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The Onset of Convective Instability and Heat Transfer
Correlation in Internally Heated Horizontal Fluid Layers
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Summary

Buoyancy effects in intemally heated horizontal fluid layers with a rigid, adiabatic lower boundary and a rigid, isothermal
upper boundary is analyzed theoretically. The onset of thermal convection is analyzed by using the propagation theory, we have
developed, and its connection to the fully-developed heat transport is sought. The critical time to mark cellular motion for the
deep-pool case is found to increase with a decrease in Prandtl number. Based on the present stability criteria, a new correlation
of the Nusselt number is produced as a function of both the Rayleigh number and the Prandtl number. It is shown that the
present heat transfer correlation on thermal convection compares reasonably with existing experimental data of water.

Introduction

From the beginning of this century the convective
motion driven by buoyancy forces has attracted many
researcher's interest. Benard (1901) conducted systematic
experiments on the onset of natural convection in a
horizontal fluid layer. Later, Lord Rayleigh (1916) showed
that the buoyancy-driven convection can occur when the
adverse temperature gradient exceeds a certain critical
value. Thereafter, many researchers analyzed the onset
condition of buoyancy driven convection in fluid layers
heated from below or cooled from above. Extensive results
for the various systems have been summarized by
Chandrasekhar (1961) and Berg et al. (1974).

Kulacki and Goldstein (1975) extended the stability
analysis to the horizontal fluid layer heated by internal
heat sources. It is well-known that thermal convection

problems driven by energy release from distributed
volumetric energy sources appears to play an important
role in wide variety of engineening applications, such as
geothermal reservoirs, chemical reactors and heat removal
of nuclear power plants.

When an initially quiescent horizontal fluid layer system
is heated rapidly buoyancy-driven molion sets in before the
basic temperature field is fully-developed. Therefore, in
case of rapid heating the basic temperature profile of pure
conduction becomes time-dependent. To analyze this kind
of thermal instability in horizontal fluid layers several
theoretical methods have been proposed: the amplification
theory (Foster, 1965), energy method (Wankat and
Homsy, 1977), stochastic model (Jhavary and Homsy,
1982) and propagation theory (Choi et al., 1984). The
amplification theory treated the time dependency as an
initial value problem. This method is quite popular, but it
involves arbitrariness in choosing both an initial condition
and its amplification factor to mark the onset of motion.
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The propagation theory predicts the conditions to mark the
onset time deterministically, it employs the thermal
penetration depth as a length scaling factor and transforms
the linearized disturbance equations into the similar forms.
Its prediction has been coincident with the various
experimental results in deep-pool systems experiencing
rapid heating, such as laminar forced convection (Kim et
al.,, 1990; Choi and Kim, 1990), laminar natural
convection (Chun and Choi, 1991) and also fluid-saturated
porous layer (Yoon and Choi, 1989).

Another important problem in buoyancy-driven
phenomena is the heat transfer characteristics in thermally
fully-developed state. To analyze this problem Howard
(1964) proposed the boundary-layer instability model in
which the heat transfer for very high Rayleigh numbers has
a close relationship with stability criteria. Based on
Howard's concept, Long (1976) and Cheung (1980)
introduced backbone equations to predict the heat transport
in horizontal fluid layers. By incorporating their stability
criteria into the boundary layer instability model Choi et
al. (1989) and Kim and Choi (1992) have derived new
heat transfer correlations for various systems. Their
resulting heat transfer correlations are in good agreement
with existing experimental results.

In the present study, the stability criteria of the onset of
regular cell-type motion in a horizontal fluid layer with
uniform energy sources is analyzed by using our
propagation theory. And based on the stability criteria, a
new heat transfer correlation is derived and compared with
the existing experimental results. Here, it is shown that the
propagation theory we have developed can become a
theoretical base in understanding buoyancy-driven
phenomena.

Stability Analysis

1. Governing Equations

The system considered here is an initially quiescent
horizontal fluid layer of depth "d" with an adiabatic lower
boundary and isothermal upper boundary. Before heating
the fluid layer is maintained at uniform temperature T,

for time t < 0. For time { > Qthe layer is heated intemally
with the uniform volumetric heat generation rate S. Here
we employ the Cartesian coordinates with the downward
distance Z. The schematic diagram of present system is
shown in Fig. 1. For this system the goveming equations of
flow and temperature fields are expressed by employing
the Boussinesq approximation, as follows:

Isothermat
2=0 - il
f' Umiform
S Velumetric o
,/‘ Heat Source '
z=d - Hros d
Adiabatic

Fig. 1. Schematic diagram of system considered
here.

