 

clustering was verified through the real-time performances of ∆R5, R30, and R50 

predictions and case studies using the KMA forecast track and model forecast datasets 

for 2017 and 2018 TCs. Overall, the errors of the clustering model reduced at most 

prediction times significantly, but model variance showed similarly (prior to 48-h lead 

time) or poorly performances (after 72-h lead time) compared to the non-clustering 

model. Although the use of clustering still helps to improve TC size prediction in real-

time, some large outliers posed by forecast errors of the TC intensity and R5 were 

affecting the model performance. However, through a representative case study, we 

found that errors of R30 predicted in corresponding cluster are significantly influenced 

by track membership coefficients. 

A present scheme for TC wind radius prediction has a limitation in that the 

asymmetries of R30 and R50s have yet to be considered. Global TC agencies such as 

JTWC and NHC uses a parametric model, namely the modified Rankine Vortex based 

on climatological estimates in TC translation speed, latitude, and intensity for 

estimating and predicting the asymmetry. However, because the method is 

climatological motion-relative asymmetries, considering asymmetry in actual TC 

structure remains a challenge and further understanding the causes of convective and 

wind field asymmetries and extratropical transitioning and stages of TCs required 
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(Knaff et al., 2017). Also, the benefits of the partially existing clustering models 

remain for further improvement. If the sample size increases in the future as more TC 

data are collected, it is expected to improve the model skill for wind radii predictions. 

Additionally, efforts are still needed to improve the R30 predictions of TC, such as 

Typhoon Lan (2017), which experience a rapid change of TC size regardless of the TC 

intensity and track patterns (Figure 3.14b).  

The process for wind radii prediction had many limitations for model development, 

such as relatively short-time of best-tracks, subjective estimates among agencies, and 

dependence on satellite-derived data and TC intensity compared to other TC factors. 

Nevertheless, this study suggests the possibility of real-time operational guidance in 

the objectively values of R30 and R50s estimated based on the R5 and TC size-related 

predictors applied track pattern clustering.  
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4. Prediction of the gale wind radius in western North Pacific 

based on Global Forecast System 

4.1. Introduction 

Estimating and predicting the structure of the tropical cyclone (TC) wind field is a 

critical part of the forecast process in global TC warning centers. The real-time wind 

radii estimates are used to initialize numerical weather forecasting (NWP) models 

(Tallapragada et al. 2015; Kurihara et al. 1993; Bender et al. 2017) and have been 

found that the helped improve TC track (Kunii; 2015, Tang et al., 2020) and intensity 

forecasts (Marchok et al., 2012; Pun et al., 2018) and, evolution of TC structure during 

vortex initialization (Wu et al., 2010). Furthermore, such real-time estimates are used 

as important information in the TC-induced storm surge/wave forecast modeling for 

use in disaster prevention near coastal lines (Powell and Reinhold 2007; Sampson et 

al., 2010; Quiring et al., 2014). 

Gale–force wind radii are the outermost TC size in terms of winds officially 

provided by global TC agencies, and defined as the maximum extents of the 34-kt (17 

m s-1, R34) and 30-kt winds (15 m s-1, R30). However, accurate estimations of R30 

and R34 are difficult because the incomplete or asymmetric structure of the TC appears 

frequently under the influence of synoptic background flow surrounding the TC, 

especially at higher latitude with fast storm translation speed (see Figure 2.11d and 

2.13d in Section 2). In addition, for TCs embedded in a monsoon trough, it is more 

difficult to estimate because boundary between the monsoon westerlies or trade 

easterlies and the TC location where the TC circulation begins is ambiguous (Weber 
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et al., 2014). This cause contributes to the difficulty in estimating the objective TC 

sizes that can be derived from various datasets. 

A more accurate real-time wind radius estimation and prediction depends on the 

quality of the available dataset and which method is used. The observational sources 

such as aircraft reconnaissance, ship, and satellite-derived scatter-meters are not 

routinely offered (Sampson et al., 2017), and therefore only available in a few storm 

cases when they are near or passing over a TC. Several real-time objective techniques 

have been reported to estimate the satellite-based wind radius. The Advanced 

Microwave Sounding Unit (AMSU), which covers of the polar-orbiting satellite swath 

over the TC mostly and has a resolution of approximately 48 km, is one of the 

frequently utilized satellite data sources for estimating the wind radii in many studies. 

Demuth et al. (2004) are first suggested statistical procedure for azimuthally averaged 

radii of 34-, 50-, and 64-kt winds (R34, R50, and R64) estimation that uses the AMSU-

derived potential parameters. This statistical regression method has been further 

updated to use more environmental parameters (Demuth et al., 2006), and to consider 

the asymmetries of wind radius (Dolling et al., 2016). However, satellite-based real-

time estimates are mostly employed indirectly methods in which multiple regression 

models with various environmental parameters are applied. 

