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(Abstract)

Liouville Type Theorem for (F,F’),-Harmonic Maps

on Foliations

In this thesis, we introduce the concept of (F,F"),-harmonic maps on foliated Rie-
mannian manifolds. Furthermore, the first and second variational formulas for (F, F"),-
harmonic map are investigated explicitly according to the transversal p-energy. Simul-
taneously, the generalized Weitzenbock type formula is given and the Liouville type

theorem for (F,F'),-harmonic map is illustrated precisely.



1 Introduction

Let (M,g) and (M’,g") be Riemannian manifolds and let ¢ : (M,g) —» (M’,g") be
a smooth map. Then ¢ is said to be harmonic if the tension field 7(¢) = try(Vde)

vanishes or ¢ is a critical point of the energy functional E(¢) which is defined by

B6) = [ ldofux,

where pps is the volume element of M ([5]). In recent years, many geometers are
interested in harmonic maps on foliated Riemannian manifolds.
Let (M, g,F) and (M',g’', F") be foliated Riemannian manifolds and let ¢ : (M, g, F) —

(M',¢', F") be a smooth foliated map, i.e., ¢ is a smooth leaf-preserving map. Then ¢
is said to be transversally harmonic if the transversal tension field 7,(¢) vanishes, where
() = tro(Vidr¢), dré = dolg and Q is the normal bundle of F. A transversally
harmonic map was introduced by J. Konderak and R. Wolak ([12]) and the properties
of such maps were considered in ([3,12,13,18]). It is well known that the transversally

harmonic map ¢ is not a critical point of the transversal energy Ep(¢) which is defined

by ([10])
Ep(o) :%[M|dT¢|2/~LM-

So S. Dragomir and A. Tommasoli ([4]) defined a new harmonic map, called (F,F’)-
harmonic map, which is a critical point of the transversal energy Ep(¢). But two
definitions are equivalent when F is minimal. In this thesis, we study (F, F"),-harmonic

maps which are generalizations of (F,F’)-harmonic maps. In fact, a smooth foliated



map ¢ is said to be (F,F"),-harmonic if ¢ is a critical point of the transversal p-energy

Ep ,(¢) which is defined by

1
Epp(0) = [ P,

Trivially, (F,F")p-harmonic maps are p-harmonic maps for point foliations and (F, F")s-
harmonic map is just (F,F’)-harmonic map ([4]). For p-harmonic map, see ([14,17,23]).
This thesis is organized as follows. In Chapter 2, we review some basic facts on
foliated Riemannian manifolds. In Chapter 3, the first and second variational formulas
for the transversal p-energy are given, respectively. At the same time, the transver-
sally stability is considered. In Chapter 4, we investigate the generalized Weitzenbdck
type formula and its application. In Chapter 5, we study the Liouville type theorem
for (F,F"),-harmonic maps. The Liouville theorem states that harmonic maps are
constant under some conditions. The classical Liouville theorem is that any bounded
harmonic function defined on the whole plane must be constant ([16]). Many geome-
ters discussed the Liouville type theorem on Riemannian manifolds ([8,22,26]) and on

foliated Riemannian manifolds ([6,9]), respectively.



2 Basic facts on foliated Riemannian manifolds

Definition 2.1 A family F = {Ly}aeca of connected subsets of a manifold MP*? is
called a p-dimensional (or codimension q) foliation if

(1) M =uqy L,

(2) a# = LonLsg=g,

(3) for any point in M, there exist a C"—chart (local coordinate system) (¢r,U), such

that if Un L, #+ @, then oy (Un Ly) = Acn(U), where

Ac = {(z,y) € R” xRy = constant },

(4) on U; nU; # @, the coordinate change ¢; o ;1 : ;(U; nU;) —» ;(U; nU;) has the
form

wjo e (2,y) = (vij(z, 1), 7 (%)),

where v;; : R? — R is a diffeomorphism.

Here (¢, U) is called a distinguished (or foliated) chart.

Roughly speaking, a foliation corresponds to a decomposition of a manifold into a union

of connected submanifolds of dimension p called leaves.

Examples 2.2 (1) M =R" and L. = {R? x ¢} with ce R"P.
(2) M =R? - {0} and L, = {(z,y)|e* +4* = r*}.
(3) M =R? and Ly = {(z,y)|y = 2% + a}.

(4) M = R? and Ly = {(z,y)ly = In|secz| + a}. Equivalently, L, is the solution of



dy

e tanx.

(5) A manifold M with Euler characteristic x(M) = 0 admits a nonzero vector field X
and the integral curves of X is a 1-dimensional foliation.

(6) Consider a closed 1-form w = adz + bdy,a,b € R on T? = R?/Z2. Then we obtain a
family of lines which defines a foliation in 72. In this case, each leaf is R (]28]).

(7) A submersion f: M — B is a map of manifolds with a surjective derivative map at
every point of M. Then for b€ B, L, = f1(b) is a connected submanifold of M. All

these submanifolds have the same dimension.

Let (M, g,F) be a Riemannian manifold with a foliation F of codimension ¢ and
a Riemannian metric g. Let T'M be the tangent bunlde of M, L the tangent bundle
of F and then L is the integrable subbundle of TM. ie., X,Y e 'L = [X,Y] e 'L.
Let Q =TM/L be the corresponding normal bundle of F. Then the metric g defines a

splitting o in the exact sequence of vector bundles

0——L—+TM=—=Q——0,

where 7: TM — (@ is the natural projection and o : Q — L* is a bundle map satisfying

moo =1id. Thus g = gr, ® g+ induces a metric gg on @ that is

9o(s,t) =g(o(s),o(t)) Vs, tel'Q.