VeU=0 1)
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{1+U0V}T=aV’T+—S- 3
a r.C,

where U is the velocity vector, T the temperature, P the
pressure, | the viscosity, o the thermal diffusivity, g the
gravitational acceleration, p the density, C, the specific
heat, B the thermal expansion coefficient. The subscript "r"
represents the reference state.

The important parameters to describe the present system
are the Prandtl number Pr and the Rayleigh number Ra,
defined by

3
pr= and Ra =23 @
o kov

where k and v denote the thermal conductivity and the
kinematic viscosity, respectively. In case of slow heating
the basic temperature profile is parabolic and time-
independent and its critical condition is well represented by

Ra,, =2772 ©)

But for a rapid heating system of large Ra,, the stability
problem becomes transient and complicated, and the
critical time t to mark the onset of buoyancy-driven
motion remains unsolved. For this transient stability
analysis we define a set of nondimensional variables 1, z,
8, by using the scale of time d*/a. length d and
temperature Sd° /k. Then the basic conduction state is
represented in dimensionless form by

30, 9%,

- 37 +1 (6)

with the following initial and boundary conditions,

2,

e (t,1)=0 @

0,(0,2)=86,(1,0)=

The above equations can be solved by using the
conventional separation-of-variables technique, as follows:

z) 16 1 [(2n+1)
0,=271-— [-— ) ————sin{————nz
’ ( 2) n3§(2n+1)’ { 2 }

2 2
xexp{—(zn—znlr} (8)

For deep-pool systems, the Leveque-type solution can be
obtained as follows (Carslaw and Jaeger, 1959):
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where T]=Z/J?~ The above equation is in good
agreement with the exact solution (8) in the region of t <
0.1. Since we are primarily concemed with the deep-pool
case of large Ra, and small T, the above Leveque type
solution (9) represents the basic temperature profile quite
well. But for the mathematical convenience in the present
stability analysis we simplify the basic temperature profile
by using the integral method (Eckert and Robert, 1972) as
follows:

8, =f[l-—(l—§)3ll—U‘_l] (10)

where { = z/8. Ug.y is the unit step function having the
zero value at { = 1 and 81‘ is the dimensionless thermal
penetration depth having the value of Jst . This

approximate solution is in good agreement with the exact
one in the region of 1< 0.1.

2. Stability Equations

Under the linear stability theory disturbances caused by
the onset of thermal convection can be formulated, in
dimensionless form, in terms of the temperature component
6, and the vertical velocity component  w, by

transforming equations (1) ~ (3):

{é%_v’}?w, -V, an
a0 09 2
Sh+Raw, S2=Ve, (12)
2 2 2 2
whcm?_0_+d_+_9_ -'5?=_+._ Here
x? oy* a7 oy

the velocity component has the scale of o/d and the
temperature component has the scale of av/fgﬂd’)- The

proper boundary conditions are given by

at z=0 (13.3)
at z=1 (13.b)

w, =Dw,=6,=0
w,=Dw,=D8, =0

Our goal is to find the critical time T for a given Pr and
Ra, by using equations (11) ~ (13).

Based on the normal mode analysis, the amplitude
functions w' and @ are constructed as a function of
{(=2z/8;)only by assuming periodic motion of
disturbances in the form of regular cells over the horizontal
plane:

[wl(t, x.y,2).0,(t, x,y.z)] =

2w @6 @pri(a,xeay)] a0

where "i" is the imaginary number. The horizontal wave
number "a" has the relation of a=[af +a:]m By using
these relations the stability equation is obtained from

equations (11) ~ (13) as
{(Dz -a” )z +-;—r(§D’ -a"{D+2a" )}w' =

— (15.a)

(D* +4¢D-2")0" =Ra'w'DS; (15)

where 2° = a8, Ra’ =Rabjt. D=di§ and 8, =6, /1.

It is assumed that 3° and Ra’ are the eigenvalues, and also
the onset time of buoyancy-driven convection for a given
Ra, is unique under the principle of exchange of
stabilities. The above procedure is the essence of our
propagation theory.

3. Solution Procedure

1) In the case of Pr—ee,

The stability equation derived in equation (15) still
involves mathematical complexity. This problem can be
alleviated by dealing with very high and very low Prandtl
numbers. Let us consider the very high Pr case, first. Then
the stability equations reduce to

(D* +atp-a")(D? -8 S w =32 "Ra"(1-20+ 2w’
foro<f <1 (16.a)

(D? +4gD-a")(D*=a" ) w' =0 for 21 (6D)

The above equations are separated, depending on the
range of {. The boundary conditions can be converted to

w' =Dw'’ =(D’—a")w' =0
w =Dw =D{D*-a" Jw =0 ag=1/5, (17b)

at {=0 (17a)

For a deep-pool system, the condition of £ = 1 corresponds
to the basic thermal penetration depth, and 1/8T is
practically equivalent to an infinite high value since 3, is
smali.