A gridded datasets with a long period and uniform spatiotemporal spacing partially 

compensate for the deficiencies in the observations of TC. Many studies suggest that 

errors in TC location and intensity are significantly reduced when used the reanalysis 

datasets (Schenkel and Hart 2012; Hodges et al. 2017) due to increased horizontal 

resolution of advanced NWPs and the application of optimized assimilation and bias 
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correction systems (Schenkel and Hart 2012; Hodges et al. 2017; Lei and Whitaker 

2017). In terms of wind radii, the combination of improved NWP model techniques, 

more satellite-based estimates, and tools to efficiently reconnaissance these estimates 

can generate high-accuracy estimates of R30 or R34 for use by the JTWC and other 

agencies (Sampson et al., 2017). 

For real-time prediction, the NWP data sets are currently limited to the Global 

Forecast System (GFS) model, the Hurricane Weather Research and Forecasting 

Model, and the Geophysical Fluid Dynamics Laboratory Hurricane model in U.S TC 

warning centers. In JTWC, to form our objective estimates of initial wind radii, 

satellite-based and model-based estimates are combined using an equally weighted 

average, allowed to vary between one and six, depending on their availability 

(Sampson et al., 2018). So far, forecasts of wind radii have been improving as well, 

and skill has been found in individual forecast models (Tallapragada et al. 2014; 

Cangialosi and Landsea 2016; Knaff et al. 2017), consensus forecasts, and forecasts 

from the operational centers (Knaff and Sampson 2015). 

This study aims to propose an objective procedure for directly and spatially 

estimation of the asymmetric axes of R30 from available real-time NWP model data 

sets, which has a high-resolution. We also are verified the performance of wind radius 

predictions using current system, applying the model forecast wind fields. The 

remainder of this paper is organized as follows. Section 4.2 introduces the data and 

methods. Section 4.3 compares the R30 objectively extracted from the model data sets 

from analysis and forecast wind fields by experiment. Finally, a summary and 

discussions are given in Section 4.4.  
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4.2. Data and methods 

4.2.1. Information of TC and model input 

The best track data is obtained from the Korea Meteorological Administration 

(KMA), which contains six-hourly estimates of the latitude, longitude, 10-min 

maximum sustained surface winds, central pressure, longest and shortest axes of the 

radial extent of 30- and 50-kt winds, and direction of shortest axis in ranges of 0 to 

360° at 22.5° intervals, during 2015-2019. In this study, the track data is reconstructed 

into 5-day dataset at 6-hourly intervals by each TC. For the 5-year period, we used 

total of 2477 cases in WNP TCs and 1852, 1427, 1066, 770, and 540 cases at 24-, 48-, 

72-, 96-, and 120-h forecast times, respectively. 

The gridded data of the model were obtained from the six-hourly National Centers 

for Environmental Prediction (NCEP)/Global Forecast System (GFS) with 0.25° ×

 0.25° horizontal resolutions. The GFS data has been provided operationally available 

in the form of analysis and 5-days forecast datasets since 2014. For estimation of TC 

wind radius from the model dataset, basic wind fields are generated from u- and v-

wind components at 1000 and 850 hPa, respectively. A wind field at 1000 hPa is a 

near-surface wind dataset frequently used in the model data to capture the wind 

structure of TC. However, the TC wind field near the surface is exposed to an 

environment where the structure is easily damaged by external factors, making it 

difficult to estimate the TC wind radii. We consider the use of higher-level wind fields 

to better capture the structure of the TC. Instead of using near-surface wind field 

observations, Knaff et al. (2014) used 850 hPa tangential winds of the infrared satellite 
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data for estimating the objective wind radii. We further tested R30 extracted from the 

850 hPa wind field in the model dataset and compared the results with 1000 hPa. 

Considering the differences in TC position between model forecast and best track 

datasets, the method suggested by Bian et al. (2021) is used to determine the storm 

location from the model dataset. Here, the TC positions in the best track are used as 

approximate locations to iteratively determine the storm centers from the six 

environmental variables (925-hPa, 850-hPa, and 700-hPa relative vorticities; 850-hPa 

and 700-hPa geopotential heights; and mean sea-level pressure) in forecasting data 

during 6~120-h prediction times. The final center of TC is defined as the average value 

of the six positions estimated from each environmental variable.  
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4.2.2. Preprocessing of TC wind field 

Even though the TC structure is better captured using wind fields at a higher level 

(850 hPa) than near-surface (1000 hPa), the complex large-scale system surrounding 

the TC still makes it difficult to the objective estimation of the R30. To overcome the 

difficulty of estimating R30 due to the large asymmetry that occurs effect of the large-

scale environment surrounding the TC, the simple vortex filtering technique suggested 

by Kurihara (1993) is applied to remove the influence of the environmental wind fields. 

The filtering technique is introduced in Equations (4.1) and (4.2). 