So we have an identification L* with @ via the isometric splitting (Q,g¢g) = (L*, gr+).

Definition 2.3 A Riemannian metric gg on @ of a foliation F is holonomy invariant



if (X )gq =0 for any X e'L, where §(X) is the transverse Lie derivative, i.e.,
Xgq(s,t) = go(w[X,Ys],1) + go(s,7[X,Yi]), VX eTL, Vs,t,el'Q,
where Yy = o(s) for any s € I'Q.

Definition 2.4 A foliation F is Riemannian if there exists a holonomy invariant metric
go on Q. A metric g is bundle-like (with respect to F) if the induced metric gg is

holonomy invariant.

Theorem 2.5 ([24]) Let F be a foliation on (M, g). Then the following conditions are
equivalent.
(a) F is Riemannian and g is bundle-like.

(b) There exists an orthonomal adapted frame {E;, E,} such that
9(Vi, Bi, By) +9(Vig, Bi, Ea) =0,

where VM be the Levi-Civita connection on M.
(c) All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every

point.

Definition 2.6 ([24]) The transverse Levi-Civita connection V9 on the normal bundle

@ is defined by

m([X,Ys]) VXelL,
Vs = (2.1)

(VYY) VX eTL',

where V™ be the Levi-Civita connection associated to the Riemannian metric g and

Ys=0(s).



Then the transverse Levi-Civita connection V? is metrical and torsion-free with respect

to gg = gr+. That is, V?(gQ =0 for all X e["T'M and
T, Z) = V¢n(Z) - Vin(Y) - 7Y, 2] =0

for any Y, Z e TTM, where T is the transversal torsion tensor field of V<.

Let R? be the transversal curvature tensor of V¥ = v, which is defined by
R(X,Y) =[Vx,Vy]-Vixy], VX,YelTM.

It is trivial that i(X)R®? = 0 for any X € I'L, where i(X) is the interior product. In

fact, R?(X,Y)s =0 for any Y e P'TM and s € I'Q ([Proposition 3.6, 25]).

Definition 2.7 The transversal sectional curvature K, transversal Ricci operator

Ric® and transversal scalar curvature o9 with respect to V are respectively, defined by

Q _ gQ(RQ(Svt)t’S)
K5(5,1) = o6 Saatti-ge ey Vst lQ

q q
Ric®(s) = ¥ R9(s,E,)E,, 09 =Y go(Ric?(E,), E,),
a=1 a=1
where {E,} is a local orthonomal basic frame of Q.
Definition 2.8 The mean curvature form k of F is given by
. M
K(X) =9 m(VEEi), X), VX elQ,
i=1

where {E;};-1....p is a local orthonormal basis of L. The foliation F is said to be minimal

(or harmonic) if k = 0.



Definition 2.9 A differential form w is basic if

i(X)w=0, H(X)w=0, VXelL.

Locally, the basic r—form w is expressed by

w= Z Waya, AYa, N AN dyq,

a1 <-<a,

Owa, .

where =517 =0 for all j =1,--,p.

Let Q% (F) be the space of all basic r—forms. Then ([1])
Op(M) = Qp(F) @ Qp(F)".

Denote wp by the basic part of the form w.
Now, we define the star operator * : Q5 (F) - Q%" (F) naturally associated to gq.

The relationship between * and = is characterized by

%6 = (~1)P (¢ A xF),

*Q=*OAXF

for ¢ € QF(F), where xr is the characteristic form of F and * is the Hodge star
operator ([24]). Let v be the transversal volume form, i.e., *v = x# and (-,-) be the
inner product on Q5 (F), which is defined by (¢, ¥)v = ¢ A *1) for any ¢,¢ € Q(F).

Then the global inner product ((-,-))p on Q5 (F) is given by

(o 0Ns = [ (6 0)us

for any ¢, € Qp(F), where ppr = v A x# is the volume form of M. With respect to

this global inner product ((-,-))p, the formal adjoint operator §p : Q' (F) — Q51 (F)



of dB = de*B(]:) is given by
opp = (-1 D5 (dp - kA%,
Therefore, we have the following definition.

Definition 2.10 The basic Laplacian Ap acting on Q5 (F) is given by
Ap =dpdép +0pdp,

where ép is the formal adjoint operator of dg = d|Q};( F), which are locally given by

q q
dp = ZGGAVEG, 5B=—Zi(Ea)VEa+i(/<LHB),

a=1 a=1

where k!, is the go—dual vector of KB, {Fq}a=1...¢ is a local orthonormal basic frame
B 9Q RO

of @ and {0} is its gg—dual 1-form.

Theorem 2.11 ([1]) For a Riemannian foliation F on a closed manifold, kp is closed,
i.e., dgrkpg = 0.
We define V{, Vi, : Q5 (F) - Q5 (F) by
Lo
VieVie == Vi, B, * Vi,

a=1

where V%(,Y = VxVy = Vyuy for any X, Y e I'T'M.

Proposition 2.12 ([7]) The operator V; Vi is positive definite and formally self ad-

joint on the space of basic forms, i.e.,

Vi Vip, :f Vir®, Vir ;
/M< Vi, V) M( tr, Vet ) oar

q
where (Vtr@a Vtﬂﬁ) = Z (anSOa anw>

a=1



Definition 2.13 ([11]) A vector field Y € M is an infinitesimal automorphism of F if
[Y,Z]eTL, VYZelL.

Let V(F) be the space of all infinitesimal automorphaisms and let V(F) = {Y =
(Y)Y € V(F)}. It is trivial that an element s of V(F) satisfies Vxs = 0 for all

X eT'L. Hence the metric defined by (2.4) induces an identification ([19])
V(F) 2 Qp(F).

