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ABSTRACT 

5G networks come up with many innovative features compared to legacy networks, such as 

network slicing that envisioned a wide variety of services from different customers, network 

operators, and industrial verticals. Network slicing is the partitioning of a physical network into 

multiple logical isolated networks. It ensures dedicated and isolated resources to each of the 

services. The autonomous orchestration and management of end-to-end (e2e) network slicing is 

critical due to the complex network configuration for the underlying infrastructure. On the other 

side, data analytics seems promising to manage and control the underlying network resources 

proactively. So, Network Data Analytics Function (NWDAF) has been introduced in  5G service-

based architecture (SBA), which enables network operators to use various Artificial Intelligence 

(AI) and Machine learning (ML) techniques. These ML models are trained on historical network 

data collected from multiple domains such as core, RAN, and edge. It allows network operators to 

implement their own or third-party ML mechanisms. More specifically, the proactive management 

of cloud resources is still a challenging task. Therefore, this thesis primarily focuses on e2e 

network slice lifecycle management and AI and ML-based network data analytics mechanisms for 

proactive management of network resources. 

An Intent-based Networking (IBN) mechanism has been developed to automatically 

control, orchestrate, and manage e2e network slicing. It follows a closed-loop approach for the 
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network slice lifecycle management (LCM). The results achieved through the proposed 

mechanism show satisfactory performance. Moreover, motivated by NWDAF, a data analytics 

mechanism has been integrated with the IBN platform to achieve proactive resource updates and 

assurance. This network data analytics mechanism uses novel hybrid ensemble learning (EL) 

algorithms for network resource utilization prediction and anomaly detection and mitigation. With 

the help of results, it can be observed that the developed mechanism outperformed the considered 

algorithms. In addition, ML models assist the IBN platform in updating and managing the network 

resources proactively. 
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Chapter 1 

Introduction 
 

The traditional networks do not support a wide variety of services and ensure just limited services 

in terms of messaging, voice, and internet access. These multi-services have different quality of 

services (QoS) requirements regarding bandwidth, latency, mobility, reliability, and capacity. The 

primary vision of Fifth Generation (5G) mobile networks is to fulfill the diverse service 

requirements for different consumers, mobile network operators (MNOs), industrial verticals, and 

businesses [1] [2]. The future generation mobile networks should accommodate various industrial 

verticals such as automotive, energy, healthcare, entertainment, media, and manufacturing industry 

4.0. These industrial use cases have diverging QoS requirements, and service-oriented architecture 
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is needed to handle these various use cases. However, the 5G networks have been designed on the 

service-oriented pattern that efficiently entertains multi-services with desired bandwidth, 

reliability, and latency [3].  

In recent years, software-defined networking (SDN) and network function virtualization 

(NFV) have emerged as innovative technologies to build virtualized, softwarized, cloudified, 

highly programmable, and flexible 5G mobile networks [4]. SDN decouples the user/data plane 

from the control plane. The network functions (NFs) in the control plane run as independent 

applications under the centralized network controllers [5]. On the other side, NFV enables the 

network operators (NOs) to deploy their NFs in a Whitebox or generic hardware instead of 

expansive dedicated hardware devices. So, NOs can quickly deploy their various virtual network 

functions (VNFs) over the general-purpose servers. Also, mobile edge computing (MEC) [6] 

emerges as a key technology to overcome the low latency issue, where the storage, computation, 

and network resources move from the central cloud to the edge closer to the users. It is also one of 

the critical use cases of the 5G network to ensure ultra-low latency communication for latency-

oriented applications [7]. However, network slicing in 5G mobile networks enables the NOs to 

provide differentiated QoS requirements to each user category. 

Network slicing is a primary use case of the mobile 5G networks, and it is possible due to 

the recent advancement in SDN and NFV computing technologies. Network slicing is partitioning 

the physical network into multiple logically isolated networks. Each of the logically isolated 

networks serves a specific group of consumers. It also enables the MNOs to share their 

infrastructure among other verticals to ensure service guarantees [8]. So, slicing the network is the 

best choice to accommodate the distinct tailored service requirements from different businesses, 

industrials verticals, and consumers over the same physical infrastructure . It facilitates 
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infrastructure providers to use generic hardware devices for implementing multiple VNFs for a 

slice rather than the legacy hardware devices. So, multiple VNFs are chained together flexibly to 

establish an end-to-end (E2E) network slice for a specific user group. The fully cloud-native nature 

of network slicing makes the 5G networks highly flexible and programmable that supports various 

services efficiently [9]. 

The International Telecommunication Union (ITU) and Third Generation Partnership 

Project (3GPP) have divided these diverse services into three major categories: enhanced mobile 

broadband (eMBB) service, ultra-reliable low latency (URLLC), and massive machine-type 

communication (mMTC). The eMBB slice category contains ultra-high definition (UHD) 

communication services, e.g., video streaming. Also, the URLLC slice type includes low latency 

applications, autonomous driving, and health care industry communication. Besides, the mMTC 

contains smart agriculture, smart factory, metering, billing, and logistics services type 

communication [10][11][12]. So, the automatic management and orchestration of these innovative 

services is required. 

The management and orchestration of innovative network services is a very critical task. 

ETSI has introduced the NFV management and network orchestration (NFV-MANO) platform, 

which automates the deployment of VNFs in an efficient way. MANO comprises of NFV 

orchestration (NFVO) layer, VNF Managers (VNFMs), and Virtual Infrastructure Managers 

(VIMs) [11]. The NFVO is the orchestration entity that can manage the lifecycle of the network 

services with the cooperation of VNFM and VIM. It is responsible for the deployment of 

appropriate resources and establishes the connection. The MNOs input network service 

configurations through the Operation Support System /Business Support System (OSS/BSS), and 

NFVO deploys and activates the resource over the physical infrastructure with the help of VNFM 
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and VIM. NFVO has multiple VNMFS and VIMs for the automation and management of resources 

[10]. Figure 1.1 depicts the components of the NFV-MANO platform. 

 

Figure 1.1: Architecture of ETSI NFV-MANO 

The Open-Source MANO (OSM) orchestration platform has been developed based on ETSI 

NFV-MANO specifications that can efficiently orchestrate and manage the lifecycle of the 

network services. It has an integrated cloud platform, OpenStack as a VIM, and supports SDN 

controllers [13].  

The e2e network slice lifecycle management (LCM) is a very crucial and still challenging 

task. 3GPP has divided the network slice LCM into four major phases: commissioning, activation, 

runtime monitoring and operation, and decommissioning of network slices as illustrated in Figure 

1.2 [16] [17]. The design and preparation of the network slice is achieved in the network slice 

commissioning phase. In addition, the network slice template is prepared in the first phase, which 

contains all the information about services, resources, topology, configurations, resource’s 
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location, etc. After that, the created slice template is implemented over the infrastructure to activate 

the resources. In the slice runtime operation and monitoring phase, the activated resources are 

monitored and ensure service guarantee [18]. On the other hand, the activated resources are deleted 

and released as per requirements specified in the slice template or service level agreement (SLA) 

in the slice decommissioning phase [14] [19] [17]. Hence, managing and orchestrating multi-

domain network slices is vital, and a well-designed platform is needed to manage the e2e network 

slices in an automated fashion. 

 

Figure 1.2: phases of network slice LCM 

IETF has introduced another innovative technology for the automation and management of 

network resources named Intent-based networking (IBN) [20]. IBN works on the concept of intents, 

where users or NOs need to input higher-level abstract requirements, and the system itself 

translates them into policies and deploys them over the infrastructure [21]. It follows a closed-loop 

mechanism to perform service orchestration and management. It creates, translates, configures, 

deploys, and updates the resource in an automated fashion. Hence, this research has introduced an 

IBN platform for the automation and orchestration of network slice resources. It is a closed -loop 
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mechanism that can automatically design, commission, activate, monitor, and decommission the 

network slices. 

3GPP has introduced an innovative network data analytics function (NWDAF) in 5G 

service-based architecture (SBA) to provide intelligence into the network. It collects the data from 

control and user plane NFs: access and mobility management function (AMF), network s lice 

selection function (NSSF), user plane function (UPF), etc., and performs analytics by using various 

Artificial intelligence (AI) and Machine Learning (ML techniques. These AI, and ML algorithms 

are trained on historical network data and perform recommendation, prediction, and detection tasks 

[2].  

Hence, the Intent-based networking and ML-assisted data analytics mechanism for 

autonomous e2e network slice lifecycle management have been developed in this research. It 

consists of an IBN platform, NWDAF, NFVO OSM, RAN controller, monitoring, and data 

collection mechanism. IBN platform can orchestrate, control, and manage the network slice 

instances automatically. It is a one-touch approach where the user needs to input QoS requirements 

into abstract form, and the system itself performs all the operations for deploying the resources. It 

receives the QoS requirements from users, automatically converts them into network policies, and 

deploys them over the infrastructure. 

 On the other side, we have integrated 3GPP NWDAF functionalities into the IBN platform 

for providing intelligent and proactive control and management of network slice resources. The 

implemented NWDAF is divided into three separate data analytics function (DAF) such as core -

DAF (C-DAF), edge-DAF (E-DAF), and RAN-DAF (R-DAF) for each domain. So, for C-DAF, 

we have proposed a novel hybrid stacking ensemble learning (HSTEL) model for network resource 

utilization prediction by combining gradient boosting machine (GBM), Catboost, and XGBoost 
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ML models. On the other side, hybrid EL models have been developed by combining random 

forest (RF), Catboost, and XGBoost models for anomaly detection use cases. These hybrid models 

show promising performance in comparison to individual models and state-of-the-art models. 

Moreover, the prediction results of the NWDAF models will be used by the IBN intelligent 

decision engine to decide to scale-up/scale down the network resources, and attack detection and 

mitigation.  

1.1. Research Problems and Objectives 

The primary aim of the 5G network is to accommodate a wide variety of innovative services that 

have differentiated QoS requirements. So, it is a highly error-prone and time-consuming process 

to generate manual configurations for every service. Additionally, it also needed adequate human 

intervention, manual work, and expertise. Besides, the manual allocation of resources in a multi-

domain environment for establishing an e2e network slice is not optimal. The automatic 

deployment of network resources over the RAN and core domain is still challenging because each 

domain requires specific configurations. So, a well-designed solution is required that generates 

multi-domain network configurations for the activation of e2e slices as per QoS requirements. On 

the other side, AI and ML approaches are needed for proactive management of network resources. 

In this aspect, dynamic scaling of the cloud resources is another critical issue while managing the 

cloud resources. It causes to degrade the QoS in case of resource ov erloading, and in under-

utilization cases, it wastes the cloud resources. Hence, autoscaling of cloud resources is vital for 

reducing the cost and guaranteeing the customers' QoS requirements. So, an AI and ML-based 

accurate estimation of future network resource utilization to perform autoscaling is needed. 

However, it is tough to perform accurate resource utilization prediction due to the continuously 

changing nature of resource usage. By predicting accurate network usage can improve the 
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operational cost and efficiency of the cloud. Moreover, the attack detection and mitigation from 

the network to avoid performance degradation is still a challenging task. 

To overcome the challenges associated with the above-mentioned research problems, 

following are the major contributions and objectives of this research: 

• An IBN-based closed-loop mechanism is developed to automate the slice policy generation 

and slice resource orchestration procedure for a multi-domain environment. 

• It follows a one-touch approach to design, activate, update, and delete e2e network slices 

and eliminates traditional manual practices. 

• It follows 3GPP and IETF standards to accomplish network slice LCM. 

• It has an integrated monitoring mechanism for the core, edge, and RAN domains to monitor 

network resources continuously. 

• The IBN standards follow proactive resource automation, management, and control by 

using AI techniques. Hence, we integrate the 3GPP NWDAF mechanism with the IBN 

platform to perform proactive slice resource control and management. 

• Hybrid ensemble learning-based NWDAF inside the IBN platform performs core resource 

utilization prediction, QoS assurance, and auto-scaling of cloud resources. 

• It also has a hybrid ensemble learning model for anomaly detection and mitigation from 

the system. 

• NWDAF makes the IBN platform an intelligent orchestration platform for managing the 

lifecycle of network slice resources proactively and dynamically. It can update slice 

resources in case of failure or requirements changes. 
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1.2. Thesis Organization 

The main chapters of this dissertation are structured as depicted in Figure 1.3. The details are as 

follows: 

• Chapter 2 explains the literature on e2e network slicing and lifecycle management, 

management and orchestration approaches, standardization bodies working towards 

network automation, and industrial solutions for automating the network. In addition, this 

section also discussed the existing ML approaches related to the NWDAF and network 

resource utilization prediction and anomaly detection and mitigation from the networks.   