ℎ
̅

 𝜆,𝜑= ℎ
𝜆,𝜑

+𝐾(ℎ
𝜆−1,𝜑

+  ℎ
𝜆+1,𝜑

−  2ℎ
𝜆,𝜑

)                (4.1) 

𝐾 =  
1

2
(1 − 𝑐𝑜𝑠

2𝜋

𝑚
)−1                         (4.2) 

In Equation (4.1), the wind gridded data sets at u- and v-components interpolated with 

a horizontal resolution at 1°× 1° are finally removed as the vortex is smoothed by the 

variable coefficient “K” through eleven steps (m = 2, 3, 4, 2, 5, 6, 7, 2, 8, 9) shown in 

Equation (4.2). Finally, the wind field in which most of the vortex is extracted but only 

remains the background flows in the final step is removed from the existing wind fields 

at 1000 hPa and 850 hPa, respectively. 
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Table 4.1. The brief names and descriptions of four sensitivity experiments. 

Experiment Definition 

CTRL1000 
Estimation of longest axes, shortest axes, and directions for R30 

from a basic wind field at 1000 hPa 

CTRL850 Same as CTRL1000 but for use of 850 hPa wind fields 

KF1000 

Estimation of longest axes, shortest axes, and their directions for 

R30 from a wind field that removed the background flows 

surrounding the TC using Kurihara filtering at 1000 hPa 

KF850 Same as KF1000 but for use of 850 hPa wind fields 

 

Based on the wind fields introduced above, we performed four sensitivity 

experiments for estimating the objective R30 from the model dataset presented in 

Table 4.1. Two CTRL experiments are suggested as general estimation methods of R30 

from the model wind fields at 1000-hPa (CTRL1000) and 850-hPa (CTRL850) in the 

raw dataset before the removal of background flow. Since these experiments use the 

wind field of the model itself to account for a significant amount of TC asymmetry, it 

will be possible to estimate the gale wind radius more realistically. Two experiments 

with Kurihara filtering (KF) at 1000 and 850 hPa wind fields are also compared to 

CTRL experiments, and defined as KF1000 and KF850, respectively. These KF 

experiments are expected to be advantageous for objective estimating the TC wind 

radius by extracting the wind field of the typhoon itself and producing a clear TC wind 

field structure. The results of the longest and shortest axes of R30 from the four 

experiments are compared with the R30 estimates of KMA best track data. 

For example, the wind distributions for the four experiments are compared in 

Figure 4.1 at 00:00 UTC on July 24 of Typhoon Wukong (2018). Wukong had a 

relatively weak intensity (41 knots) and far and wide TC wind areas with an 

asymmetric structure, making it difficult to objectively estimate the R30 in both CTRL 
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wind fields (black solid line in Figures 4.1a and c). Meanwhile, the wind fields with 

KF showed a relatively symmetrical TC structure compared to CTRL (black solid lines 

in Figures 4.1b and d), and the R30 estimates are similar to the KMA best track (red 

and blue dashed circles in Figures 4.1b and d). 

 

 

 

Figure 4.1. Comparison of the spatial wind fields (shade) from GFS model analysis for using 

the four experiments, CTRL1000 (a), KF1000 (b), CTRL850 (c), and KF850 (d), and the R30 

(black and solid contours) for Typhoon Wukong (2018) at 00:00 UTC on July 24 (upper-left 

corner in (a) with red text). Red plus symbols indicate the tropical cyclone’s center. Red and 

blue dashed circles indicate the longest and shortest axes of R30 from the KMA best track. 

The maximum wind speed (Vmax) from KMA is shown in (a).  
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4.2.3. Estimation of gale wind radius of TC 

To objectively extracted the longest and shortest R30s from the wind fields in four 

experiments, we first produced radial wind profiles in each wind field in sixteen 

directions (ranging from 0-337.5° at 22.5° intervals) from the storm heading. The 

profiles are created at 5° intervals and averaged within the corresponding range in 16 

directions, resulting in 16 averaged profiles. 

Using the generated 16 radial wind profiles by each experiment, our system is 

automated by imposing several conditions for estimating the longest axis and short 

axis of R30. First, we empirically calculate the maximum wind speed radius (RMW) 

using the current TC intensity and latitude (Knaff et al., 2017) by each TC and find 16 

gale wind radii in an outer radius greater than the estimated RMW. The reason for 

using empirical estimates of RMW in our system is to minimize the production of 

erroneous RMWs in wind profiles other than typical TC structures. Second, to avoid 

the extraction of an exceptionally large radius in our automated system, we set the 

threshold of the outer wind radius for each profile. The threshold of the outer radius is 

defined as the endpoint in which the wind gradient gradually decreases from the RMW 

to the outer radius of 1500 km with less than 15 m s-1. 
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Figure 4.2. Comparison of radial wind profiles as the same case in Figure 4.1 for four 

experiments, CTRL1000 (a), KF1000 (b), CTRL850 (c), and KF850 (d) and longest (red 

profiles and values) and shortest (blue profiles and values) axes of R30 extracted from the 

sixteen profiles (gray) in the current system. Black solid and dashed lines indicate the longest 

axis and shortest axis of R30 from the KMA best track, by 250 km and 180 km, respectively.  
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Along with the conditions applied to the system, we extracted the largest value in 

the radius reaching 15 m s-1 from each profile and found the longest axis and shortest 

axis in the estimated 16 wind radii. For example, the 16 radial profiles estimated from 