For the later use, we recall the transversal divergence theorem on a foliated Riemannian

manifold ([28]).

Theorem 2.14 (Transversal divergence theorem) Let (M, g,F) be a closed, ori-
ented Riemannian manifold with a transversally oriented foliation F and a bundle-like

metric g with respect to F. Then

[ divg (X = [ ga(X, k)

for all X € V(F), where divy(X) denotes the transversal divergence of X with respect

to the connection V of (2.1).

Now we define the bundle map Ay : A"Q* - A"Q* for any Y € V(F) by ([11])
Ay¢=0(Y)dp-Vyo.
It is well-known ([11]) that for any s € I'Q

Ays = _VYSY7



where Y is the vector field such that w(Y;) = s. In fact, Ays = 0(Y)s — Vys =
Vys-— VYSY -Vys= —VYSY. Thus, Ay depends only on Y = m(Y). Now, we recall the

generalized Weitzenbock type formula on Q5 (F) ([7]).

Theorem 2.15 (Generalized Weitzenbock type formula) On a foliated Rieman-

nian manifold (M, g,F), we have
Apd=ViVud+ F(0)+ Ay 6, 6 Qp(F), (2.2)

where F(¢) = ¥ 02 Ai(Ey)RY (Ey, Ey)¢. If ¢ is a basic 1-form, then F (o)t = Ric?(¢h).
a,b

10



3 Variational formulas for the transversal p-energy

Let (M,g,F) and (M',g',F’) be two foliated Riemannian manifolds. Let ¢ :
(M,g,F) - (M',¢g',F") be a smooth foliated map, i.e., dp(L) c L’. Then we define
dre:Q — Q' by

dr¢ =m"odpoo.
Then dré is a section in Q* ® ¢~1Q’, where ¢~1Q’ is the pull-back bundle on M. Let

v? and V be the connections on ¢~ 'Q’ and Q* ® ¢~1Q’, respectively.

Definition 3.1 The map ¢ : (M,g,F) — (M',g',F") is called transversally totally
geodesic if

@trdTQS = 07

where (Vi drd)(X,Y) = (Vxdre)(Y) for any X,Y e 'Q.

Note that if ¢ : M — M’ is transversally totally geodesic, then for any transversal
geodesic v in M, ¢ oy is also transversal geodesic. From now on, we use V instead of

all induced connections if we have no confusion.

Definition 3.2 The transversal p-tension field 7, ,(¢) of ¢ is defined by

q
Top(9) = tro (Ve (|drdlP2drd)) = > (Vi |drélP2dre)(El),

a=1

where |dr¢|? = é 9q' (dr¢(Eq),dro(E,)).

11



From Definition 3.2, we get

0(6) = 32 (V. Jdrodr o) (E)
= é(vEJde‘?dm(Ea) ~|dr¢lP?dr¢(Ve, Ea))
- oV . dro(Br) = dr o r (V. Ee) + Eu((dr ol dro(E2)
=ldr 1 () + (p - 2)|dr el *dré(gradq(|drdl))

=|dr [P {m($) + (p - 2)drd(gradq(In|dre]))},

where |dr¢| # 0 and 7,(¢) = tro(Vedre) is the transversal tension field ([10]). It

follows that 73, 2(#) = 7,(¢).

Definition 3.3 Let €2 be a compact domain of M. Then the transversal p-energy of ¢

on €2 c M is defined by

1
Epp(#:2) == [ ldrolua,
pJIQ

where ) is the volume element of M.

Definition 3.4 The map ¢ : (M,g,F) - (M',g',F') is said to be (F,F"),-harmonic

if ¢ is a critical point of the transversal p-energy Ep,(¢).

In particular, a (F,F")s-harmonic map is called a (F,F’)-harmonic map. Some
properties of (F,F’)-harmonic map have been discussed in ([4]). Next, we consider
the first variational formula for the transversal p-energy. Let V € ¢~'Q’. Obviously, V
may be considered as a vector field on Q" along ¢. Then there is a 1-parameter family

12



of foliated maps ¢; with ¢g = ¢ and %h:o = V. Then the family {¢;} is said to be
a foliated variation of ¢ with the normal variation vector field V. Then we have the

following theorem.

Theorem 3.5 (The first variational formula) Let ¢ : (M,g,F) - (M',¢',F') be
a smooth foliated map. Let {¢:} be a smooth foliated variation of ¢ supported in a

compact domain . Then

d

S Epp(06 Qo= [ (ViR (@),

where Ty ,(¢) = T, (@) = |dr P 2drd(kl), V = %]tzo is the mormal variation vector

field of {¢¢} and {-,-) is the pull-back metric on ¢ Q.

Proof. Let Q be a compact domain of M and let {¢;} be a foliated variation of ¢
supported in © with the normal variation vector field V € ¢~'Q’. Fix z € M. Let
{E.} be a local orthonormal basic frame on @ such that (VE;)(z) = 0. Define ® :
M x (=¢,€) > M' by ®(x,t) = ¢(x). Obviously, d®(E,) = dr¢:(E,) and d®(Z) = %-.