• Chapter 3 explains the proposed mechanism for the automation and management of e2e 

network slicing. This chapter presents the proposed IBN system for e2e network slice 

lifecycle management. Moreover, the proposed Hybrid ensemble learning-based network 

data analytics mechanism has been presented. In addition, the newly developed hybrid 

stacking ensemble learning-based model for network resource utilization prediction and a 

hybrid model for anomaly detection and mitigation from the system have been well 

discussed.  

• Chapter 4 highlights the experimental results and discussion regarding the implemented 

system. Furthermore, the e2e network slicing and ML models results have been presented 

and discussed in this chapter. Also, the achieved results are compared with other relevant 

studies for the evaluation of the proposed mechanism.  
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• Chapter 5 concludes the thesis by summarizing this research and discussing future research 

directions. 

 

 

Figure 1.3: Thesis structure 
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Chapter 2 

Related Work 
 

This section explains the detail of previous works related to network slicing, 5G networks, service 

orchestration and management, slice LCM, and AI /ML approaches for the automation of future networks. 

It also includes the industrial solution for the automating the networks and highlights a direction on how 

to reduce or avoid the limitations of the existing mechanisms.  

2.1. E2E Network Slice Orchestration and Management  

To provide differentiated services to 5G consumers, the automation and management of the e2e 

network is an essential activity for mobile network operators (MNOs)  [33]. Several mobile 

network standardization bodies have been defined the specifications for e2e network slice  
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automation and management, such as European Telecommunication standards Institute (ETSI), 

Internet Engineering Task Force (IETF), 3GPP, Fifth Generation Partnership Project (5GPP), ITU, 

Next Generation Mobile Network (NGMN), etc. As aforementioned, network slicing is divided 

into three major types: eMBB, URLLC, and mMTC. The eMBB type of service needs reliable  

broadband connectivity and high speed. On the other side, URLLC requires ultra-reliable low 

latency type of communication, and mMTC requires seamless connectivity for many devices and 

smart industries [1], [2], [10], [19], [34] [35]. Figure 2.1 illustrates main categories of network 

slicing in the 5G network.  

 

Figure 2.1: 5G network slice categories 

Several open-source orchestration platforms were implemented based on the 3GPP and 

ETSI standards. These orchestration platform supports network slicing and automation. Some 

well-known orchestration platforms are Tacker, open network automation platform (ONAP), Open 

Network Foundation (ONF), COMEC, JOX, M-CORD, SONATA, OPNFV, 5G NORMA, 

Cloudify, OpenBaton, OpenStack HEAT, and Open-O [36]–[38] [39]. The primary aim of these 
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platforms is to enable programmability to automate the network resources deployment over the 

infrastructure [40] [33] . The network administrators define the policy configurations for the 

deployment of the resources. The OpenStack platforms is used to deploy the VNFs, and SDN-

based controllers are used for chaining the VNFs. So, these existing orchestration platforms require 

specific and complex network configurations for the activation of resources. 

Furthermore, ETSI has also introduced a Zero-Touch service management system (ZSM) 

for the complete automation of the network. It is an entirely closed-loop system that does not need 

any human involvement when in execution mode. It considers different Artificial Intelligence (AI), 

Machine Learning (ML), and big data approaches for proactively managing the network  [41]. It 

uses ML models to learn the user traffic patterns from the network and performs future predictions. 

It performs data analytics and extracts the trends, patterns, behavior from the network. Based on 

the predictions of the ML models, ZSM can proactively prepare the resources and performs 

autoscaling of the VNFs resources. It can manage physical network functions (PNFs), VNFs, and 

physical infrastructure.  

The 3GPP has also introduced an architecture for the management and orchestration of the 

service-oriented 5G networks. This system consists of Communication Service Management 

Function (CSMF), Network Slice Management Function (NSMF) and Network Slice Subnet 

Management Function (NSSMF) [14]. The CSMF is acts as a central management entity for the 

management and deployment of network slices. It is responsible for creating the network slices 

requests and sends them to NSMF for further operations. The MNOs used CSMF functions to plan, 

design, and activate the network slices. on the other hand, NSMF translates the slice requirements 

and generates domain-specific configurations. Further, those configurations are forwards to 

NSSMF for the deployment of the network slice instances. Each domain has separate NSMF, e.g., 
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RAN, core, edge. Also, NSSMF ultimately manages each slice instance. Moreover, the CSMF 

receives network slice requests with QoS requirements from the customers and forwards those 

requests to NSMF. NSMF converts slice QoS into policies and activates the resources with the 

cooperation of NSSMF. The slice instances are appropriately monitored, and CSMF performs 

autoscaling of the network resources whenever needed [15]. Figure 2.2 depicts the management 

and orchestration framework to perform e2e network slicing.  

 

Figure 2.2: Integration of ETSI and 3GPP technologies for management and orchestration of 

e2e network slicing 

The framework of slice management and orchestration was proposed to abstract the 

instantiation of end-to-end network slices. A chain of network functions in the framework is 

involved physically and virtually. The proposed plug-in-based SliMANO system appeals to 

network resources and interacts among network orchestration entities for an end -to-end slice 

performance. The range of these entities comes from MANO, SDN, and RAN controllers. The 
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implementation of a proof-of-concept prototype is evaluated. Results showed the delay increment 

concerning operations of instantiation and deletion by comparing the recent network slicing feature 

(NetSlice) of the OSM. Moreover, the delay in results corresponds chiefly to SliMANO, an entity 

external to the orchestrator itself. This SliMANO also drives beyond the MANO domain, and the 

interaction with SDN and RAN controllers islallowed [42]. 

The discussion of network slicing in transport and core networks was presented. 

Additionally, the RAN domain is extended, and all these domains are specified together as an end-

to-end (E2E) NS system. Numerical simulations were conducted to prove the benefit of NS in 

RAN with a two-level resource allocation scheme. Afterward, the application of both hardware 

and software for the E2E NS system was established. The performance displayed good granularity, 

slice creation, deletion, and scheme adjustment in sub-minute time used in the network operation 

[43]. 

In this cited work, the three-layer technology-agnostic architecture for the slice service 

layer was firstly proposed in the life cycle management. The NAS was then defined to simplify 

the complex process of network slice. Later, the LTE network was applied to provide feasible 

architecture by filling the gap of existing technologies such as cloud, SDN, and NFV [9]. 

According to the goals and requirements of customers and industries, the E2E NS system 

was classified into Network Slice Design and Multi-Domain Orchestrator in terms of design time 

and runtime. These two components react differently based on different players and require 

interfaces and data structures in the system [44]. 

There is a high diversity in NGWNs by integrating communications with different scales, 

technologies, and network resources. Moreover, requirements are still left in using automatic 
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applications, e.g., machine-to-machine communications, factory automation, etc., concerning 

reliability and latency. Regarding these challenges, AI-based network slicing architecture was 

proposed for NGWNs by considering existing works and potential directions for the future  [45]. 

For network operators, slicing in networks ensure that relevant services could be provided 

effectively to end-users. Considering improvement in OPEX savings, network efficiency, and 

time-to-market acceleration, ONAP platform was used to perform the slice management. 

Furthermore, model simulations, orchestration and E2E network slice enforcement were involved 

in RAN, core, and transportation networks by considering a private network as a case study [15]. 

 In the field of Internet of Things, 5G networks is emerging era by connecting between 

several devices and heterogeneous sets that meet the requirements of network quality. There is big 

challenge for operators to overcome complex network services demanding from different customer 

areas (for e.g., healthcare, energy, automotive, etc.). Consequently, the conception and distribution 

parts of network automated management were mainly presented, especially highlighting two parts. 

The first part is to capture SLA based on the requirements of customer network by negotiating the 

refinement process. The second part is to deploy SLA instructions by forming network resource 

orchestration into sequence [46]. 

 After revising data preprocessing and analytics of existing technologies, the complete 

framework for SLA was proposed to implement big-data-driven dynamic slicing resource. The 

framework was implemented by developing low-complexity slice traffic predictions, allocating 

resource models, and enforcing SLA through deep learning [47]. 

 DRL was investigated to provide better performance and efficient coat services for network 

slicing. Using alternative and tendency actions in the DRL process could be a promising solution 
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in terms of interaction with the environment. Basic concept of DRL was described and applied it 

for typical resource management in the case of network slicing including radio resources and 

priority-based core networks. The generated results passing through extensive simulations of DRL 

usage over different schemes were demonstrated, and then provided possible challenges for 

various perceptive of DRL application  [48]. 

2.2. Standardization and Industrial Progress towards Network Automation 

Nowadays, network automation is a very hot topic for industrial as well as academic researchers. 

The procedure of planning, designing, activating, monitoring, and optimizing the network 

resources and services in an automated manner is named network automation. Primarily, the 

transition of manual work to automated way through softwarization for managing network 

resources starting from planning to the operational mood efficiently and reliably  [49]. 

2.2.1. Standardized Bodies for Network Automation 

The operational and management complexity of 5G and future networks shif ted the industries 

toward the closed-loop network service automation and management mechanism. For this, ESTI 

has introduced a new ZSM framework for 100% automation and management of future networks. 

It aims to automate the complete operational and management tasks of the network. Moreover, 

using AI technologies enables ZSM to manage the network, reducing human errors, optimization, 

and operating costs. Figure 2.3 highlights the design and architecture of ETSI ZSM for automating 

networks.  
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Figure 2.3: ETSI ZSM architecture for network automation [41] 

The AI and ML technologies enabled advanced network automation tools to perform data 

analytics based on historical network data and automatically control several networks' operations. 

These operations are as follows: check network behaviours, perform prediction, classify the traffic, 

check user patterns, present recommendations, issue update policies, and many more [50]. 

Advanced tools such as ZSM, IBN, and ONAP can take proper actions based on AI algorithms 

analysis autonomously and handle that situation before occurring. So, due to network automation, 

NOs can reduce operational costs, increase service quality, provide better QoE, ensure better 

service availability, and reduce human errors.  
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Following tasks can be handled through network automation solutions.  

• The designing, planning, and management operations are achieved through network 

automation.  

• Network data collection from multiple devices such as smart devices, network resources, 

RAN data, Core cloud, transport data, management data, network topology information, 

real-time services, applications data, etc.  

• The use of AI and ML to perform data analytics provides insights into current network 

behavior, resource utilization behavior, and future requirements for proactive 

management.  

• Conformity of deployed configuration to validate the running operations of connected 

network devices 

• Automatic reconfigurable in case of failure that includes troubleshooting and repairing of 

resources  

• Should perform reporting, alarms, and alerts to indicate the network status 

• It will be able to monitor multidomain network resources to guarantee QoS for the 

customers.  

• Strong network security is also a concern for an automated solution.  

As the current and future networks are ultimately moving towards cloud computing, the 

success of serval enterprises, their customers, and applications are highly dependent on the 

network. So, it is expected that the network should be reliable and automated for service providers. 

Currently, cloud network reliability, agility, and automation are major challenges for operators and 

vendors. The automation of the network can control the OPEX and CAPX of the network operators  

[49] [11] . 
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Following are the advantages of automating the networks: 

• It can reduce the network issues and resolve them spontaneously through a closed -loop 

approach. The manual operation such as configuration generation errors and human errors 

are reduced.  

• It can reduce the human effort for managing and handling network issues. 

• Automation can cause to reduce the operational and management costs of the network to 

an extent such as fewer human resources are required to provision, configure, and manage 

the network and services. So, fewer human resources are needed to perform management 

and operational tasks. 

• The service providers can design services for some special events across various 

geographical locations in advance and ensure high-quality services. 

• It can reduce the down-time of the network because the network can detect errors, report 

failure, and overcome that failure automatically. 

• Ensure more control and visibility to the network and proactively manage network 

2.2.1.1. Intent-based Networking  

Another standardization body IETF has been introduced the specifications for automating the 

network through Intent-based networking IBN [20]. IBN is an intelligent system that enables the 

future network to be self-configured, self-planned, self-assured, and self-healing. Many industrial 

organizations such as Cisco, Huawei, APSTRA, etc., also adopted IBN technology for the 

automation and orchestration of future networks [22] [23] [24] [25] [26]. Figure 2.4 illustrates the 

concept of IBN and how it works. Firstly, users need to input business intents through the system's 

dashboard; Secondly, received service requirements are translated into policies through the 

translation engine. Thirdly, translated policies are deployed over the physical and virtual 
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infrastructure. Finally, deployed services are appropriately monitored to assure the services and 

updates in case of failure. 