Typhoon Wukong's wind fields for the four experiments (see Figure 4.1) and the 

longest and shortest axes of R30 found in our system are shown in Figure 4.2. The 

most notable results are the changes in the longest axes between the CTRL and KF 

experiments (red profiles and values in Figure 4.2). In both KF experiments, the 

longest axis of R30 is significantly similar to the KMA (black and solid line) compared 

to the CTRL experiments, which had a large radius of more than 1000 km. Similar 

results were also confirmed in the spatial distributions of the wind fields in Figure 4.1. 

The extension of gale winds in the KF experiment was almost identical to the longest 

R30 of the KMA (red and dashed circles in Figures 4.1b and d). 

Meanwhile, the shortest axis yields similar R30 estimates in the four sensitivity 

experiments ranging from 110-160 km (blue profiles and values in Figure 4.2). 

Interestingly, the shortest R30 estimates in KF850 had 50 km larger than that of 

CTRL850 (blue profiles and values in Figures 4.2c and d), which implies that the use 

of an 850 hPa wind field with KF captured a most symmetrical TC structure rather 

than other experiments (Figures 4.1c and d).  
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4.3. Results 

4.3.1. Comparison of R30 estimates in four experiments 

According to the procedure described in section 4.2, we estimated the R30 from 

the four experiments based on the model analysis dataset. The R30s estimated 

objectively in each experiment are compared statistically with the estimates of KMA 

in Table 4.2. In general, KF experiments show lower mean absolute error (MAE) and 

higher correlation coefficient (r) compared to CTRL experiments on both the longest 

axis and the shortest axis of R30. In particular,  the longest R30s showed relatively 

larger MAE reductions of about 183 km (73%) and 335 km (77%) in the KF1000 and 

KF850, respectively, compared to the CTRL experiments. Likewise, stronger 

correlation coefficients with the KMA’s longest R30s are revealed in KF experiments 

(r = 0.73~0.75) rather than CTRL experiments (r = 0.57~0.59). The shortest axis of 

R30 showed that the use of 850 hPa wind fields is affecting the improvement of MAE 

and correlation coefficients. In particular, the shortest R30 estimates in the KF850 

experiment had better performances compared to other experiments, with a correlation 

coefficient of 0.73 and MAE of 51.7 km.  

The R30 biases are shown in all experiments except for the shortest R30 estimates 

in KF850 (Table 4.2). As expected, CTRL experiments showed significant negative 

bias values (about 244~436 km) in the longest R30 estimates. The longest R30s in the 

KF experiments are 51 km smaller and 96 km larger than estimates of KMA, 

respectively, for the KF1000 and KF850. For the shortest axis, the KF1000 experiment 
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showed a larger bias than the CTRL1000, which implies that the filtering method has 

no improvement in the 1000 hPa wind fields when estimating the shortest R30. 

 

Table 4.2. Mean absolute error (MAE), correlation coefficient (r), and R30 bias between the 

longest and shortest axes of R30s estimated from four sensitivity experiments (see Table 4.1) 

and KMA best track data. Units for R30 bias and MAE are km. 

  

R30 Experiment 
MAE 

(km) 
r 

R30 bias 

(km) 

Longest axes 

CTRL1000 249.0 0.59 -244.0 

KF1000 66.0 0.73 51.2 

CTRL850 435.9 0.57 -435.7 

KF850 101.3 0.75 -96.2 

Shortest axes 

CTRL1000 63.6 0.63 25.3 

KF1000 65.2 0.65 51.7 

CTRL850 75.1 0.69 -28.3 

KF850 51.7 0.73 -0.1 
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Table 4.3. The equations for bias correction (slope and y-intercept) and the mean absolute 

errors (MAEs) of fitted R30 estimates in four experiments. The unit of MAE is km. 