Moreover, we have V.o 2 = VaE,=VE 9 = (). Hence at z
) at 8t ot a at )

G0 2) =2 [ (S dB(E).AVE)f

q
= [ X a4 (), dP () b
a=1

d _ 0
= [ X ldr @ AV, (). dB(E) s
a=1

13



- [ SEAR ()P R(E)) ~ (). (Vi B 2d0) ()

q
= [ 3 Bl dronarnEns - [ (St mplonin.

where |dr®|* = (d(I)(E ), dP(EL)) = |drdq?.

a=1

If we choose a normal vector field X; with

(X0, 2) = (% Jigou =2 drou(2))

for any vector field Z, then

divy (X;) = Z E.{ d(m |drduP~2dr i (Ey)).
a=1

So by the transversal divergence theorem (Theorem 2.14), we have

d d
%EB,p(th;Q) = /Qdin(Xt)MM—/Q(%Jb,p(@)WM

d
= [ X = [ (5 (00
d
/Q( dqit Top(00) = ldrdulP > dr i (k) ) pas

dor -
= - [ (S A @0,

which proves (3.5) by t=0. O

Corollary 3.6 The map ¢ : (M,g,F) - (M',q',F') is a (F,F')p-harmonic map if

and only if 7 ,(¢) = 0.

Since Ep2(¢) = Ep(¢) is the transversal energy, we have the following.

14



Corollary 3.7 ([10]) Let ¢ : (M,g,F) — (M', g, F") be a smooth foliated map. Let

{&+} be a smooth foliated variation of ¢ supported in a compact domain Q2. Then

d

S B0 lieo == [ (V7(6)haar

where 7,(¢) = 7o(¢) — dro(kly), V = %h:o is the normal variation vector field of {¢;}

and (-,-) is the pull-back metric on ¢~1Q’.

Now, we consider the second variational formula for the transversal p-energy. Let

V,W € ¢~*Q’. Then there exists a family of foliated maps ¢ s(—€ < s,t < €) satisfying

a t,s
V=26 000

8 t,s
| W= gs’ (t,5)=(0,0)5 (3.1)
0,0 = ¢.

The family {¢; s} is said to be a foliated variation of ¢ with the normal variation vector

fields V and W.

Theorem 3.8 (The second variational formula) Let ¢ : (M, g, F) > (M',g', F")
be a (F,F')p-harmonic map. Then for the normal variation vector fields V. and W of

the foliated variation {¢: s},

82
—F Q) _
YE Bp(®t,s3 )| (£,5)=(0,0)

= [ areP vV, vu W = [ ldrol? 2 (sxq R (V.dro)dro, W

+(p-2) [Q ldrdP~ (V0 V, drd) (Ve W, drd s,

15



where

QR (V,drd)dre = ¥ RY (V,dro(E,))dro(Ew),

(VaVidrd) = 3 (Vi, Vi dro(El)).

a=1

Proof. Let ® : M x (—€,¢) x (—=€,¢) - M’ be a smooth map which is defined by

®(x,t,5) = ¢rs(x). Then d®(E,) = drors(Eq), d(ID(as) = a¢; and dq’(at) ad)t .

Trivially, [X, %] = [X, %] = 0 for any vector field X € TM. For convenience, we put

0

B (0ni) = = [ (00(). (00 3:2)

Differentiating (3.2) with respect to ¢, we get

62

. . 0 N
%EB@(@,S;Q)=—fQ(V%@(%)va,p(@,s)MM—L(d@(%)avgfbm(fbt,s))uM

Since ¢ is a (F, F")p-harmonic map, from Corollary 3.6, we have that at (¢,s) = (0,0),

82

5ea5 P01 Dlow == [ W9 275600 oo s

By choosing a local orthonormal basic frame field E, with VE,(x) = 0 at some point

x € M, we have that at z,

V2 Tp(,s)

=V .2 7hp(drs) = Vo fdD(rl)

q

- 3V (T fiO)(E)} - 1, av(5)-

L (sy)

16



SR g FAB(E) + Y ) FAB(E)} - 19,00 35) - T ()

=}

- SHVe . Fa8(5) 4 9, (AL a0(E,) - Bu(D)dB( ) 4 B (S Eo) Fi(EL))

a=1 ot’

- 1005 - Pty (3.3)

From (3.3), we have

49 3 70(000). 4
-, TR Ve AR d
- SR (A0, d(E) fa(E). A
S5 G A0 = [ DT B (D). 0
- [ U9 (), B A(%d@(%»d@(—»w
= [ (TaTufdR (), (Y + [ (9, FABC ), a0 ) s
- SR (). AB(EL)) FAB(E). (i
/azlE —d(I)(E ), d(I)(—) )ias - fazl —d<I>(E ), Vs, d(I)(—))
- 3 BB DAV d s+ [ S, Ve d ()
[T a0y, B uns [ (P (uly), () (3.4

Let X;, and Y; s be two normal vector fields such that

(Xis, Z) = (%Ld®(2),dD(L)),

(Ve Z) = (Z(f)dD(5;), AR ()

17



for any vector field Z on M, respectively. Then
: _ s g of o
divy(Xes) = ¥ Eo(Grd®(Ea), d®(5;)),

a=1 (3.5)
diVV(Y;f,s) = a2=:1 Ea(Ea(f)dq)(%)v d@(%))

By (3.5) and the transversal divergence theorem (Theorem 2.14), we have
[ 35l w5, av (s - )i z Eul Ba(F)AB(), 02 s
a=1
=[Qdin(Xt,s)MM—dein(Yt,s)MM
ZfQ<Xt,S7’€uB):UM_f(Y;t,s’ﬁnB),uM

= [P aa(l).av s~ [ sb(a(E) dB( s (36)

From (3.4) and (3.6), we get

82

%EB,]J(@,S; Q)

= [ AT T fAB (), (SN
/ 0
- 35 R ). () Y.
- (é%d@wa)?v&d@(%)w— Jo S, Ve, a9 s
= [ AT (), Tud®(S) )
’ 0
- [ 3% HR @), dB(E) (). (5
o [ (), e (3.7)
a=1