 

Figure 2.4: Intent-based Networking abstract design and architecture 

According to the IETRF IBN for closed-loop automation, a proper IBN system (IBNS) 

contains two fundamental qualities that make it more than just a fancy configuration management 

platform: intent fulfillment and intent assurance. IBNS can recognize and generate user intents, 

translate them into policies, refine from NOs to validate intent, configure the resources, monitor 

the deployed resources, analyze network status, validate the QoS, and report to the operator for 

service assurance. Figure 2.5 depicts the process of intent lifecycle managed through IBN solution. 
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Figure 2.5: phases of IETF defined phased for intent lifecycle management 

2.2.1.2. Network Data Analytics Function 

3GPP has introduced NWDAF in 5G SBA architecture for providing intelligence into the future 

network. Using ML models, NWDAF can achieve network slice load prediction, resource 

utilization prediction, Anamoly detection and mitigation from the system, mobility prediction, user 

pattern prediction, and many more [27] [28]. So, it will help NOs to manage the network resources 

and assure service SLA proactively. So, NWDAF seems an excellent option for network resource 

utilization and Anamoly detection and mitigation from the system. So, in our approach, we have 

designed the NWDAF mechanism, which has two hybrid ensemble learning model for network 

resource utilization prediction and Anamoly detection from the system. Figure 2.6 depicts the 

design of NWDAF in 5G architecture.  
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Figure 2.6: NWDAF workflow 

2.2.2. Industrial Progress and Solutions for Automating the Network 

Several well-known industrial organizations have developed enhanced approaches for the 

automation of networks including CISCO, Huawei, Apstra and Juniper etc.  

Network automation is a foundational component of Experience First Networking, as it 

simplifies planning, design, and operations while improving customer experience. It eliminates the 

impact of human error and reduces customer churn. Staying ahead of your customers’ business 

and personal requirements requires automation solutions that can support your entire network, 

from L2 to L7, through all stage of your services lifecycle, from day 0 through day 2. Juniper 

provides automation for their all products, and they offer a package of solutions for network 

engineering, operations, and DevOps teams to take advantages from the network automation. For 

achieving better QoE for customers, Juniper’s have developed a closed -loop solution namely 

Paragon Automation to provide service assurance [51] [52]. 

Another well-known industrial organization Apstra have also developed a solution for 

automating the network. This solution can be achieved through following three technologies: 
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Firstly, they have developed IBN platform for service designing, translation of policies, self -

reporting, and validation. Secondly, Single Source of Truth (SSOT), closed -loop network 

automation and data analytics mechanism achieved through a graph datastore. Thirdly, they 

provide complete openness and vendor independence. They have IBN analytics mechanism that 

allows to insight the status of complete infra and collects and store more important data. Apstra 

has Apstra operating system (AOS) that allows to design, build, deploy, and validate network on 

real-time. It does it by using IBN core concepts by having a central AOS. Figure 2.7 illustrates the 

architecture of AOS system [24] [53]. 

 

Figure 2.7: Architecture of APSTRA AOS 

It may sound counterintuitive, but it’s all made possible with intent. Intent means, essentially, 

what you are trying to achieve. Apstra Intent-Based Analytics works by allowing you to use quality 

information (patterns you know or expect), made available to you through intent (what you are 

trying to achieve) and reference design (how you are going to achieve it). Intent gives you the 

ability to gather the right knowledge, rather than all the knowledge, from user infrastructure. The 

right knowledge leads to actionable insights. Apstra’s Intent-Based Analytics uses intent to find 

the right knowledge and data to identify conditions with significant semantic value (in other words, 
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insights). The insights you gain from Apstra’s Intent-Based Analytics helps NOs to control 

infrastructure efficiently [53]. 

The Benefits of Apstra Intent-Based Analytics is different from traditional solutions:  

• Simple and clear insights: identifies significant conditions and situations to watch and 

eliminates noise in real time using a “simple pane of glass.”  

• Storage and processing cost savings: enables storage and processing cost savings by 

extracting more information while collecting and storing less data.  

• Automated troubleshooting:  Empowers you to automate effective, complex, context-

rich troubleshooting workflows, saving time and money. 

•  Zero-Touch Maintenance: Provides zero-cost and zero touch maintenance when 

changes occur.  

• No Integration Necessary: Increased flexibility and cost savings by eliminating high-

cost, fragile data-processing pipeline integration efforts.  

• Meticulous Accuracy: More accurate than ML/AI approaches, making you more 

effective and agile while saving time and money. 

RADCOM ACE (automated, containerized, e2e) has proposed a closed-loop and automated 

solution that works with Kubernetes to provide service assurance for 5G networks. It identifies 

each network slice instance, generates performance indicators, and forwards them to control plane 

NFs such as NSSF and PCF. RADCOM also has an ICON platform that provides service assurance 

to deliver Intelligent, Container-based, On-demand network analysis from the RAN to the Core 

domains. RADCOM ICON has implemented some capabilities of NWDAF. It allows consumers 

to subscribe to the NWDAF to receive performance indicators and exceed threshold notification 

whenever needed. The AI and ML algorithms inside the RADCOM system collect the data from 
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various domains, perform real-time data analytics, and forward results to NFs and NOs for the 

proactive management of the network. Also, network resources are continuously monitored to 

ensure service SLAs [54] .  

Sandvine has also introduced the NWDAF framework for the core cloud that follows 3GPP 

standards. It is enriched with tested ML capabilities and performs intelligent traffic classification 

superior to other industrial solutions. Sandvine has not only built an NWDAF that meets this 

minimum standard but has also enriched it with proven traffic classification capabilities and 

granular, contextual, and precise KPI measurements that can be used to revolutionize the way 

mobile service providers see and manage their networks [55]. 

Another popular organization ERICSSON has also introduced a data-driven architecture 

for the management and automation of the network. It has ML-based data pipelines, exposure and 

probing mechanisms, and NWDF capabilities through AI and ML. They have the NWDAF for 

control plane and data plane network functions and MDAF for performing management domain 

analytics [56]. 

NWDAF is a critical element in providing automated assurance and analytics, allowing 

operators to manage elements such as network slicing in a cloud native NFV domain in real-time. 

A central foundation of VIAVI NITRO Mobile [57] is an open platform with northbound and 

southbound interfaces aligning with standards and technologies as they evolve. NITRO Mobile 

would leverage the NWDAF principles to provide granular insight on the 5GC network, services, 

and customers. 
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2.3. AI and ML Approaches for Network resource Utilization Prediction 

and Anomaly Detection and Mitigation 

This paper proposed a convolutional neural network (CNN) and long short-term memory (LSTM) 

models to predict multivariate tasks such as central processing unit, memory, and network usage. 

Initially, the vector autoregression technique was used to filter linear interdependencies among the 

multivariate data. The residual data is then provided to the CNN layer to extract complex features 

of the virtual machine usage components after the LSTM network. The proposed hybrid model 

applied the scaled polynomial constant unit activation function and compared it with other 

predictive models. It improved the accuracy performance, showing around 3.8% to 10.9%. The 

error percentage rate also decreases to approximately 7% to 8.5% compared to the other models. 

Consequently, the proposed model could improve the central processing unit, memory, disk, and 

network usage by taking less computation time. We will implement this proposed model in VM 

energy and data prediction in the cloud data center in future research [58]. 

Support Vector Regression (SVR) model was considered to forecast the future usage of 

multi-attribute host resources and handle a non-linear cloud resource workload. Inside SVR, radial 

basis kernel function and Sequential Minimal Optimization Algorithm (SMOA) were hyper tuned 

to improve the forecasting accuracy. Moreover, we investigated the multi-attribute cloud resources 

over a single resource differently from the previous works. Our method employed eight sets of 

real-world data collected from BitBrain (BB), PlanetLab (PL), and Google Cluster Workload 

Traces (GCWT). This series of experiments showed one of the practical points of our approach. 

The generated accuracy increased about 4%-16%, together with the reduction in error percentage 

at around 8%-60% [59].  
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In this cited work, the structure and the protocols of NWDAF defined in the 3rd Generation 

Partnership Project (3GPP) standard documents were proposed. A cell-based synthetic dataset for 

5G networks represented by the 3GPP specifications is generated, and some anomalies were added. 

The classification of these anomalies has been done within each cell, subscriber category, and user 

equipment. Linear regression (LR), LSTM, and recursive neural networks were then employed for 

the network load prediction capabilities of NWDAF in terms of minimizing mean absolute error 

(MAE). Two ML models, such as logistic regression and extreme gradient boosting (EGB), were 

implemented under the receiver operating characteristics curve in the classification module. The 

simulation results showed that neural network-based algorithms outperformed LR in network load 

prediction. However, the tree-based gradient boosting algorithm outperformed logistic regression 

in anomaly detection. Therefore, these estimations can   improve the accuracy performance in the 

5G network through NWDAF [27].  

They proposed a novel method that can identify the most appropriate model adaptively and 

automatically and predict data center resource utilization. The classifier was trained based on 

statistical features of historical resource usage. The suitable prediction model was then decided for 

given resource utilization observations collected during a specific time interval. The evaluation of 

our approach was conducted using real datasets and comparing to multiple baseline methods. The 

results indicated that our model provided better performance than the state-of-the-art approaches, 

delivering 6% to 27% utilization estimation accuracy [60]. Moreover, an EL based hybrid model 

was developed for CPU usage prediction in this work [61]. The hybrid model is a combination of 

multiple lightGBM models. It shows 0.91 R2 accuracy while performing CPU prediction. 
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Although artificial intelligence (AI) has been widely used in the area of 5G networks, there 

is still a lack of standard solutions to build an operational system. This article combined the 

relevant standard specifications and complemented them with additional building blocks. Their 

proposed framework used concrete AI-based algorithms serving different purposes toward 

developing a fully operational system. The results from applying our framework can control, 

manage, and orchestrate functions, showing the benefits that AI can bring to 5G systems [62].  

The constant change in cloud consumption affect the accuracy of forecasting algorithms 

that become one of challenge in cloud computing [63]. Therefore, RNN was applied for predicting 

CPU utilization in terms of single time-step and multiple time-steps because it can predict more 

accurately than tradition approaches for time series problems. 

Machine learning and slide window-based forecasting models were developed to scale 

proactive resource in the cloud [64] . Historical and current utilization data were used to forecast 

future utilization. The evaluated accuracy was improved by using prediction models and improved 

sliding window size. It shows 80% prediction accuracy.  

The neural network along with self-adaptive differential evolution were implemented for 

predictions using cloud data [65]. This proposed approach provided better accuracy than usual 

back-propagation algorithm with respect to measuring RMSE. 

Conventional time series models have no ability to handle long-term dependency which 

appears in cloud usage resource. Consequently, multivariate and bidirectional LSTM models were 

proposed for usage prediction. The generated results of both models were compared with different 

fractional-based techniques and outperformed existing models based on Google cluster trace [66]. 
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Concerning challenges and issues in resource scaling and power consumption of cloud computing, 

LSTM predictive models were trained and tested using three baseline available data on web server 

logs [67]. 

An anomaly detection technique was developed by the hybrid model that includes the fuzzy 

K-means (FKM) algorithm, support vector machines (SVM), and Kalman filter (EKF). The 

proposed method was performed to verify universally accepted datasets, including  DARPA’98  

dataset and Knowledge Discovery and Data Mining 1999 (KDD’99) dataset [68] . 

This work [69] revealed that the hidden Markov model outperforms all other anomaly 

detection techniques according to the average anomaly detection rate and FPR. Ghosh et al. [70] 

also proposed an artificial neural network-based anomaly detection method exploiting several 

variations in classifying system-call sequences. The performance of the detection rate using 

DARPA data has been improved.  

Network disruptions are sometimes caused by the presence of anomalies in operational 

networks. As a result, the abnormal changes in network traffic have been analyzed by using several 

techniques. In the cited work of Jiang et al., [71] the network-wide traffic was analyzed to detect 

the abnormalities in the transform domain. The problem of anomaly detection was also examined 

for large-scale communication networks. This work performed the wavelet transform method in 

integration with the empirical mode decomposition approach to diagnose the anomalies involved 

in multimedia medical devices and capture the multiscale characteristics of anomalies in high-

speed network traffic. 