R30 Experiment 

Fitted equation for bias 

correction 

After bias 

correction 

slope y-intercept MAE 

(km) 

Longest axes 

CTRL1000 0.22 158.6 59.3 

KF1000 0.80 59.7 49.7 

CTRL850 0.19 141.3 61.7 

KF850 0.61 45.1 48.6 

Shortest axes 

CTRL1000 0.56 107.5 52.3 

KF1000 0.82 81.9 50.4 

CTRL850 0.45 101.7 49.7 

KF850 0.67 69.2 45.8 

 

The wind radii are bias-corrected so that the initial wind radii match the current 

R30 estimates in each experiment. Table 4.3 shows the fitting equation for bias 

correction by each experiment, and MAEs of R30 estimates after applying the bias 

correction. When compared with the MAEs of R30 before the bias correction, the 

overall errors are significantly improved after applying the fitting equation for each 

experiment (Table 4.3). The bias-corrected R30s in KF experiments showed the lower 

MAEs than CTRL experiments, by approximately 10~13 km (2~4 km) for longest axis 

(shortest axis). In particular, the KF850 experiment had the smallest error in both the 

longest and shortest R30s, with MAE of about 49 km and 46 km, respectively (Table 

4.3). In the automated system for estimating the TC wind radii, we emphasize that the 

KF experiments yield undoubtedly more effective and objective R30 estimates 

compared to the CTRL experiments. 
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Figure 4.3. Comparison of estimates of longest (a-b) and shortest R30 (c-d) after bias 

correction from KF1000 (a, c) and KF850 (b, e), compared with KMA best track data during 

2015-2019. Correlation coefficients (r) and mean absolute errors (MAE) are indicated in the 

bottom right corner of each panel. The unit in MAE is km. 
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In addition, overall distributions of bias-corrected R30 are further examined 

through the scatter plots of the longest axis and the shortest axis between the KMA 

best track and two KF experiments (Figure 4.3). In general, the longest R30 estimates 

in both KF experiments show a similar distribution overall, but tend to be smaller than 

the KMA best track at relatively large R30s (range of about 500~700 km) (Figures 4.3a 

and b). Meanwhile, the shortest axis shows relatively incomplete R30 distributions 

relative to the longest axis, especially in the small R30 estimates from KMA (less than 

400 km) (Figures 4.3c and d). We find that the shortest axis is more difficult to 

objectively estimate the wind radii at a  relatively small R30, which is more evident 

on the KF1000 using wind fields closer to the surface than KF850. This result once 

again showed that the wind field at 850 hPa is more suitable for reducing the errors in 

the objective and effective real-time estimation of the shortest R30 with the KF 

technique.  
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4.3.2. Predictions of longest and shortest R30 

Based on the results in the previous section, final system for objectively calculating 

R30 is set to be applied to the model forecast winds in the following procedure (Figure 

4.4). First, the u- and v- wind components used for estimating the wind radius and 

environmental variables for recalculating the storm center from the five-day GFS 

forecast fields with 6-hour intervals at the corresponding TC information, including 

the date and location are collected. Second, we produce wind data sets in which the 

background flow surrounding the TC is removed by TC wind fields at 1000 hPa and 

850 hPa from the model’s storm position, for each forecast time. Third, the filtered 

wind fields are changed as an azimuthally averaged radial profiles of 16 directions 

from the storm heading calculated from the TC information for each forecast time and 

wind field type, and the longest axis and the shortest axis for R30 are found in the 

radius values calculated from the sixteen profiles. Finally, bias correction is applied 

equally throughout the entire forecast of longest axis and shortest axis of R30 for 1000 

hPa and 850 hPa, respectively. The final outputs calculated by this procedure are 

compared with CTRL experiments for all forecast lead times.  
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Figure 4.4. Schematic procedure for predicting the longest and shortest axes of R30 in this 

system.  
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Figure 4.5 shows the performances (MAE, 𝑅2 and biases) of longest and shortest 

R30 outputs in final system (KF experiments) and in CTRL experiments for each 

forecast lead time, compared with estimates of KMA best track. For longest R30, the 

MAEs of the two KF experiments is relatively similar and increases gradually over 

prediction time (black and red solid lines in Figure 4.5a). When compared to CTRL 

experiments, the outputs of longest axis in the KF experiment showed a lower error 

before 48-h forecast lead times, by up to 8 km for KF1000 and 11 km for KF850, but 

had a larger error after 96-h prediction time with a large negative bias (ranging -20~-

40 km) and poorly 𝑅2 (variance explained) results (below about 0.2) (Figure 4.5a-c).  

These results can identify the problem from two perspectives of performance 

shown in KF experiments after 72-h prediction times. The first is the under-

predictability of the wind fields in forecast data set. This is because the large negative 

bias means that the KF experiments greatly overpredicted the longest R30 compared 

to KMA. However, this issue is not considered a key factor in current performance, as 

the use of wind fields in CTRL experiments before removing the background flows 

was estimated to be smaller than the best track R30 estimates. Then, the second 

problem could be effect of bias correction applied equally to all prediction times. 

Sampson and Knaff (2015) suggested that most of the forecast wind radii in the NHC 

basins can be bias corrected so that the initial wind radii match the current analysis but 

that in most cases this bias correction should be phased out within 12 hour. As such, 

the parts of bias correction according to the prediction time is seen as one of the 

important parts for improving the longest R30 predictions in the current system. 