Since

oo 2>|dT¢t,s|p‘4bZ<vE,,d<I>< ). dr s (Ev)). (3:8)
1

18



the proof of Theorem 3.8 follows from (3.7) and (3.8) at (¢,s) =(0,0). O

Corollary 3.9 ([4]) Let ¢: (M,g,F) > (M',g',F") be a (F,F')-harmonic map. Then

0? /
%EB(gbt,s;Q)kt,S):(O,O) = ‘/Q<Vtrva VtrW>MM - A(trQRQ (‘/adT¢)dT¢7W>NM

Definition 3.10 Let ¢ : (M,g,F) —» (M',g',F') be a (F,F'),-harmonic map. Then
¢ is said to be transversally stable if I(V,V') >0, where

2

0
I(V, W) = %EB,]J(@,S)

(t,s)=(0,0)

for the normal variation vector fields V- and W as in (3.1).
It is easy to obtain the following theorem from Theorem 3.8.

Theorem 3.11 Let ¢ : (M,g,F) - (M',g",F") be a (F,F')p-harmonic map with
compact M. If the transversal sectional curvature of M' is non-positive, then ¢ is

transversally stable.
Proof. By Theorem 3.8, we have

1V.V) = [ 1dréP2(vaVE - (RY (Vidro)dro, V)

+(p=2) [ Mol VaV,dro) . (3.9)

Since K9 <0, from (3.9), we get

(R (V. drd)dr, V) = S (R (V, dro(Ea))drd(Ea), V) = 3 K (V, dré(Ea)) 0.

a=1 a=1
It means that I(V, V) > 0. This completes the proof. O

19



Corollary 3.12 Let ¢: (M,g,F) - (M',g',F") be a (F,F")-harmonic map with com-
pact M. If the transversal sectional curvature of M' is non-positive, then ¢ is transver-

sally stable.
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4 The generalized Weitzenbock type formula

Let (M,g,F) and (M',¢g',F') be two foliated Riemannian manifolds and let ¢ :
(M,g,F) - (M',¢g',F') be a smooth foliated map. Let Qz(E) = Q3(F) ® E be the
space of E—valued basic r—forms, where E = ¢~1Q’. Let V be the induced connection

on Q5 (E). Then the transversal curvature tensor R on Q5 (F) is given by
R(X,Y)(w®s)=RUX,Y)w®s+we®RE(X,Y)s.
Now we define dy : Q3 (E) - Q51 (E) by
dy(w®s)=dpw®s+(-1)"wAVs,
and let dy be the formal adjoint of dy. Locally,

q q
dy=> 0"AVEg,, O6y=-> i(E.)Vp, +i(xk), (4.1)

a=1 a=1
where i(X)(w®s) = i(X)w®s for any X € 'TM. The Laplacian A on Qp(FE) is
defined by

A= 5vdv + dvév.
Moreover, the operators Ax and 0(X) are extended to Q5 (FE) as

Ax(w®s)=Axw®s,
(X)) (w®s)=0(X)w®s+(-1)"wAVxs
for any X € TTM. Hence (X)¥ = (dyi(X) + i(X)dy)¥ for any X € I'TM and

U e Qp(F). Trivially, ¥ e Q3 (F) if and only if i(X)¥ = 0 and 0(X)¥ = 0 for all
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X eT'L. Then the generalized Weitzenbock type formula (2.2) is extended to Q5 (F)

as follows ([10]): for any ¥ € Q5 (FE),
AV =V VeV + Ay U+ F(P),

q
where F(¥) = > 0% Ai(Ep)R(Ey, E,)V. Moreover, we have
b=

a,b=1

1
SABI = (AW, W) - [V U = (A 0, 0) - (F(T), V). (4.2)
From (4.2), we get the following theorem.

Theorem 4.1 Let ¢ : (M,g,F) - (M',g',F") be a smooth foliated map. Then the

generalized Weitzenbdck type formula is given by

1 B _ _ _
5AB|dT¢>|2f” 2 =(AldrglP2dr e, |droP 2 drd) - |VildrolP2dr el

— (A ldroP~2dr o, |dr el 2dr) - |dr[P(F(drd),dre),  (4.3)
where
(F(dr¢),dre) = gg@(dTmRicQ(Ea)),dm(Ea))
—az;gQ«RQ’(dm(Eb),dT¢<Ea>>dT¢<Ea>,dT¢<Eb>>. (4.4)
Proof. Since |dr¢P~2dr¢ € Q5 (F), the proof of (4.3) follows from (4.2) directly. The

equation (4.4) follows from ([Theorem 5.1, 10]). O
Lemma 4.2 Let ¢: (M,q,F) - (M',g",F") be a (F,F")p-harmonic map. Then

dyldrdP~2dr¢ = dpldrdP™> Adrd,  SyldrolP 2dre = 0.
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Proof. Note that for any vector fields X, Y in Q = L*, we know that

Vxdro(Y) - Vydro(X) = dro([X,Y]).