Deep learning (DL) based botnet detection system was proposed for network traffic flows 

[72]. In the botnet detection framework, the network traffic flows were collected and converted 
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into connection records and used the DL model to detect attacks from compromised IoT devices. 

Well-known and recently released benchmark datasets were applied to conduct the experiments to 

optimize the DL model. From the result comparison, the proposed model outperformed the 

conventional machine learning (ML) models. 

This paper aims to detect the attack traffic by taking the centralized control aspect of SDN 

[73]. In today’s world, various ML techniques are being deployed for detecting malicious traffic 

in the field of SDN. Despite benefits, there is an open question in selecting relevant features and 

accurate classifiers for attack detection. The combination of SVM with kernel principal component 

analysis (KPCA) reducing the dimension of feature vectors and a genetic algorithm (GA) 

optimizing different SVM parameters was proposed to get better detection accuracy. An improved 

kernel function (N-RBF) is also applied to reduce the noise caused by feature differences. The 

proposed model achieved more accurate classification with better generalization than the 

standalone SVM model. It can also embed within the controller to define security rules and prevent 

possible attacks by the attackers. 

This article [74] presented and reviewed various false data injections by using attack 

detection methods for CPSs. The controllers of CPSs were grouped as centralized and distributed 

controllers based on the knowledge of control information. The discussion of existing centralized 

attack detection approaches revealed four domains: linear time-invariant systems, actuator and 

sensor attacks, non-linear systems, and systems with noise. Additionally, different decoupling 

methods were implemented for the distributed attack detection n. Some challenges and future 

research directions are also provided in the context of attack detection.  
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2.3.1. Ensemble Learning Approaches 

According to existing research, the standalone forecasting model often could not improve accuracy 

performance if there is a complex structure of input features and non-linear relationship problems. 

As a result, many researchers have recently been conducted combining two or more algorithms as 

either a hybrid or an ensemble method to improve forecasting performance. In the case of the 

ensemble method, there is no limitations for the number of ensemble algorithms, and it can be 

classified into three learning methods: bagging, stacking, and boosting. The first bagging ensemble 

method fits many tree-based and machine learning algorithms trained on the same dataset. The 

final predictions of bagging are generally generated either averaging or voting among all 

predictions from ML algorithms [29] [30]. 

Similarly, various different type of ensemble members are trained on the same training data 

in the stacking ensemble method. In the stacking approach, several classifiers or regressor models 

are combined through meta-regressor or meta-classifier. The base learner models (level-0) results 

are used as input to train the meta-regressor model. The meta regressor model learns from the base 

learner how they make errors and resolve the error in the final prediction result. Nevertheless, 

unlike the bagging ensemble, stacking uses either a different algorithm or one of the ensemble 

members to combine final forecasting results. The last ensemble learning, so-called boosting, is 

significantly different from others because of not combining ensemble members instantaneously. 

Boosting trains ensemble members sequentially by correcting the predictions of the prior model 

and then executing the final predictions using the weighted average of models [31] [30][32]. 

However, taking advantage of the ensemble learning capabilities, we have proposed a 

novel stacking EL-based model for network resource utilization prediction by combining gradient 

boosting machine (GBM), Catboost, and XGBoost ML models. On the other side, hybrid EL 



33 
 

models have been developed by combining random forest (RF), Catboost, and XGBoost models 

for anomaly detection use cases. These hybrid models show promising performance in comparison 

to individual models and state-of-the-art models. 
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Chapter 3 

Design and Architecture of Ensemble 

Learning-based Network Resource 

Utilization Prediction for IBN-enabled 

Slice LCM 
 

3.1. Introduction 

Intent-Based Networking (IBN) has been introduced by IETF, which provides proactive control 

and management to fulfill customers' differentiated QoS requirements. It receives higher-level user 

intentions and automatically deploys them over the infrastructure. It is a self -configure, self-

assured, self-organized, and self-healing mechanism. Hence, the Intent-based networking and ML-

assisted data analytics mechanism for autonomous e2e network slice lifecycle management have 
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been developed in this research. It consists of an IBN platform, NWDAF, NFVO OSM, RAN 

controller, monitoring, and data collection mechanism. IBN platform can orchestrate, control, and 

manage the network slice instances automatically. It is a one-touch approach where the user needs 

to input QoS requirements into abstract form, and the system itself performs all the operations for 

deploying the resources. It receives the QoS requirements from users, automatically converts them 

into network policies, and deploys them over the infrastructure. 

On the other side, we have integrated 3GPP NWDAF functionalities into the IBN platform 

for providing intelligent and proactive control and management of network slice resources. The 

implemented NWDAF is divided into three separate data analytics function (DAF) such as core -

DAF (C-DAF), edge-DAF (E-DAF), and RAN-DAF (R-DAF) for each domain. So, for C-DAF, 

we have used a hybrid STEL ML approach for future VNF resource utilization prediction and 

another ensemble ML model for anomaly detection. Hence, the prediction results of the NWDAF 

models will be used by the IBN intelligent decision engine to decide to scale-up/scale down the 

network resources, and attack detection and mitigation.  

Figure 3.1 illustrates the abstract architecture and design of the proposed ensemble-

Learning based network data analytics for e2e slice orchestration and management through IBN 

platform. It comprises an IBN platform, NWDAF, NFVO orchestrators, a RAN controller, and a 

monitoring mechanism. The step-by-step explanation of each component is illustrated below. 
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Figure 3.1: Abstract architecture of proposed system which contains IBN system, 

management and orchestration module, infrastructure, monitoring mechanism, data 

collection module, and NWDAF 

3.2. Intent-based Networking (IBN) platform for e2e Network Slice lifecycle 

Management 

The IBN platform is further divided into IBN dashboard, intent translation, e2e design and 

information repository, network policy generation module, ML-based NWDAF, and intelligent 

decision engine module. The IBN platform is a closed-loop mechanism for orchestrating, 

controlling, and managing e2e network slices in a multi-domain environment. It can commission, 

activate, monitor, and delete the network slice in an automated manner. The details of slice 

lifecycle management are explained below. 
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3.2.1. Slice Instantiation or Commissioning  

The dashboard of the IBN platform is used to input the user intents or network slice requirements 

into abstract form. The intent translation module translates the abstract inputted intents into 

resource requirements. e2e design and information repository is a knowledge base or a rich 

database of IBN platform which has network topology information, underlying physical and virtual 

resource information, deployed policies information, and API’s information. The intent translation 

engine can translate higher-level abstract requirements into resource information and designs a 

VNF forwarding graph (VNFFG) with e2e design and information repository correspondence. The 

created VNFFG is further forwarded to the policy generation module, where we have separate 

orchestrator-dependent policy generators because each orchestrator and network controller accepts 

policies in a different format. For example, OSM accepts the policies into JSON string format, M-

CORD platform accepts into TOSCA format, and RAN controller accepts into JSON template. So, 

the RAN, edge, and core policy generator modules convert the received configurations into 

domain-specific policies and send those policies templates into the underlying NFVO and RAN 

controller. 

Furthermore, OSM NFVO deploys those policies by activating the resources over the core 

and edge infrastructure with the help of VIM OpenStack. On the other side, the RAN controller 

deploys policies over the RAN domain. The RAN policy template contains activated core and edge 

VNFs such as dedicated vMME information for a specific slice. The detailed architecture of the 

proposed mechanism is depicted in Figure 3.2. The internal details of our implemented testbed for 

network slicing and working of each component is well explained in these references [4] [75]–

[79]. Once the slice resources are orchestrated and connected, the monitoring mechanism 
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continuously monitors all domains' slice resources. It collects the logs from each domain and stores 

them into a data storage module. 

 

Figure 3.2: Detailed architecture of proposed mechanism of network data analytics for IBN 

enabled slice lifecycle management 

3.2.2. Slice Activation  

As mentioned earlier, the IBN platform converts the service requirements into network policies 

for domain-specific orchestrators and controllers. To activate the network slice over a multi-

domain environment, we are using multiple NFVOs and network controllers: M-CORD and OSM 
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platform are used as NFVOs, SDN-based FlexRAN controller for RAN domain. The procedure of 

activating a slice over the infrastructure using various components is discussed below. 

3.2.2.1. NFV- Orchestrator OSM for the Deployment of core VNFs 

OSM is an open-source NFV-based orchestration platform developed by ETSI. It automates e2e 

service instantiation and management process. It not only supports the management and 

orchestration of VNF but also physical network functions PNF as well as hybrid functions. This is 

a widely adopted orchestration platform for VNFs deployment and management. It enables the 

NOs to orchestrate services over the RAN, transport, and core domain. OSM developed on ETSI 

MANO specifications has several modules: NFVO orchestrator, VNFM, VIM, and WIM (wide 

infrastructure manager). OSM used the OpenStack cloud platform as a VIM [80].  

Figure 3.3 illustrates the OSM architecture for the management and orchestration of VNFs. 

It supports multiple VIMs to handle multi-domain network resources. In addition, OSM has a GUI 

dashboard for deploying, managing, and monitoring the e2e services over the infrastructure. It also 

supports the deployment of e2e network slicing in the core and RAN domains. So, we have used 

the OSM platform to deploy core NFs such as EPC components (vHSS, vMME, VSPGWC, 

vSPGWU). Besides, we have a policy configurator for OSM in the IBN platform, which converts 

the slice requirements into JSON string format or YAML format because OSM accepts the policies 

in this format. Thereby, the OSM policy configurator forwards the created policy template to the 

OSM through the Rest interface. Also, OSM deploys the NFs over the infrastructure with the help 

of OpenStack and VNFM. So, in this way, OSM deploys the core EPC NFs automatically.  
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Figure 3.3: Architecture of OSM platform for the deployment of VNFs 

3.2.2.2. RAN Controller 

We have used the FlexRAN controller for slicing the RAN resources as per user requirements. 

FlexRAN is an SDN-enabled RAN controller that provides a highly programmable environment 

and decouples the control plane from the data plane. Its programmability support enables the users 

to develop the applications on top of it. It can also control and manage multiple base stations 

efficiently. It has two main components: FlexRAN control plane and agent API. The FlexRAN 

master controller resides inside the FlexRAN control plane, which interacts and controls the 

FlexRAN agents [81]. On the other side, the FlexRAN agent acts as a local controller when 

interacting with the other agents and the master controller. It can control one eNodeB at a time. 

The FlexRAN agent API is a southbound interface that can decouple the control plane of FlexRAN 

from the eNodeB data plane. The FlexRAN protocols are used for the communications between a 

FlexRAN master-controller and agents. Control and monitoring applications are developed on top 
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of the RAN controller and communicate with the master controller through the northbound 

interface. These applications are used for the automatic management, modifications, and control 

of the RAN resources. FlexRAN controller in our network slicing system is responsible for slicing 

the RAN resources [82]. Figure 3.4 highlights the components of FlexRAN controller. Due to this, 

our RAN slice template generator converts the higher-level slice configurations into the JSON 

format. Moreover, it receives the RAN slice template generated by the RAN slice template 

generator and deploys the slice over the eNB as per requirements specified in the slice template, 

e.g., 20 MB/s bandwidth. We made some modifications by developing management and control 

applications on top of controller to deploy QoS aware network slices. We have developed a radio 

resource management application for accommodating QoS aware RAN slicing. Besides, it can also 

monitor and control the RAN infrastructure. 

 

Figure 3.4: Abstract architectural view of FlexRAN controller for RAN domain slicing 
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Figure 3.5: RAN and core network configuration templates for the deployment of resources 

through OSM and FlexRAN 

Figure 3.5 illustrates the configurations sample generated through the IBN policy 

configurators for OSM and FlexRAN controller. These configurations are forwarded to the OSM 

platform to deploy core EPC VNFs. OSM receives configurations from the REST interface in the 

form of JSON-based NSD (Network Service Descriptors), and VNFD (Virtual Network Function 

Descriptor), and NST (Network Slice Template). NSD contains configurations for establishing the 

connection between VNFs to provide a service. On the other hand, VNFD contains VNFs 

configurations related to interfacing, networking, and resources. NST has connectivity information 

among VNFs and performs service function chaining (SFC).  

3.2.3. Slice Run-time Monitoring 

The run-time monitoring of slice resources is essential for efficient resource management. Figure 

3.6 illustrates the monitoring module that works in two ways: RAN domain monitoring and Core 

VNFs resources monitoring. The eNodeB resources are monitored using the FlexRAN controller 
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and elasticMon tool [83]. The elasticMon is a monitoring tool specially designed for 5G mobile 

networks to monitor the enormous real-time data traffic to control and manage it.  