Nevertheless, we find that application of the same bias correction equation is valid for 
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longest R30 predictions by approximatively 48-h forecast time (50~53 % variance 

explained) in this system (dashed line in Figure 4.5c). 

 

 

Figure 4.5. Comparisons of MAEs (a, c), 𝑅2  (b, d), and bias (c, e) for longest (a-c) and 

shortest (d-e) R30 predictions of the outputs in current system (KF experiments, solid lines) 

and CTRL experiments (dashed lines) at 1000 hPa (black) and 850 hPa (red) using a model 

forecast wind fields at each lead time. The units of MAE and bias is km.  



 104   

 

Meanwhile, the outputs of shortest R30 in the current system is very similar to the 

CTRL experiment according to the all prediction times, but shows a large difference 

in bias and 𝑅2 (Figure 4.5d-f). In the performances of shortest R30 prediction, the 

KF850 outperforms the KF1000 overall, especially in 𝑅2  (dashed lines in Figure 

4.5f). A noticeable result is that the shortest R30 predictions in KF1000 has lower 

performance than the those of CTRL850 at most prediction times, suggesting that the 

use of a wind field of 850 hPa plays an important role for the estimating and predicting 

of shortest R30 in current system (Figure 4.5d-f). Compared with the longest R30 

prediction in KF experiments, the outputs of the current system have similar results or 

trends in MAE and biases between the longest and shortest axes, but 𝑅2 appears to 

be slightly lower in the shortest R30 predictions (Figure 4.5). This implies that the 

shortest axis in R30 is still more difficult to predict than the longest axis. 
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4.4. Summary and discussion 

The wind field of the numerical weather prediction (NWP) is the most important 

data source for estimating and predicting the tropical cyclone (TC) wind radius in real-

time. Although available high-resolution NWP datasets recently have been provided, 

the objective and reasonable determination of the area over TC-induced gale or 30-

knot winds (R30), which are significantly affected by the complex and large-scale 

environmental flows surrounding the TC, remains a challenge. This study developed 

the objective and effective method for estimating the longest and shortest R30s in the 

western North Pacific (WNP) TCs from Global Forecast System (GFS) model, and 

applied to real-time R30 prediction. 

When estimating the TC wind radius based on GFS winds, we used two ways to 

minimize the influence of background flow surrounding the TC and the terrain: a 

method for extracting the wind field of TC itself using the filtering technique, and a 

method using wind fields at 850 hPa, which is less sensitive to the effect of land. We 

first compared the longest and shortest axes of R30 estimated from the analysis-based 

winds with the estimates of KMA best track. The results showed the best performance 

for both longest and shortest R30 estimates using winds with filtering technique. More 

particularly, we found that the use of an 850 hPa wind field with the filtering technique 

has been improved the performance compared to other experiments, especially in the 

shortest R30. 

For real-time prediction, the R30 estimated from the model analysis data was 

bias-corrected with the KMA’s R30, and this correction was applied to estimate R30 
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using the 5-day forecast winds. The results showed a good performance until 48 hours, 

in which mean absolute error (MAE) and R2 were 53 km (48 km) on average, and R2 

of 0.56 (0.54) for the longest (shortest) R30. After 72 hours, however, the predicted 

R30 showed a large error. This is likely because the real-time R30 results are dependent 

on the performance from the model forecast data, which is affected by additional errors 

such as the TC track and intensity. These results suggest that our TC wind radius 

estimation system can be a useful tool for estimating R30 in operational TC predictions. 

In this study, we used only the GFS prediction results, but ensemble prediction using 

various model results will further improve the R30 predictions by removing the model 

bias. This is what we want to do further by expanding this study.  
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5. Conclusion 

The size of a tropical cyclone (TC) is important factor in determining the possible 

TC-induced damaged area, and has an impact on the performance of TC intensity 

predictions and TC-induced storm surge/wave forecast modeling. Despite this 

importance, advances in research and prediction techniques related to TC size have not 

been largely addressed due to several issues, such as the lack of an objective dataset 

and difficulties in defining physically meaningful TC size. This dissertation 

investigated the three key topics to cover characteristics and predictions of TC size in 

terms of wind radii: (i) comparison of tropical cyclone wind radius estimates among 

three TC agencies over the western North Pacific, (ii) development of tropical cyclone 

wind radius prediction scheme based on statistical-dynamical approach and track 

pattern clustering, and (iii) prediction of the gale wind radius based on numerical 

weather prediction. The findings of this study can be summarized as follows. 