From (4.1), we have

(dydre)(X,Y) = (Vxdr$)(Y) - (Vydre)(X) =0,
that is, dydr¢ = 0. Therefore, we have

dy|dr¢P~2dre = dp|dr¢P™* Adrd + |droP2dydre = dpldrélP~> A dr.

and

q
SoldrolP2dre == 3 i(E.) Vg, |drol2dré + i(rl)|drel’dro

a=1

q
= = Y (Ve ldrol 2 dré) (Ba) +i(x)|drol 2 dro

a=1

=~ Ty (0) + |dpdP i (kY dr

== 7~_b,p(gb)'

Since ¢ is a (F, F'),-harmonic map, dy|dré|P~2dr¢ = 0 follows from Corollary 3.6. This

completes the proof. O
Lemma 4.3 Let ¢: (M,q,F) - (M',¢",F") be a (F,F")p-harmonic map. Then

drd|ApldrdP™" - (Sydy|drelP2dre, drd)
+ (dvi(rh)dro, |drélP2drd) - |drlP~ ki (|dre])

< -|drdP2(F (dre), dre).
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Proof. Since ¢ is a (F,F’)p-harmonic map, from Theorem 4.1 and Lemma 4.2, we

have

1 _ _ _ _
SABldrd[*7 2 =(ovdy|dré2dr o, drdl’ " dre) - |Vildr o drof?
= dr o~ (dyi(kh)dre, |dr¢P~2dr) + drél >kl (ldré])

— |dr g~ (F (dr¢), dr o). (4.5)
By a simple calculation, we have
%Amel?p‘? = ldroP~ ApldrlP~! ~ |dpldrol . (4.6)
From (4.5) and (4.6), we get
drol"' ApldrelP ™ =|dpldrl’ P = [Vuldro P> drol* + (Sydyldre’dré, |dréP*dre)

—|droP*(dvi(kl)dre, |drolP *dre) + |dr|* >kl (|dre])

~|dr [P (F(dr¢), dr o). (4.7)

By the first Kato’s inequality ([2]), we have

Vel drdlP2drd| > |dpldroP!|. (4.8)

Therefore, the result follows from (4.7) and (4.8). O
The following conclusion is achieved as the application of the generalized Weitzen-

bock type formula.

Theorem 4.4 Let (M, g,F) be a closed foliated Riemannian manifold of non-negative
transversal Ricci curvature. Let (M’ g', F") be a foliated Riemannian manifold of non-
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positive transversal sectional curvature. If ¢ : (M,g,F) - (M',¢',F') is a (F,F'),-
harmonic map, then ¢ is transversally totally geodesic. Furthermore,

(1) If the transversal Ricci curvature of F is positive somewhere, then ¢ is transversally
constant.

(2) If the transversal sectional curvature of F' is negative, then ¢ is either transversally

constant or ¢(M) is a transversally geodesic closed curve.

Proof. By the hypothesis and (4.4), we know (F(dr@),dr$) > 0. Since ¢ is a (F,F'),-

harmonic map, from Lemma 4.3, we have

drd|ApldrelP <(dydy|droP2dr, drd) - (dyi(kly)dre, |drlP2dre)

+|drol " Kl (|drdl). (4.9)

Integrating (4.9), we have

[ {ldrel. Apldref"yu < [ (dvdelaroldro. dro)ua
- [ tdgiC)dro,ldrol 2drohua

o [ Vdrol s (ldrola. (410)
Since dy (dr¢) =0, we get
_/M<6Vdv|dT¢|p_2dT¢7dT¢>MM = /M(dv|dT¢|p_2dT¢:dvdT¢>MM = 0. (4.11)
Since ¢ is a (F,F’)p-harmonic map, from Lemma 4.2, we obtain
L(dvi(ff%)di’@ |drolP~>dr ) = _/A/[@("ig?)quﬁa5V|dT¢|p_2dT¢>NM =0. (412
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Now, we choose a bundle-like metric g such that dgxp = 0. Then we have

[ laror s drain = [ rb(drory
1
= ] mdnldro s
1
= [M(5B/€B, |dr ol pne
=0. (4.13)

From (4.10)~(4.13), we get

| drél, Agldrof™ )y <o. (4.14)
On the other hand, we know that
| Gidrol, Alarapyu = [ (dsldrel, dsldrot o

= (p-1) [ ldrolldsldre|*uns

> 0. (4.15)
Then from (4.14) and (4.15), we get
0= [ (drol, Mpldrof ™ Ymas = (p=1) [ larolldsldrélPun,  (4.16)
which yields dp¢ = 0 or dg|dr¢| = 0. If dg|dr¢| # 0, then dp¢ = 0, i.e., ¢ is transversally
constant. Trivially, ¢ is transversally totally geodesic. If dr¢ # 0, then dg|drd| = 0. Tt
means that |dp¢| is constant. From (4.7), we have
(ldrdl, Apldrof ™) = = [drdl | Vadrof® ~ (dyi(sl)drd, ldrél’*dre)

~|dro*(F(dr¢),drd). (4.17)
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From (4.16), (4.17) and Lemma 4.2, we get

0= [ 1drélAsldrél s

—= [ Vel 2V udrofs - [ (dyilely)dro, o dro)uas
- fM AP (F(dr), drd )i

== [ Vel 2V udrfun - [ (i(h)dre,seldrol’ dra)ua
- [M AP (F(dr¢), drd)um

== [ larol A TudroPus = [ lrol(F(dro) druar. (418)

Since |V dré|® > 0 and (F(dre),dre) > 0, from (4.18), we have

\Virdrd|? + (F(dpo), dro) = 0. (4.19)

Thus, Vdro =0, i.e., ¢ is transversally totally geodesic.