FlexRAN controller and elasticMon tool can monitor and store the statistics of the eNodeB. Kibana 

and Grafana tools are used on the top of the FlexRAN controller and elasticMon to visualize the 

data traffic on runtime. On the other side, core network VNFs are monitored by the Openstack 

telemetry service or ceilometer. 

  On top of that, MON OSM monitoring service collects the VNFs data logs that are further 

forwarded to Prometheus [84], which is an open-source tool for monitoring the real-time data 

traffic and stored these matrices into a time-series database. So, Prometheus kept the VNFs data 

logs into the real-time database repository [85]. After that Grafana tool is integrated with the 

Prometheus database to visualize the VNFs resource stats such as CPU usage, RAM usage, etc. 

Using these open-source monitoring tools, we can monitor and collect the network slice resource 

usage on runtime. In case of failure, our system can reconfigure and update the slice resources 

dynamically. 
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Figure 3.6: Deployed core and RAN resources monitoring mechanism 

3.2.4. Slice Deactivation or Decommissioning  

There are two folds for slice deletion using our IBN network slicing system. The first way is that 

the slice termination re-quest is generated through the IBN system web portal, which contains the 

slice SNSSAI (single network slice selection assistance information), SliceID. The slice deletion 

configurations are rendered the same as the slice creation process. The slice deletion template is 

forwarded to the NFVOs such as OSM and FlexRAN controller to delete the resources. The OSM 

and RAN controller delete the specified resources and release the resources for future usage. The 

second way is that slice starting and ending time should be inserted during the slice creation phase. 

When the slice ending time comes, the IBN system automatically generates the slice deletion 

request and automatically performs the same process. After that, deletion confirmation notification 

is sent back to the operator through the IBN platform. 
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Figure 3.7: Procedure of network slice activation and deactivation through IBN  

Figure 3.7 illustrates the step-by-step slice activation and deletion process through the IBN 

system. In the first step, the users define slice requirements in the form of intent by inputting QoS 

(uplink, downlink) requirements, sliceID, slice category information through the GUI of the IBN 

system. After that, the IBN policy configurators translates these higher-level requirements into 

policy configurations for each domain and forwards them to OSM and FlexRAN to deploy 
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resources. Furthermore, OSM prepares the core network EPC VNFs resources for the requested 

slice using OpenStack. On the other hand, the FlexRAN controller deploys the slice configurations 

at the RAN domain. These slice configurations include information about dedicated vMME, slice 

SNSSAI, and QoS requirements used to stitch RAN slice with core VNFs. Afterward, IBN notifies 

the user of successful slice activation. For the slice decommissioning process, the user needs to 

input the network sliceID information through the IBN portal. Then IBN manager checks the slice 

information from the catalog repository of the IBN system. IBN again translates the slice 

information into policy configurations and forwards them to OSM and FlexRAN controller to 

delete core and RAN domain resources associated with that slice. Subsequently, OSM with 

OpenStack deletes the core EPC VNFs, and FlexRAN deletes the slice at eNodeB. Finally, OSM 

and FlexRAN notify the IBN platform about slice deletion. IBN reports the user for successful 

slice deletion. In this way, the IBN system can automatically design, activate, and delete the slices 

where the user only provides higher-level slice requirements, eliminating manual effort. 

3.2.5. Decision Engine 

The decision engine is an integral part of the IBN system for automatic updates and resource 

assurance. The decision engine performs the decision based on a dynamic-thresholding oriented 

mathematical model to autoscale the core resources. It receives the HSTEL model prediction 

results and calculates whether the resource update is needed or not. It is entirely dependent on 

HSTEL model prediction results. In resource overloading cases, it performs scale-up decisions and 

notifies IBN for the deployment of more resources. Also, in the resource under-utilization case, it 

serves to scale in the resource with the help of IBN, OSM, and FlexRAN controller. On the other 

side, if there are no overloaded and under-loaded cases, the resource remains unchanged. It reports 

to the IBN platform about the decision, and IBN takes further action through the underlying 
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orchestrator and controller. The complete details of this module with the mathematical model is 

well presented in our paper [34]. Furthermore, the hybrid model traffic classification and detection 

results are continuous reports to the decision engine for further action for the second attack 

detection and mitigation scenario. If the malicious traffic is detected through the ML model, the 

decision engine notifies IBN for proper action to mitigate that attack. The IBN platform defines 

policies to stop the malicious flow from the system. So, IBN takes advantage of the ML models 

results to ensure service QoS and provides proper security. The decision engine issues smart alerts 

to notify the IBN platform. We have used Rest Interfaces to communicate all the components such 

as ML to the IBN platform. The use of ML models enhanced the capabilities of the IBN platform. 

So, IBN with ML intelligently performs management and orchestration of e2e network slice over 

the multidomain. Hence IBN can follow a closed loop to automate and manage the network 

resources and services.  

3.3. Network Data Analytics Function (NWDAF) with IBN for Proactive 

Update and Assurance 

This module is an innovative feature of the IBN platform that is the implementation of ML-based 

NWDAF. We have used a separate data analytics function (DAF) concept for each domain: RAN-

DAF for radio access network domain, E-DAF for edge applications domain, and C-DAF for core 

network domain. Each DAF has pre-trained ML models on historical network data. These DAFs 

provide the results to the IBN platform to achieve specific use cases such as resource utilization 

prediction, attack detection, and prevention, mobility prediction, load balancing, etc.  

Figure 3.8 illustrates the internal NWDAF ML pipeline mechanism with the IBN platform, 

where data is collected from the different source (SRC) nodes of the underlying data plane. We 
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have deployed a data exporter node inside each domain for data collection (DC) purposes using 

the KAFKA framework. The collected raw data has been stored in real-time NWDAF data storage 

separately according to each domain. After that, raw data is preprocessed through cleaning, 

transformation, and feature extraction ML operations. The extracted preprocessed data is stored in 

the data storage module. For data analytics and data storage, we are using the spark  big data 

analytics framework. The stored preprocessed data is further used for training ML models. Once 

the model has been trained, it is evaluated based on performance measures such as accuracy and 

mean square error (MSE). If the model provides satisfying accuracy, then it will be deployed for 

execution. The results of various executed ML models have been forwarded to the IBN decision 

engine, which triggers update policy such as scale-up, scale down, or DDoS attack detection and 

prevention policy. After that, the issued policy will be deployed over the sink nodes through 

domain controllers and NFVO. 
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Figure 3.8: Network data analytics internal workflow 

  In our mechanism, we have used stacking EL-based model inside the C-DAF module to 

predict core VNF resource utilization or resource forecasts and DDoS attack detection and 

prevention. The other module decision engine of the IBN platform has a dynamic thresholding-

based model that uses the NWDAF module's prediction results and performs the auto -scaling of 

the resources in case of performance degradation and notifies about the attack detection. Further, 

it reports the orchestrator and controller to block that malicious flow. 

3.3.1. Dataset Preprocessing 

For training the ML and DL models, a real-time dataset is required, so, we have used real-time 

cloud core resources dataset collected for the period of three months for training and testing of our 
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HSTEL model. Further details of the dataset are provided in this repository [86]. The collected 

dataset contains twelve performance matrices related to CPU utilization, RAM utilization, Disk 

write and received and transmitted throughput as highlighted in Table 1.  

Table 1: Details of dataset features and their description 

 

Also, we have performed several preprocessing operations to transform the dataset, such 

as data cleaning, null value removal, and outlier removal: 

1) There are separate CSV traces, and we have performed data preprocessing operations to merge 

them into a single file. 2) Null values are replaced with 0 because the model could not perform 

well if null values were in the dataset. The considered dataset is time-series, and it comes in the 

arena of regression problem. So, it is vital for a regression problem; the dataset should be cleaned 

and following the proper timestamp. 3) Using panda’s library, we have removed several outliers 

from the dataset. 4) We have transformed the dataset and extracted important features for the 
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training of our hybrid HSTL model. 5) The original collected dataset conversion of minutely 

dataset into hourly dataset for mid-term prediction. 

Figure 3.9 highlights the sample of CPU and memory utilization patterns in the dataset. It 

can be observed from the plot that, the actual CPU and memory are within the range of 10 to 70% 

usage but there are some spikes with 80% and 90% utilization. So, the ML model learns from these 

patterns and predicts future network resource utilization, which will be further used for autoscaling 

cloud resources. So, we are going to predict the future utilization of CPU and memory because 

these two are more critical factors for a VNF or VM. However, due to that, these two are our target 

variables.  

 

Figure 3.9: A sample of target actual CPU and memory utilization in percentage  

For testing the correlation of the features with other attributes, we have performed correlation 

analysis. Based on correlation analysis, the most important features are selected for train ing the 

ML model. Figure 3.10 highlights the heat-plot map, which shows the correlation of each attribute 

in the dataset. This correlation graph explains how each feature is correlated and dependent on 
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other attributes; for example, actual CPU utilization in percentage is more correlated to CPU usage 

attribute, and actual memory usage is more correlated to memory usage (KB).  

 

 

Figure 3.10: Heat-plot map for checking correlation among attributes 

Furthermore, we have also performed feature importance analysis by using Random Forest 

(RF) [29] machine learning algorithm. We have separated timestamps by month, year, date, and 

time to predict better and according to the best and worst prediction results in peak hours and days. 

The importance of each feature considered in data preprocessing is illustrated in Figure 3.11. 
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Figure 3.11: Feature important analysis through random forest model 

  Furthermore, we used 70% dataset for training the HSTEL and other ML models and 

30%for testing purposes. We have used the Sklearn library to split the dataset into train and test 

set and used a manual approach. Evaluating the STEL model's performance shows satisfactory 

accuracy of almost 95% on CPU utilization prediction and 98% on memory utilization prediction. 

It predicts future CPU usage and RAM usage of the core VNFs. Currently, in C-DAF, we are 

performing short-term and mid-term forecasts such as minutes and hours. The further details of 

the proposed HSTEL model have been well-explained below. 

3.3.2. Proposed Hybrid Stacking Ensemble Learning (HSTEL) Model for 

Network Resource Utilization Prediction 

EL is a technique of ML in which various models are combined to achieve optimized and better 

accuracy. It categorizes into three types for implementing: averaging ensemble or voting ensemble, 

bagging (bootstrap ensemble), boosting, and stacking [32]. In this work, we have used stacking 

EL, also known as the stacked generalization approach, to better and optimize network resource 
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utilization prediction. Usually, the stacking EL technique's prediction results are better than 

individual models. In the stacking approach, several classifiers or regressor models are combined 

through meta-regressor or meta-classifier. The base learner models (level-0) results are used as 

input to train the meta-regressor model. The meta regressor model learns from the base learner 

how they make errors and resolve the error in the final prediction result  [30] [87]. 

Furthermore, in our STEL model, we have used Gradient Boosting Machine (GBM) and 

Catboost regressor as base learner (Level-0) models and Extreme Gradient Boosting (XGBoost) 

as meta-learner (Level-1) model. The Architecture of proposed STEL model is illustrated in Figure 

3.12. The details of implemented ML models are well explained below: 

 

Figure 3.12: Design and Architecture of HSTEL model for network resource utilization 

prediction 
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3.3.2.1. Gradient Boosting Machine (GBM) 

GBM is an extremely powerful ML algorithm introduced by Friedman in 2002 to perform 

classification and regression tasks accurately [88]. The basic behind GBM is to minimize the loss 

function by adding up a weak leaner in the model to accommodate the shortcomings of the existing 

weak learners. It reduces the variance and bias by including base learners (weighted sum) and 

refocusing the wrongly classified data. It uses multiple regression trees as base learners, and their 

results are combined to get the final output. The boosting approximation function is explained in 

equation 1 where ℎ(𝑡;𝑏𝑘) is a function for base learner model, 𝐵𝑘  is expansion coefficients, t 

represents explanatory variables, and 𝑏𝑘 illustrates the model parameters. 

𝐹(𝑡𝑖) = ∑ 𝐵𝑘ℎ(𝑡; 𝑏𝑘)𝑁
𝑘=1                        1) 

The following hyperparameters were used to implement the GBM model:  1000 trees, 0.1 

learning rate, evaluation criteria is Friedman MSE, 1.0 subsample, and 0.1 validation fraction. So, 

various recently developed boosting algorithms such as Catboost, LightGBM, and XGBoost used 

GBM as a base algorithm to boost scalability. 