First, this study investigated the characteristics of R30, R34, and R50 estimated by 

three agencies—the KMA, JMA, and JTWC—including their asymmetrical 

characteristics in terms of Vmax and spatial distributions, and examined how each 

agency considers TC size–related factors (Vmax, latitude, TC translation speed, and 

storm age). Comparing the mean values of both R30 and R50 of the three agencies, 

JMA  had the largest mean value, which seems to be largely determined by TC winds 

combined with other mid-latitude synoptic systems, mainly for damage and disaster 

prevention purposes. On the other hand, the KMA and JTWC seem to determine the 

gale–force wind radius by focusing on the strong wind area of the TC itself. The factors 
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considered for estimating wind radii also were different between the agencies: KMA 

considered only Vmax when estimating TC wind radii, while the JMA and JTWC 

considered not only Vmax but also the latitude and TC translation speed partially, 

which is related to greater asymmetries. 

Second, the statistical-dynamical regression model for predicting the change in TC 

size (R30 and R50) has been developed based on four clusters classified by distinct 

track patterns using the fuzzy c-Means clustering method and selected environmental 

predictors for each cluster, and evaluated the model performance. Analysis showed 

that the clustering model reduced errors, by 3-24% improvements at 24-120-h lead 

times in the training period and by a maximum of 8-9% at 72-96-h lead time in the 

testing period compared to the non-clustering model. Cluster 2 had the greatest 

improvement similarly in both periods rather than other clusters, because of the most 

distinct characteristics in terms of the tendency to TC size as well as to reduce 

variability in clustering (𝜎𝑐) leading to a better improvement in the forecast of TC size. 

In the real-time prediction of TC size, errors were still reduced using clustering models, 

but still need improvement in terms of model variance. However, through a 

representative case study, we found that real-time R30 predictions in the corresponding 

clusters are significantly influenced by track membership coefficients, which also 

reconfirms the possibilities of cluster analysis based on track patterns for improvement 

of TC wind radius prediction. 

Finally, the system for objectively and effectively estimating the longest and 

shortest axes of the R30 from the available operational numerical weather prediction 

has been developed. Both longest and shortest axes of the R30 estimates using the 



 109   

 

wind fields at 850 and 1000 hPa applied to filtering technique were significantly 

similar to the KMA best-track estimates. Particularly, the 850 hPa wind fields 

reproduced TC itself structure better than 1000 hPa winds, and reduced considerably 

the error of shortest R30 estimates in this system. For real-time prediction, when the 

wind fields at 6-120 hour forecast times were applied to the final automated system, 

the performance of both the longest and shortest R30s has been greatly improved by 

using the 850 hPa winds before the 48-hour forecast time, with mean absolute errors 

of 48~53 km on average, and R2 of 0.54~0.56 maxima, respectively. 

This thesis can be an important guideline for TC size estimation and prediction in 

terms of disaster prevention. The findings of agency-dependent characteristics of TC 

wind radius data help to better determine and understand the TC impact areas for TC 

risk reduction and management. In addition, our TC wind radii prediction schemes can 

be useful tool to determine the TC size in real-time, and prepare the warnings for the 

possible affected areas before the TC landfalls.  
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국문 초록 

 

열대저기압 (Tropical cyclone, TC)의 크기는 태풍의 직접적인 영향을 

받는 영역을 결정 할 수 있기 때문에 TC 의 방재 측면에서 중요한 의미를 

갖는다. 그러나 태풍의 크기는 장기적이고 객관적인 관측 자료의 부족과 

합리적인 TC 의 영역을 결정하는 것에 대한 어려움과 같은 문제로 인해 

현재까지도 광범위하게 연구 되지 않았다. 본 학위논문은 크게 (i) 한국, 

일본, 미국 기관에서 추정된 TC 바람 반경의 상호비교, (ii) 통계-역학적 

방법 및 태풍 진로 분류를 기반으로 한 TC 의 바람 반경 예측, 그리고 (iii) 

Global Forecast System (GFS) 모델 자료를 기반으로 한 북서태평양의 

강풍반경 예측과 관련하여, 바람으로부터 추정된 반경 측면에서 TC 의 

크기와 관련된 세 가지 주제를 다루었다. 

먼저, 본 연구는 2015에서 2018년 동안 북서태평양 (western North 

Pacific, WNP)의 TC 기관인 Korea Meteorological Administration (KMA), 

Japan Meteorological Agency (JMA), 그리고 Joint Typhoon Warning center 

(JTWC) 에서 제공하는 강풍반경 (R30 또는 R34)과 폭풍반경(R50) 추정치 

들에서 나타나는 특징들을 조사 하였다. 그 결과, KMA 의 R30 과 R50 

추정치는 JMA 의 추정치보다 각각 38% 및 29% 더 작았으며, JTWC 보다 

R30은 더 크고 (11%) R50은 더 작은 (12%) 추정치를 가지고 있었다. 이와 

같은 기관 별 차이는 TC 기관이 태풍 자체에의 바람에만 초점을 맞추어 

바람 반경을 추정하는지, 아니면 태풍경보를 보다 포괄적으로 만들기 

위해서 다른 중위도의 종관 시스템 환경과 결합된 태풍의 반경을 

추정하는지에 따라 크게 결정되는 것으로 보여진다. 전자는 주로 KMA 와 

JTWC 에서, 후자는 주로 JMA 에서 행해지는 것으로 나타났다. 또한 바람 

반경을 추정하기 위해 고려하는 요소도 기관마다 달랐다. KMA 는 강도가 
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강할수록 반경이 더 큰 경향을 보이며 태풍 강도에 크게 의존하는 반면에, 