Furthermore, from (4.4) and (4.19), we get

90 (dré(Ric?(Ea)), dré(Ea)) = 0,
(4.20)
90/ (R (drd(Eq), drd(Ey))drd(Ea), drd(E)) =0
for any indices a and b. If Ric? is positive at some point, then dr¢ = 0, i.e., ¢ is
transversally constant, which proves (1). For the statement (2), if the rank of dr¢ > 2,
then there exists a point € M such that at least two linearly independent vectors at

o(x), say, drd(E1) and dpd(Ey). Since the transversal sectional curvature K9 of F’

is negative,

9o/ (RY (drd(Er), dré(Es))drd(Es), drd(Er)) <0,
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which contradicts (4.20). Hence the rank of dr¢ < 2, that is, the rank of dr¢ is zero
or one everywhere. If the rank of dr¢ is zero, then ¢ is transversally constant. If the

rank of dr¢ is one, then ¢(M) is closed transversally geodesic. O

Corollary 4.5 Let (M,g,F) be a closed foliated Riemannian manifold of non-negative
transversal Ricci curvature. Let (M’ g', F") be a foliated Riemannian manifold of non-
positive transversal sectional curvature. If ¢ : (M, g, F) — (M',g',F') is a (F,F')-
harmonic map, then ¢ is transversally totally geodesic. Furthermore,

(1) If the transversal Ricci curvature of F is positive somewhere, then ¢ is transversally
constant.

(2) If the transversal sectional curvature of F' is negative, then ¢ is either transversally

constant or ¢(M) is a transversally geodesic closed curve.
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5 Liouville type theorem for (F,F’),-harmonic maps

In this chapter, we investigate the Liouville type theorem for (F,F’),-harmonic
maps on foliated Riemannian manifolds. Let o be the infimum of the eigenvalues of
the basic Laplacian Ap acting on L?-basic functions on M. Then the following theorem

is obtained.

Theorem 5.1 Let (M,g,F) be a complete foliated Riemannian manifold with co-
closed mean curvature form kg and all leaves be compact. Let (M',g',F") be a fo-
liated Riemannian manifold with non-positive transversal sectional curvature K9 As-
sume that the transversal Ricci curvature Ric® of M satisfies Ric® > —4(2—;1)#0 for
all z € M and Ric® > —4(2—?)#0 at some point xg. Then any (F,F'),-harmonic map
¢:(M,g,F) > (M',g",F") of Epp(¢) < o0 is transversally constant.

Proof. Let M be a complete foliated Riemannian manifold such that Ric® > —C for all

z and Ric® > -C at some point zg, where C = 4(2—;1);10. Since K9 <0 and Ric® > -C,

from (4.4), we have

(F(dro). drd) 2 3 9o (dré(Ric¥(En)) . drd(Ew)) = ~Cldrof.

a=1

Since ¢ is a (F,F"),-harmonic map, from Lemma 4.3, we have

|drd|ApldrdP™ - (Sydy|drelP2dre, drd)
+ (dvi(rh)dro, |dré[P2drd) - |drolP~ ki (|dre])

< -ldrolP Y 9o (drd(Ric®(E,)), dré(Ea)) < Cldrol. (5.1)
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Let B; = {y € M|p(y) <1}, where p(y) is the distance between leaves through a fixed

point zg and y. Let w; be the Lipschitz continuous basic function such that

0<w(y)<1l foranyye M
suppw; € By
wi(y)=1 foranyye B;

lim w; =1

— 00

|dwi| < ¢ almost everywhereon M,
where « is positive constant ([26]). Therefore, w;¢ has compact support for any basic

form ¢ € Q5 (F). Multiplying (5.1) by w? and integrating by parts, this yields

/M<wl2|dT¢|aAB|dT¢|p_1)ﬂM_/M<wl2dT¢a5Vdv|dT¢|p_2dT¢>MM
+fM<dvi(H"B)dT¢,wz2|dT¢|p_2dT¢)/~LM—/M<w12|dT¢|p_1,H”B(|dT¢|))MM
q
<=3 [ wRliro g (dro(RIeA(E,)). drd(Eo) o
a=1

SCAwa|dT¢|puM. (5.2)

By Lemma 4.2, we have

q
Sg (Wildr el 2drd) == 3 i(Ea) Vi, (wildr¢l"dr) +i(sl) (Wi |droP~>dre)

a=1

q
= — Y i(Ba) (Ba(W])|dr ¢l 2drd + i Vg, |dr P~ >dré)

a=1

+wii(k) (|drolP2dre)
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1 q
= = Y i(Ba) (Ba(w])ldr P 2drd) = 3" wii(Ea) Ve, |dr P dre
a=1 P

+wii(kl) (|drolP2dre)
_ . 2 p-2 2 p-2
= —i(dpwy)|drd|’“dr ¢ + widy|dr o[’ “drd

= — 2wyi(dpw))|dr P~ *dro. (5.3)

Since

(X)draf =(X* A i(X)dré. dro)
=~ (i(X)(X* A dro), dro) + | X [Pldre|

== X" Adrol + [XPldrol? (5-4)
for any vector X, we get
[i(X)drel* < |X[*|dre|*. (5.5)
From (5.3) and (5.5), we have
‘ /M<dVi(HuB)dT¢’wl2|dT¢|p_2dT¢)/‘M‘ :‘ fM(i(HuB)dTﬁﬁ, ~2wyi(dpw)|drolP*dré)m
<2 [ wliCely)drolli(dse)ldr ol drdlu

<9 /M wi|kB||dpwi||dro[P 1ar

«
<2—max{|kp|} / wildr P .
l M
If we let | — oo, then

lim [ (dyi(ih)dre, wfldrol *dre)uas = 0. (56)
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At the same time, we have

| fedldror™ b (ldroD)na
;b tldr o yun = [ 2ealdrol (s, dpsr)uas)
;e ldroPYuss = [ 2ealdrdp (e, dow)n)
~—{ f, (Gor.tldroPyu - [ 2uldroP (s, dp)in)
=_§ /M wildr ok s, dpwi)in.