3.3.2.2.  Gradient Boosting Model (XGBoost) 

XGBoost is a widely adopted supervised learning algorithm proposed by Tianqi Chen and Carlos 

Guestrin in 2014 [89] . It works on boosting principle where an active learner can be created from 

the weak learners. It is a tree integration algorithm and efficient implantation of the GBM 

algorithm based on function approximation and regularization techniques. It is a scalable tree 

boosting mechanism that is more than ten times faster than other boosting algorithms. The most 

crucial factor in the XGBoost algorithm is parallel and distributed computation ability and 

innovative tree learning model for handling spare data. XGBoost uses the cumulative sum of the 
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predicted values of a sample in each tree as sample prediction in the model. Moreover, it reduced 

the overfitting problem due to the addition of regularization terms and loss functions optimization. 

In our scenario, dataset D is given with n features D= [(X1, Y1), (X2, Y2), (X3, Y3), …, (Xn, 

Yn)] to the model which has K number of trees for the target prediction �̂�𝑖 as illustrated in Equation 

2. Also, �̂�𝑋 = 𝑊𝑄(𝑋)  (𝑊 ∈ 𝑅𝑇) is Classification and regression Tree (CART) space, Q denotes 

structure of each tree, T represents number leaf nodes in the tree, W is leaf weights and FK presents 

Kth tree.  

�̂�𝑖 = ∑ 𝐹𝑘(𝑋𝑖 ), 𝐹𝑘 ∈ 𝐹𝐾
𝑘=1                                      2) 

𝑂𝑏𝑗 (𝜃) = ∑ 𝐿(𝑌𝑖 , �̂�𝑖) + ∑ 𝛺(𝐹𝑘)𝐾
𝑘

𝐼
𝑖                       3) 

𝑂𝑏𝑗 (𝑡) =  ∑ 𝐿 (𝑌𝑖 , �̂�𝑖

(𝑡−1)
+  𝐹𝑡 (𝑋𝑖 ))𝑛

𝑖 + 𝛺 (𝐹𝑡 )    4) 

Equation 3 explains the objective function which has two parts loss function regularization 

terms, where 𝑌𝑖  is true label values, �̂�𝑖 is the predicted values, ∑ 𝐿(𝑌𝑖, �̂�𝑖 )𝐼
𝑖  is the loss per sample and 

loss function L can be customized in several ways. The main goal is to minimize the objective 

function. On the other side, 𝛺 (𝐹𝑘) = 𝛾𝑇 +
1

2
 λ ∑  𝑊𝑗

2𝑇
𝑗=1  is regularization term where W is jth tree 

leaf node weight, 𝛾 is regular leaf tree penalty term, and λ is regular leaf weight penalty term. 

These both penalty terms act as a smoothing factor and prevent the overfitting problem. 

Equation 4 illustrates the objective function for tth tree, whereas t-1 is sum of the predicted 

values of the t-1 tree, 𝐹𝑡 (𝑋𝑖 )  is output of the tth tree, and regularization values become the 

corresponding values of the latest tree. So, the final prediction is the sum of the output of numerous 

trees. The following setting parameters were used to tune XGBoost Model: 5000 total number of 
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trees, 50 early stopping rounds, maximum depth of the tree is 3, learning rate 0.1, linear regression 

objective function, and gbtree booster. 

3.3.2.3. Catboost Model 

Catboost is an innovative algorithm works based on symmetric decision trees proposed by 

Prokhorenkova et al. [90] in 2018. It processes categorical features efficiently with less 

information loss. Firstly, it uses modified GBM technique ordered boosting to control target 

leakage issues. Secondly, it is the best algorithm for handling small datasets. Thirdly, Catboost 

performs statistics operations on the categorical feature, computes the frequency of a specific 

feature category, and then includes several hyperparameters to generate numeral features. So, it 

preprocesses the categorical features by replacing them with numerical values. Moreover, it solves 

the issues of prediction shift, gradient bias, overfitting and improves model accuracy. Equation 5 

explains the transformation of categorical features into numerical, where 𝐶𝑐  is the class counter, 

average target 𝑇𝑎𝑣𝑔 , 𝑃𝑟 is the initial numerator value, and 𝐶𝑡 is the total counter. 

𝑇𝑎𝑣𝑔 =
𝐶𝑐+𝑃𝑟

𝐶𝑡
                                 5) 

𝐹(𝑡𝑖) =  ∑ 𝐶𝑘1(𝑡 ∈ 𝑟𝑗)𝑁
𝑘=1        6) 

In equation 6, 𝐹(𝑡𝑖) is the tree function of 𝑡𝑖 explanatory variable and 𝑟𝑗 is the disjoint region 

in correspondence to the leaves of the decision tree. We have used the following hyperparameters 

to tune the Catboost model: 0.043 learning rate, the symmetric tree growing policy, plain boosting 

type, maximum leaves 64, 0.800 subsample, and 1000 iterations.  
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Algorithm 1: Hybrid stacking ensemble learning (HSTEL) model for network resource 

utilization prediction 

 

The network resource utilization prediction is a regression task in this work, where a model 

$f$ takes the input feature vector onto the label values (target features). The train ing dataset is 

used to train model f, which falls within the supervised learning scope. As explained in equation 

7, the regression problem is formulated as a minimization problem. The first part of the objective 

function is empirical risk outlined by a loss function that calculates the quality of the model f. The 

second part is the regularization term used to estimate the complexity of the model f, and λ is the 

regularization parameters. 

min(𝑓𝑚) = ∑ 𝐿(𝑓𝑚((𝑋𝑖 ),𝑌𝑖 ) + λ(𝑓𝑚))𝑚
𝑘=1       7) 

𝑃(𝑆𝑇𝐸𝐿) = (𝑃𝐺𝐵𝑀 ∗ ∝) + (𝑃𝐶𝐵 ∗  𝛽) + 𝛾       8) 
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In our case, network resource utilization dataset D with n features D= [(X1, Y1), (X2, Y2), 

(X3, Y3), …, (Xn, Yn)] is divided into training and testing dataset for the training and validation of 

STEL model. Algorithm 1 explains the working mechanism of the hybrid STEL model. The 

training dataset has been used to train the base learner regressor models, and the validation  set is 

used to test the prediction results. After that, prediction results of the level-0 models were used as 

input for training the XGBoost model. So, the XGBoost model was constructed based on two base-

leaner models. XGBoost model trained on that dataset and tested on the test dataset. The prediction 

of the meta-learner regressor is the final prediction result. Equation 8 explains the final prediction 

of the STEL model, which is a linear combination of GBM and Catboost models. 𝑃(𝑆𝑇𝐸𝐿) is the 

final prediction of the STEL model, 𝑃𝐺𝐵𝑀  and 𝑃𝐶𝐵  are the output of GBM and Catboost 

respectively, ∝ and 𝛽 are weighting coefficients achieved through XGBoost model fitting, and 𝛾 

is a correction constant. Furthermore, the STEL model predictions have been tested by calculating 

various error metrics such as Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean 

Absolute Error (MAE), Mean Absolute percentage error (MAPE), and Regression-score R2 

\cite{abdullah2020predicting}. 

However, the prediction results of the HSTEL model will be used by the IBN decision 

engine. It has a dynamic thresholding-based model which decides the autoscaling of resources to 

assure QoS requirements. If there is a sudden increase in traffic, it will trigger a policy to deploy 

more VNFs to avoid performance degradation. Hence, NWDAF predictions results are used to 

perform the network's autoscaling of resource and anomaly detection and mitigation. So, the IBN 

platform with NWDAF performs closed-loop orchestration, control, and management of the e2e 

slice resources. 
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3.3.3. Hybrid Model for Anomaly Detection  

Similar to network resource prediction, anomaly detection and mitigation is also crucial aspect of 

future networks. It is a critical use case of NWDAF defined by 3GPP. Network security has been 

a big challenge due to the continuous increase in smart devices in the last years. Therefore, 

anomaly detection and mitigation have gained a lot of attention from researchers. So, an automated 

ML mechanism is required to detect the anomalies from the system and take proper action to 

mitigate them from the network.  

In the last years, ensemble learning techniques have been used in many areas of 

classification and regression. More specifically, these techniques have been widely used in the 

cybersecurity field anomaly classification. The main concept behind EL is to improve the 

performance of ML by combining several classifiers. The hybrid EL model shows better 

performance compared to the individual model in most cases.  

 

Figure 3.13: Hybrid ensemble learning model for anomaly detection from the system 
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Due to the many advantages of EL approaches, we have developed a hybrid model for 

anomaly classification from the network. The Random Forest (RF), Catboost, and XGBoost ML 

classifiers are combined using the EL voting method to perform better and optimize classification. 

The RF, Catboost, and XGBoost models are used as base models and combined through a voting 

ensemble model to achieve final classification output [68] . Figure 3.13 illustrates the workflow of 

proposed hybrid model for attack classification. The working functionalities of Catboost and 

XGBoost are well explained in the last section. On the other side, the working of the RF algorithm 

is discussed below. 

3.3.3.1. Random Forest (RF) 

RF is a viral ML algorithm that is mostly used for regression and classification problems. It comes 

under the umbrella of ensemble-learning approaches. The RF classifier completely works based 

on a decision tree (DT). Additionally, it is easy, fast, and simple to implement and highly 

successful while performing classification and regression [91], [92]. RF is a collection of DTs 

corresponding with a set of bootstrapping samples created from the actual dataset. The samples 

generated through the bootstrapping method are the same size as the actual dataset. The splitting 

of nodes are based on the Gini index (entropy) of a chosen sample of features. The main principle 

of the RF algorithm is the construction of multiple simple DTs in the training phase and performing 

classification based on a majority voting mechanism. Besides, due to the voting mechanism, it 

overcomes the DT overfitting issue on training data. During training, RF used EL bagging 

mechanism for each tree. In the bagging method, the random samples with replacement are 

selected from the training dataset and associated with DTs. Also, the DTs in the ensemble 

automatically learned through out-of-bag (OOB) errors. The samples that remain unselected 

through bootstrapping method are used to evaluate the DT [93]. 
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Moreover, Bootstrapping helps to develop RF with the required number of DTs to improve 

classification accuracy and reduce overfitting issues. On the other hand, bagging is used to select 

the best DTs through the voting method. After developing the forest, a new data sample is given 

to that forest for classif ication; each DT in the forest casts a vote for a class that indicates tree 

decision. So, the RF chooses the class which gains most of the votes from the forest.   

To test the performance, we have trained our hybrid models on two benchmark datasets: a well-

known KDD-CUP DDoS attack dataset  [94] and a synthetic attack dataset. The trained model 

detects anomalies from the network and reports to the IBN platform to execute mitigation policy 

and stop that flow. 

3.3.3.2. Dataset Information 

Table 2 highlights the details of the used dataset with its attributes. The considered dataset was 

labeled as normal and attacked traffic. The hybrid model learned the feature patterns and 

performed classification This dataset is used to train our hybrid model to perform attack 

classification that achieved 97% accuracy in the testing phase. The experimental results show the 

superiority of the proposed model compared to existing models. 

Besides, another benchmark attack dataset was used to validate the system performance. We 

have performed data preprocessing by removing null values, outliers, data cleaning and data 

transformation.  
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Table 2: Details of first dataset 

 

 

Figure 3.14 shows the correlation matrix or heat-plot, which indicates the importance of 

each feature and dependencies. After performing correlation analysis, we have also checked 

feature importance through the RF model. In addition, the features are selected based on correlation 

analysis through heat-plot map and RF model. The selected features are used to train the hybrid 

model. On the other side, categorical distribution is performed on this dataset, as depicted in Figure 

3.15, which shows the attack classes and their distribution. 
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Figure 3.14: Correlation analysis of the dataset which shows the feature dependances and 

importance 

 

Figure 3.15: Attack types and their distribution in the dataset a) shows the explicitly attack 

type and their weight b) highlights five broad classes of the dataset 
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After performing the categorical distribution, the data splitting was done for the model 

training. It was divided by a 70:30 ratio, 70% of the data was used to train the model, and 30% to 

test the mode's performance. The hybrid model shows satisfactory results, and it achieves 98.3% 

accuracy during the training phase and 97% in the validation phase.  So, in this way, the Hybrid 

model performs anomaly detection from the system, and the IBN decision engine checks the 

detection results of the model. If anomalous traffic enters the system, the IBN platform enforces a 

mitigation policy to NFVO OSM and FlexRAN controller to stop that malicious flow. 
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Chapter 4 

Experimental Results and Discussion  
 

4.1. Results of E2E Network Slicing through IBN System 

We have designed and implemented an IBN platform for e2e network slicing to automatically 

create, update, monitor, and delete network slice instances. It has a dashboard portal for the users 

to define the QoS requirements for a network slice. The requested slice requirements are translated 

into a domain-specific policy template through the policy translator module. After that, the 

network orchestrator deploys those policies over the infrastructure and activates the resources for 

operation. The IBN platform communicates with the underlying domain orchestrator through the 

REST interface. The testbed of our e2e network slicing mechanism comprises of IBN system, 
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OSM orchestrator, FlexRAN controller, resource monitoring mechanism, EL-based NWDAF 

module, and OAI NFs. Figure 4.1 illustrates the components of implemented testbed for network 

slicing. The IBN system can manage and handle the complex configuration generation tasks and 

prepares the slice template according to the underlying platforms. IBN is the core entity of our 

proposed mechanism for performing e2e network slicing. It acts as the main orchestrator and 

handles the slice designing, admission, and control mechanism.  