JMA 와 JTWC 는 KMA 보다 태풍 강도에 덜 의존하지만 크기를 추정할 때 

위도와 TC 의 이동속도를 추가로 고려한다는 것을 보여주었다. 특히, 

JMA 와 JTWC 에서 고려된 TC 의 이동속도는 추정된 바람반경이 KMA 에서 

추정한 것보다 평균적으로 더 큰 비대칭 (가장 긴 반경과 가장 짧은 반경 

사이의 더 큰 차이) 을 나타내는 이유를 뒷받침 한다. 

둘째, 북서태평양의 TC 의 대칭적인 R30 및 R50을 예측 하기 위한 

운용계획은 태풍 진로 분류와 통계적 회귀 방법을 사용하여 개발되었다. 

통계 모델의 훈련을 위해 5일 간격으로 분류된 TC 의 진로는 fuzzy c-

means clustering 방법에 따라 4개의 클러스터로 분류되었다. 현재의 통계-

역학 모델은 각 클러스터 및 각 예측시간에 따라서 계산된11개의 예측 

변수에서 선정된 2~8개의 변수에 대하여 다중 선형 회귀를 적용하였다. 

이 연구에서는 초기시간에서 TC 크기의 proxy 를 나타내는 5-knot 

바람반경 (R5) 의 변화를 예측을 위해 사용된 종속변수로 사용하였다. 

모델의 성능은 훈련(2008~2016)과 테스트(2017~2018) 기간으로 나누어 

비교되었으며, 클러스터링이 TC 크기 예측에 미치는 영향에 대해서 비 

클러스터링 모델과 클러스터링 모델의 성능을 비교하여 평가되었다. 그 

결과, 클러스터링 모델이 훈련 기간 동안 모든 예측시간에서 TC 크기 

예측을 3-24% 개선하고 있었으며, 특히 Cluster 2에서 최대 43%의 상당한 

개선을 보였다. 테스트 기간 동안, 클러스터링 모델은 모든 예측 리드 

타임에서 평균 오차의 감소와 Cluster 2에서 가장 큰 개선 을 보였으나 

훈련 기간에 비해 개선이 상대적으로 작았다. Cluster 2의 경우 대부분의 

TC 가 강하게 발달하면서 크기가 계속 증가하는 뚜렷한 경향이 

clustering 을 통해 TC 크기의 표준편차 또는 가변성을 크게 감소시키게 

됨으로써 보다 스마트한 예측인자의 선정을 가능하게 하여, 궁극적으로 

TC 크기 예측을 향상시키는 것으로 나타났다. 또한 2017년과 2018년 
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TC 들의 실시간 R30 과 R50 예측에서, 전체 예측 시간에서 평균 절대 

오차는 각각 R30과 R50에서 61 ± 27km 와 21 ± 9km 를 보이며, 

클러스터링 모델의 오차가 비 클러스터링 모델 오차에 비해 약 18~19% 

적은 것으로 나타났다. 현재 개발된 클러스터링 모델의 실시간 예측에 

대해 추가적으로 분석 했을 때, TC 의 강도예측 및 R5 추정치에서 

나타나는 고유한 오차와 태풍의 진로가 두 군집 사이에 위치하여 특정 

군집으로 분류하기 어려운 경우에 나타나는 오차가 실시간 예측 성능을 

저하시키는 것으로 나타났다. 

마지막으로, WNP TC 의 강풍반경 (R30)을 객관적으로 추정하고 

예측하기 위한 자동화 시스템은 Global Forecast System (GFS) 의 예측 바람 

자료를 사용하여 개발 되었다. 이 시스템에서 GFS 자료로부터 R30의 

장축과 단축을 효과적으로 추정하기 위하여, 1000 hPa 과 850 hPa 

바람장에서 TC 자체의 바람을 생성하기 위한 필터링 기술을 적용하였다. 

결과는 필터링이 적용된 850 hPa 의 바람장을 사용하면 R30 추정치의 

성능의 상당한 개선을 보여 주었으며, 특히 단축에서 더 큰 개선이 

나타남을 확인 하였다. 실시간 R30의 예측을 위해 필터링 기술과 반경 

추정치의 bias correction 이 포함된 최종적인 시스템에 5일 모델 예측 

바람장을 적용하였다. 예측된  R30의 성능은 48 시간 예측 까지 850 hPa 

의 바람장을 사용 함으로서 크게 개선되었음을 확인 하였으며, 장축과 

단축에서 각각 평균적으로 약 53 km (48 km) 의 절대 평균 오차를 보였다.
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