The last equality in the above follows from dgxp = 0. By the Cauchy-Schwarz inequal-

ity, i.e., [(kp, dpwi)| < |kplldpwi|, we get

8] 8]
—TmaX{|ﬁB|}waz|dT¢|puMS/1;4w1|dT¢|p<HB,dBM)MMSTmaX{|/€B|}wal|dT¢|puM-

So by letting [ - oo, [, wildr¢P(kp,dpw;)par — 0, which means

lim [ (@Pldrol ™ iy (1dro))nn = 0. (5.7)

By the Cauchy-Schwarz inequality, we know that

[ (ldrel, Apldré s
= [ {dn(eflarol). dpldrol
_ Al 2 29 r P
=— [ wildpldrd|2["pum + Ay | (ldrd|2dpwr, widpldre|? ) um
p Ju M

A 3 5 B
2?1 fM wildpldro|® Pun - Ar fM widrdl*|dpwilldpldrd|* |ua, — (5.8)
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where A; = @. It is well known ([20]) that for a basic function f on M, we get

from (5.4)

ldy (fdr¢)| =|dpf Adro| <|dpflldre|.

Hence we have

‘ | fwtdro. 6vdv|dT¢|p‘2dT¢>uM‘ - ‘ | (do(bdre), deldrol*dre)uas
< [ ldv(wldro)|dsldréldrol
<2 [ ldpelldsldrol|drof

< Ay [M wildpwildrd|®|dpldre|? ], (5.9)

where Aj = @. From (5.8) and (5.9), we get

| (tlardl. Aldrol ™ yuns = [ (wfdro.dedsldréldro)uns
b P A P
> —(A; + Ag) waz|dBledT¢|2 |dBldr¢|=|uar + ?1 [M wildpldre|? [’ pas
1 » A b}
> (A + A) fM(€|dBwl|2|dT¢|p + EWZQ|dB|dT¢|2 P paas + ?1 fMW12|dB|dT¢|2 pans,

(5.10)

where € is a positive constant. So by letting [ - oo, from (5.2), (5.6), (5.7), (5.10) and

Fatou’s inequality,

A1+A2
9

Ay p
cfd Pl > —fdd 51200,
M|T¢|MM ( +p) M|B| Y,

Since Ep () < oo, we know that dp|dr¢|? € L. Hence by the Hélder inequality,

[ ildselldrél®ldsldre(Eluas < ([ aroPldsaPuant( [ wfldplarolPuan)t.
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If we let [ - oo, then
lim [ wldrol|dpwlldsldrelf | =0. (5.11)
From (5.8) and (5.11), we have
: 2 p-1 A 212
lim [ (wpldrol, Apldr¢l™ Yunv 2 — [ |dpldro|=|"pr- (5.12)
l—»o0 JM p JIM

On the other hand, by the Rayleigh quotient theorem, we have

[arldsldro|2, dpldrd|® )
fM |dT¢|pMM

> Uo. (5.13)
From (5.2), (5.6), (5.7), (5.11), (5.12) and (5.13), by [ — oo, we get
A A »
Zo [z < = [ 1dsldrslt P
b M p JM
q
<=3 [ lirol o (dro(Ric(E,).dro(Ex) s
a=1
<C [ ldrPua. (5.14)

Since C = 4(1;—;1),% = %uo, (5.14) implies that

> [ droP o (dré((Ric? + O)(B), drd(E))us =0, (5.15)
a=1

Since Ric® > —C at some point zg, then dr¢ = 0 by (5.15). It means that ¢ is transver-

sally constant. O

Corollary 5.2 Let (M,g,F) be a complete foliated Riemannian manifold with co-
closed mean curvature form kg and all leaves be compact. Let (M’ g, F') be a fo-
liated Riemannian manifold with non-positive transversal sectional curvature K Q" As-

sume that the transversal Ricci curvature Ric® of M satisfies Ric® > _i ;1) o for
P
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all z € M and Ric® > —%MO at some point xo. Then any (F,F')q-harmonic map

¢:(M,g,F) = (M',g',F') with2<q<p of Epq4(¢) < oo is transversally constant.

4(g-1) > 4(p-1)

e ot So the proof is trivial. O

Proof. For 2 < g <p, we have

The following corollary can be obtained readily when p = 2.

Corollary 5.3 Let (M,g,F) be a complete foliated Riemannian manifold with coclosed
mean curvature form kp and all leaves be compact. Let (M',g',F") be a foliated Rie-
mannian manifold with non-positive transversal sectional curvature KQ'. Assume that
the transversal Ricci curvature Ric® of M satisfies Ric® > —puq for all z € M and Ric® >
—po at some point xy. Then any (F,F')-harmonic map ¢: (M,g,F) - (M',g", F') of

Ep(¢) < oo is transversally constant.

Remark 5.4 Let ¢: (M,g,F) - (M',g',F") be a smooth foliated map. Then ¢ is said
to be transversally p-harmonic if the transversal p-tension field 7, ,(¢) of ¢ vanishes. In
general, (F,F"),-harmonic map and transversally p-harmonic map are not equivalent.
However, based on Theorem 3.5, we know that (F,F"),-harmonic map is transversally
p-harmonic map if F is minimal. The Liouville type theorem for the transversally p-
harmonic map is still open for p > 2. When p = 2, the Liouville type theorem for the

transversally harmonic map is proved by X. S. Fu and S. D. Jung in ([6]).

Remark 5.5 Theorem 5.1 can be viewed as the generalization of Theorem 1.4 in ([14])

from Riemannian manifold to foliated Riemannian manifold.
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