 

Figure 4.1: Testbed for e2e network slicing 

 

4.1.1. Experimental Testbed Details 

The OSM platform is used for deploying the core network VNFs, and the FlexRAN controller 

handles the RAN slicing mechanism in our work. In addition, the IBN system prepares the policy 
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configurations template for OSM and FlexRAN controller. Currently, in th is testbed, we have 

tested the core and RAN slicing mechanism. Due to the lack of 5G resources, we have implemented 

our network slicing system using LTE OpenAirInterface (OAI) components. The OAI  [95] is an 

open-source community that provides the LTE mobile network implementation. OAI provides 

EPC VNFs (vHSS, vMME, VSPGW), eNodeB, and UE. So, we have used OAI components for 

implementing e2e core and RAN domain network slicing. The OSM and OpenStack have been 

used for deploying dedicated core VNFs for a specific slice.  

On the other side, multiple eNodeBs are deployed with software-defined radio (SDR) 

USRP (Universal Software Radio Peripheral) B210 for realizing LTE RAN capabilities. The 

FlexRAN controller is deployed in a separate machine that handles multiple eNodeBs. The RAN 

slice and core EPC VNFs are stitched by providing a dedicated vMME configuration in the 

template for establishing an e2e connection. Each slice is admitted using a unique public land 

mobile network (PLMN) id, and users can access a specific slice. The FlexRAN controller slice 

the RAN resource following the policy configurations received through the IBN platform. In 

addition, the FlexRAN controller can handle and manage the RAN domain by creating and deleting 

the slice instances over the infrastructure. 

So, the IBN system can create a policy template in JSON string for FlexRAN and 

implement the received configurations over the RAN domain. On the other side, dedicated vMME 

and other NFs are assigned to the created RAN slice. Hence, the IBN system automates the policy 

template generation mechanism for multi-domain and manages the core and RAN resources 

through OSM and FlexRAN. The implemented monitoring tools can continuously monitor the 
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Core and RAN resources and collects the logs on runtime. The testbed components and details are 

presented in Table 3.  

Table 3: Details of system components and their configurations 

 

IBN platform web portal is presented in Figure 4.2, where users input slice requirements 

in user intents form. Received intents are translated into policies/slice templates with the help of 

domain policy configurators for underlying OSM and FlexRAN controller. Figure 4.3 shows the 

core EPC VNFs deployment status through OSM. It highlights the topology information, the 

relationship between VNFs, and interfacing. Moreover, OSM and FlexRAN controller enforces 

those policies over the Core and RAN infrastructure to activate network slice.  
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Figure 4.2:  Web portal of the IBN platform for inputting service requirements in intent 

form 

 

Figure 4.3: Status of EPC VNFs deployment using OSM 

4.1.2. Results and Discussion of Network Slicing 

The policy/slice template contains all the information related to the QoS requirements, such as 

bandwidth, memory, CPU, instance (VNF) images information, etc. For example, the RAN policy 
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template generated by the RAN policy configurator contains public land mobile network (PLMN), 

uplink, downlink, slice SNSSAI-ID, and type of service. These QoS requirements for a slice are 

further converted into the required number of radio resource blocks through the RAN slicing 

application inside the FlexRAN controller. Besides, FlexRAN controller deploys the resource 

through static approach such as 50% 40% of RAN resources. So, in our mechanism, we have used 

both the static and dynamic polices for slicing the RAN resources.  

On the other side, the dedicated EPC VNFs are activated similar to the specified resources 

in the user contract and assigned to the RAN slice. The RAN slice template contains dedicated 

MME and other EPC VNF configurations for establishing an e2e connection. So, in this way our 

IBN system instantiates and activates core and RAN network slices over the infrastructure. 

For testing the stability of our system, we have performed iPerf tests. We have created 

multiple slices with different QoS requirements of three types: eMBB, URLLC, and IoT slice. In 

the first case, we have deployed two static slices, eMBB, and IoT, with 50% of RAN resources, 

by inserting QoS requirements through the IBN portal, and the system automatically activates the 

e2e network slice with the cooperation of other components. Figure 4.4 shows the downlink speed 

recorded through the deployed e2e eMBB and IoT slice. The eMBB and IoT slice show almost 

similar throughput maximum of 23MB/s because of the equal resources requested through the 

SLA. On the other side, Figure 4.5 illustrates the downlink throughput of three slices recorded in 

multiple time slots with different QoS requirements. The eMBB, URLLC, and IoT slices are 

deployed with 30%, 20%, and 50% of the resource capacity, respectively. However, the IoT slice 

has achieved a maximum of 25 MB/s downlink throughput and an eMBB slice with a maximum 

of 17 MB/s throughput. Moreover, the maximum of 9 MB/s throughput speed was recorded with 

the URLLC slice.  
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Figure 4.4: Average throughput testt of two slices instantiated through IBN system 

 

 

Figure 4.5: Average throughput test of three slices instantiated through IBN 

Figure 4.6 illustrates the achieved downlink throughput results of four slices activated with 

different QoS requirements through the IBN system: eMBB slice#1 with 30% of RAN resources, 
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IoT slice with 30% of the resources, eMBB slice#2, and URLLC slice with 20% RAN resources 

for each. For the eMBB slice#1 slice, we have recorded a maximum of 17 MB/s throughput by 

performing several tests.  

In addition, the IoT slice achieved a maximum of 15 MB/s throughput. On the other side, 

eMBB slice#2 got a maximum of 10.5 MB/s, and the URLLC slice achieved 9.7 MB/s by 

performing multiple tests. The first two slices show almost equal throughput because both are 

deployed with similar QoS requirements. Identical to the first two-slice, the last two were also 

activated with 20% resources for each. 

Moreover, we have used four simulated OAI UEs to validate the deployed slice 

performance. The UEs are connected to the eMBB slice, which is activated with 20% of RAN 

resources. The achieved downlink throughput results for each UE are depicted  in Figure 4.7, where 

UE1, UE2, UE3, and UE4 accomplish the maximum of 2900 KB/s, 2645 KB/s, 2500 KB/s, and 

2305 KB/s throughput speed by performing several tests. Besides, we allocated 20% of RAN 

resources in user intent through the IBN intent portal, and FlexRAN converted those requirements 

and enforced them over the RAN resources. 
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Figure 4.6: Average throughput test of four slices instantiated through IBN mechanism 

 

Figure 4.7: Average throughput test of four connected UEs with eMBB slice   

The presented results show that the IBN platform can automatically create, activate, deactivate 

the network slices. It shows stable and satisfactory performance while performing e2e slice 
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lifecycle management. So, in our mechanism, we use SDR USRP B210 devices for LTE RAN, 

which is not a standardized solution. The primary purpose of testing the throughput is not to test 

the performance of our system compared to the standards solution but to show the stability of the 

created slices through the IBN platform. Despite many advantages of the implemented mechanism, 

there are few limitations. The dynamic allocation of RAN resources is still a challenging task. 

Further, the mobility management of the users is not handled by our system. The open-source 

implementation of 5G components is also a challenge for academic researchers.  

The multiple VNFs are deployed through our system for creating core and RAN network 

slicing. Hence, our implemented system shows satisfactory performance while creating multiple 

e2e network slicing. it is a closed-loop mechanism that can orchestrate and manage the complete 

lifecycle of e2e network slices. Moreover, the ML-based NWDAF module is an interesting feature 

of our system, which predicts future resource utilization through the HSTEL model. In addition, it 

also has a hybrid model for Anamoly detection and mitigation from the network. Those predictions 

are used by the IBN system for efficient and proactive management of the core and RAN resources. 

So, our system can proactively prepare the resources whenever the traffic demands increase. It 

performs autoscaling by checking HSTEL prediction and efficiently placing the VNFs on the edge 

or core cloud location. The results of NWDAF for f uture resource utilization predictions are 

presented in the next section. 

4.2. Results of HSTEL Model for Network Resource Utilization Prediction 

4.2.1. Performance Metrics for Model Evaluation 

We have used five widely applied performance measures to evaluate the prediction results of our 

proposed hybrid HSTEL model. These performance measures are RMSE, MSE, MAE, MAPE, 
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and R2. According to the literature, high regression-score R2 and low RMSE, MSE, MAE, MAPE 

is considered a criterion to validate the outcomes of the regression model. Presented below are the 

mathematical equations for each of the performance measures. Where 𝑃�̂�,  𝑃𝑘
̅̅ ,̅ and 𝐴𝑘 , are the 

predicted, average, and actual values of the sample k th. N represents the total size of network 

resource utilization samples. 

As illustrated in equation 1, MSE measures the average squared error of model prediction 

results. It is an average of the squared difference between the predicted and target values. RMSE 

shows the standard deviation of the sample and is calculated by just taking the squared root of 

MSE. On the other side, MAE is calculated by taking the average difference between actual and 

predicted values. MAPE calculates the accuracy of actual values and predicted values in 

percentage. Moreover, R2 is a statistical evaluation metric for measuring the prediction model's 

accuracy, also known as the coefficient of determination. It shows how a prediction model fits the 

actual network resource utilization values and how the predicted values are close to actual values. 
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4.2.2. HSTEL Model Prediction Results 

In this section, the performance of the HSTEL model has been evaluated and compared with 

individual base models such as GBM, Catboost, and XGBoost. We have performed short-term and 

mid-term network resource utilization prediction in which the short-term is based on 5 minutes 

time intervals, and the mid-term is hourly resource usage prediction. The prediction results of the 

proposed model have been validated on the test dataset through above mentioned performance 

measures. Table 4 highlights the achieved performance metrics on the test dataset for each model 

while predicting CPU and memory attributes for short-term. These results indicate that the hybrid 

HSTEL model outperformed all the individual base learner models. Overall, all the models in our 

study are properly tuned by adjusting parameters and performing better than the state-of-art models. 

The proposed model shows less RMSE, MSE, MAE, and MAPE as compared to the base models 

on both memory and CPU utilization prediction. On the other side, it shows R2 accuracy of 0.95 

for CPU utilization prediction and 0.98 for memory utilization prediction.  

Table 4: Evaluation metrics of short-term multi-attribute network resource utilization 

prediction by proposed HSTEL model 

 

Figure 4.8 illustrates the actual (blue line) versus predicted CPU utilization (red line) 

achieved by the hybrid HSTEL model. Timestamp in minutes and CPU utilization in percentage 

are mapped on the X-Axis and Y-Axis, respectively. The prediction results of the HSTEL model 
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are nearly close to the actual CPU utilization, which shows the satisfactory performance of the 

proposed model. The predicted results are dependent on the dynamics of resource usage. More 

specifically, the CPU utilization prediction results achieved through the hybrid HSTEL model have 

been tested through RMSE, MSE, MAE, and MAPE that are recorded as 0.58, 0.34, 0.087, 0.43, 

respectively. Moreover, it shows R2 accuracy of 0.95 on CPU utilization prediction. For instance, 

it can be visible from the points 600th, 1800th, and 2900th in the plot, where we can observe that 

there are high error spikes. These error spikes are uncertain and a result of sudden changes in CPU 

utilization. So, the model did not predict these points well because these values are outlie rs and do 

not follow usage patterns in the dataset.  

In addition to, Figure 4.9 depicts the comparison between actual and predicted CPU 

utilization for one-day prediction. It can be seen the correspondence of predicted values to the 

actual value that enlighten the accuracy of hybrid HSTEL model.  

 

Figure 4.8: Comparison of actual and predicted CPU utilization through HSTEL model 



79 
 

 

Figure 4.9: Comparison of actual and predicted CPU utilization for one-day prediction 

through HSTEL model 

On the other side, Figure 4.10 depicts the MAPE error rate of CPU utilization for 400 

predicted values, which proclaim the MAPE values are significantly less and within the range of 

0 to 23. These error measures are minimal as compared to the base models.  

 

Figure 4.10: Calculated MAPE on CPU utilization prediction attribute through HSTEL 

model 
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Figure 4.11 highlights the correspondence of actual and predicted memory utilization, it 

presents the accuracy of hybrid model. The prediction results of memory utilization are more 

accurate than CPU prediction because CPU utilization has more fluctuation and more dynamics 

than memory utilization. The hybrid HSTEL model shows very less RMSE, MSE, MAE, and 

MAPE that are 0.15,0.023, 0.041, and 0.159, respectively. Moreover, it achieved almost 0.98 R2 

accuracy for memory usage prediction. 

  Furthermore, Figure 4.12 illustrates the one-day prediction results of the model while 

plotting actual versus predicted memory utilization. Figure 4.13 depicts the MAPE for 400 

timestamps, whereas the values are less and within the range of 0 to 14. From the achieved results, 

the hybrid HSTEL model shows satisfactory performance with higher accuracy and lower error 

while predicting the multi-attribute network resource utilization. 

 

Figure 4.11: Comparison of actual and predicted memory utilization through HSTEL model 
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Figure 4.12: Comparison of actual and predicted memory utilization for one-day prediction 

through HSTEL model 

 

Figure 4.13: Calculated MAPE on memory utilization prediction attribute through HSTEL 

model 

Table 5 describes the performance metrics obtained by each model during the validation, 

which are the results of mid-term prediction. It can be clearly seen that the proposed HSTEL 

model's performance is better compared to other individual models. While predicting CPU usage, 
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the STEL model has obtained 0.60, 0.38, 0.15, 1.10 error measures RMSE, MSE, MAE, and 

MAPE, respectively. On the other side, it achieved a 0.94 R2 accuracy score. The second -best 

performer in our study is the XGBoost model, which was the reason why we chose it for the meta 

learner model in our hybrid approach. XGBoost achieved 0.93 R2 accuracy and 0.84, 0.71, 0.82, 

1.29 error measures RMSE, MSE, MAE and MAPE, respectively. Furthermore, the HSTEL model 

performance on memory utilization prediction is also adequate. It shows 0.96 accuracy and 0.60, 

0.383, 01.5, and 0.73 RMSE, MSE, MAE and MAPE, correspondingly. 

Table 5: Evaluation metrics of mid-term multi-attribute network resource utilization 

prediction by proposed and individual models 

 

Figure 4.14 highlights the prediction results of all models versus actual CPU utilization 

historical data. The hybrid STEL model outperformed all the individual models. it is visible clearly 

in the plot, XGBoost performs quite better, Catboost perform little over-prediction and under 

prediction than actual. In some cases, GBM also predicts over than the actual CPU utilization. This 

is the beauty of ensemble learning techniques, where the following model can correct the errors of 

the previous models. The next model learned the experience of the prior ML models and corrected 

them accordingly.  

Therefore, in our HSTEL approach, GBM and Catboost models were used as base-learners 

and XGBoost as a meta-model. So, XGBoost learned from the Catboost and GBM experience and 

corrected the wrongly predicted instances in the final prediction. Hence, the prediction results 
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achieved through HSTEL model are validated and shown satisfactory performance compared to 

others.  

 

Figure 4.14: Comparison of CPU utilization prediction through GBM, XGBoost, Catboost 

and HSTEL model  

 

Further, the memory utilization prediction results of all the models are depicted in Figure 4.15, 

Where the HSTEL model shows satisfactory performance compared to others. It offers almost 98% 

and 96% accuracy on short-term and mid-term memory utilization prediction, respectively. 

Moreover, all the models perform better on memory utilization prediction, but GBM and Catboost 

performs over-prediction in a few cases. In addition, it achieved higher accuracy and lower error 

metrics which are the critical factors while validating the performance of the regressor models.  
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Figure 4.15: Comparison of memory utilization prediction through GBM, XGBoost, 

Catboost and HSTEL model 

 

Table 6 highlights the comparison of the HSTEL model with various other state-of-art 

methods, which shows the superiority of our work. It offers 0.96 and 0.98 R2 accuracy and lower 

other performance metrics as compared to others. On the other hand, it performed multi-attribute 

prediction, but most of the literature models perform only one attribute prediction. Another 

advantage of our model is that it is faster and consumes fewer resources than LSTM, CNN, and 

deep learning approaches. Moreover, we have also performed hourly resource prediction. However, 

all these results demonstrate that the HSTEL model is a better choice for forecasting network 

utilization to manage core cloud resources. 
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Table 6: Comparison of Proposed HSTEL model with existing approaches 

 

Table 7: Recorded training time of various ML and DL models 

 

Paper# Technique  Target-

feature 

MAPE MSE RMSE R2 Accuracy 

[57] CNN-LSTM 

hybrid model 

CPU 0.733 1.116 0.83 - - 

[58] LRT 

SVRT 

CPU 

Memory 

14.9 

1.42 

3.28 

0.084 

- 

- 

0.73 

0.91 

71% 

89% 

[59] Hybrid Adaptive 

approach  

CPU  2.57 - 9.13 - - 

[60] Integrated 

LightGBM  

CPU 0.933 - - 0.91 - 

[62] NN 

 LR  

CPU  0.683 

0.363 

- 9.6 

10.41 

0.93 

0.94 

80% 

[63] FFNN CPU - - 0.80 - - 

[64] LSTM CPU - 5.59 - - - 

Proposed 

HSTEL 

model 

Stacking 

Ensemble  

CPU 

Memory 

0.53 

0.159 

0.34 

0.023 

0.56 

0.153 

0.96 

0.98 

- 
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Several experiments have been conducted to verify that the DL model takes more training time 

than ML models. Table 7 illustrates the computation time comparison of different ML and DL 

models. It can be observed that the DL models take more computational time and resources due to 

their complex structure than ML models.  

 

Figure 4.16: Network slice resource scaling through HSTEL model prediction results 

Figure 4.16 shows the slice resource scaling based on ML HSTEL model resource utilization 

prediction. It can instantiate a new service whenever the resources are overloaded.  The ML 

prediction results prevent resource overloading and enable the NOs to deploy more resources. Due 

to ML model predictions, cloud administrators can proactively manage resources to fulfill SLA.  

The results mentioned above reveal that our HSTEL model outperformed the other models 

for network resource utilization prediction. We have performed short-term and mid-term forecasts 

for cloud VNFs resources based on minutely and hourly prediction. So, accurate prediction is 

essential to manage the cloud resources and ensure QoS automatically. The inaccurate prediction 

results lead to service degradation and compromise the QoE to the customers. The results of our 
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hybrid approach show that it is a good candidate for forecasting the network resource utilization 

process. Hence, the IBN platform can use the prediction results of the HSTEL model for 

autoscaling the core network resources. It guarantees QoS and proactively manages the cloud 

resources by using future prediction results.  

4.3. Results of Anamoly Detection through Hybrid Model 

This section explains the results generated through the proposed hybrid and other well-known 

methods for attack detection and classification from the networks. We have used 70% and 30% 

ratios for the training and testing of all models. Moreover, the hybrid model is compared with five 

ML classifiers such as MLP, SVM, RF, Catboost, and XGBoost based on classification accuracy 

on the same dataset. Besides, accuracy is used as an evaluation metric that shows the overall 

performance of the ML models. Equation 1 illustrates the mathematics behind the accuracy (A) 

metric, where Tp presents the number of correctly classified instances as N, Fp shows the number 

of cases wrongly classified as N, Tn highlights the number of correctly classified instances Not-N, 

and Fn denotes the number of wrongly classified instances Not-N. 

𝐴 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑛+𝐹𝑝+𝑇𝑛
                          1) 

We have trained and tested our hybrid model on both explained datasets. Figure 4.17 

highlights the training and testing results of the hybrid model on the first dataset. Figure 4.17 (a) 

denotes the training testing loss of the model while performing only 50 epochs in training and 

testing. The loss is relatively small, and accuracy is good, almost 97.5%. When we have increased 

the epochs to 200, it achieves 98.5% accuracy, which remains similar after that. Thereby, the model 

shows 97% accuracy in the final validation phase. Hence, the hybrid model claims outstanding 

performance and efficiency in performing network attack detection and classification. Furthermore, 
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the hybrid model with the same setting and parameters is also applied to another dataset. It 

outperformed individual models as well as SVM and MLP. A model that takes less time, consumes 

fewer resources, and shows better performance is considered suitable for real-time application.  

 

Figure 4.17: Hybrid EL model classification results on considered dataset a) shows the plot 

of model loss during training and testing phase b) presents accuracy of the hybrid model 

during training and testing 

 

Figure 4.18: Comparison among hybrid model and other ML models while performing 

attack Classification 

The results presented in Figure 4.18 illustrate the performance of the hybrid model compared 

to other state-of-the-art models. It can observe that the hybrid model achieved 98.35% and 97% 
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accuracy in the training and testing phase, respectively. Besides, the individual RF, Catboost, and 

XGBoost have 95%, 94.5%, and 97% accuracy during training. Also, these models achieved 93%, 

94.2%, and 95% accuracy in the testing phase. To validate the proposed model, we have also 

trained multilayer perceptron (MLP) and support vector machine (SVM) on the studied dataset. 

SVM and MLP show 93% and 86% accuracy in the training and testing phase. Further, MLP is 

not efficient and takes more time and resources as compared to other models. However, the 

proposed model's superiority indicates the model's effectiveness while performing attack 

classification on two different datasets. It is incredibly efficient in terms of speed and resources 

consumption. Besides, the IBN decision engine uses the attack detection and classification results 

generated by the hybrid model, which mitigates the abnormal flow from the system. 
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Chapter 6 

Conclusions 
 

Future networks can accommodate an extensive range of innovative services with distinct QoS 

requirements regarding latency and bandwidth. The traditional networks cannot handle these 

diverse variety of services over the same infrastructure. NFV and SDN technologies allow NOs to 

virtualize and program their networks according to their needs. So, these technologies enable NOs 

to create multiple isolated networks over the same infrastructure and provide dedicated resources 

to each service; this concept is called network slicing. Network slicing is a primary use case of the 

5G network that accommodates many innovative services. So, the orchestration and management 
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of multidomain network slices is still a challenging task. However, a well-designed automated 

platform is needed that can automatically handle e2e network slicing and ensure service guarantee.  

This work explained the IBN platform and a novel EL-based network data analytics mechanism 

for autonomous orchestration and management of network resources. IBN system follows a one-

touch process where the user inputs abstract slice QoS requirements. In return, the system 

automatically translates them into policies and deploys them over the infrastructure with the help 

of various NFVOs and domain Controllers. Additionally, the OSM platform is responsible for 

deploying and managing the core domain VNFs, and the FlexRAN controller handles the slicing 

of the RAN domain resources. It automatically designs, activate, monitor, and deactivate the 

network slices. It can manage the slice LCM in an automated fashion. Moreover, it is also able to 

handle and manage the network slices over the multidomain infrastructure. In addition, multiple 

tests have been performed by creating several slices of core and RAN domain through our 

mechanism, showing satisfactory results in resource stability, automated resource provisioning, 

customization, and resource assurance.  

On the other side, network data analytics with IBN has been used to solve two major 

network issues: network resource utilization prediction to perform autoscaling of resources and 

ensure service guarantee and anomaly detection and mitigation. A novel hybrid HSTEL model has 

been implemented for future VNFs load prediction. The Catboost, GBM, and XGBoost models 

are implemented through the stacking EL technique for getting better prediction results. The 

proposed HSTEL model outperformed other state-of-art algorithms while comparing the 

prediction results based on the error metrics. The decision engine of IBN uses these prediction 

results to guarantee QoS assurance and autoscaling of core VNFs. The anomaly detection 

mechanism is accomplished by combining ML models such as Random Forest, Catboost, and 
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XGBoost through the voting EL approach. The ML models result can  be used by the decision 

engine of the IBN platform, which takes action to perform autoscaling of resources and mitigate 

the malicious flow from the network. 
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