Within the thermal penetration depth ({<1) the velocity
disturbance is approximated by means of rapidly
converging power series proposed by Sparrow et al. [22]:
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6 =3 b9¢ (18.b)
a=l

H; (=0, 1,2,3, 4, 5) is an arbitrary coefficient needed in
the sixth-order differential equation, and b‘_” can be

obtained by substituting equation (18) into equation (16.a)
as the following indicial form:
“(n-2)(n-3)n-4)(n-"5)
—4(n-2)(n~3)}(n-4)(n-5)(n-6)}b},
+{8a” (n-4Xn-5)n-6)-3a" (n- dxn—5)}bY,
+{a" - 42" (n-6)-3a"Ra" Jo2,
6a”Ra'b®, -3a"Ra'b?,| (19.0)
bP=8,, (8=0,1234.5) : Kronecker delta (19.b)
b9 = b"’ =b2=bP =b? = =2 =bP =0 (19)

bo = (n- 6)[

Applying the boundary condition of { = 0 to equations
(18) and (19), the velocity disturbances inside the thermal
penetration depth, { < 1, can be expressed in the following
form:

= Hz{fz ® +%f. (C)} +HEQ+HSLEG) QO

In order to obtain the velocity disturbance for the region
of § 2 1, it is helpful to consider the solution outside the
thermal penetration depth in two stages:

(D*+agD-a")y=0 (214)

2

D’ -a” ) w =Y 21.b)
(0*-a") w;

The WKB method can be used 1o obtain the solution of Y
which satisfies the condition DY =0 as {—. Then the
solution of Y is given by (Mathews and Walker, 1973):

exp(-{?)

EW 0{—IJ4EZ +2+a" di} 22)

The form of Y as is determined by the WKB method is
very complicated. In order to find the particular solution of
equation (21.b) over the range of { 2 1, { is converted as

s={-1 (23)

which provides the convergence in computer calculation.
By using the initial values of Y and DY at { = 1 the
solution of Y is obtained in form of power series. The
solution of the velocity disturbance outside the thermal
penetration depth can be obtained by inverse-operator

technique, as follow:
w, =H, exp(-a’s) + Hisexp(-a's)

{exp(a s)Z—s"2

s(n+1)(n+2)

+exp(-a’ )z——q' =2

Sn+n+2)
—— »l —a
exp(a )Z(—:l—)s - exp( 5)2( +l) }
(24.3)
h T _L‘z)!{(za- + 4)(" - 1)Pn—l + 4(" -2+a )p--l
n:
) )
P =_.21-{(2a' +8)p, +4a'p,) (24.0)
=DY(1)-a'Y() (24.d)
=YQ) 4de)
.= _(11_—‘22!_{(4 -2a"Jn-1)q,, + 4(n-2-a" Ja.
n:
PR a0
1 . . .
9 =—;{(4—2a ), - 4a'q,} @245)
q,=DY()+a"Y(1) (24.h)
=Y(Q) 24.0)

The above equations (22) and (24) for the velocity
disturbance inside and outside the thermal penetration
depth are patched at § = 1. Here, the velocity, the stress
and the temperature are all contineous in a physical sense,
and in a mathematical sense the expression for the velocity
disturbance is an analytical function. Thus the following
relations must be satisfy:

D'w; =D"w, (n=0,12345) at{=1 25)

The above relations can be expressed in matrix form as

[ f,+(a'1/6)f‘ f, f -1 0 o]
b, +(a"f6Df, Df, DI, 2t -1 o0
D, +(a”f6)D, D, D', —a” 2a° 0
DY, +(a"f6)Df, D, D%, a® -3 0
D'r, +(a"f6)D', D', DY, -a” 42" -y
.D’f2+(a'z/6)D’f‘ D'f, D, a° -5 -DY|
{{H,.H,.H,.H,.H,.H,] =0 (26)

To produce nontrivial solution of velocity disturbances,
the determinant of 6 x6 matnx must be zero. The value
of the determinant is determined by the two eigenvalue 3"
and Ra’. Therefore the computer calculation was camried
out to obtain Ra’ foragiven a°.
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2) In the case of Pr—0

Stability analysis for the very small Prandtl number case
is basically similar to the case of Pr—eo, But, in the
limiting case of Pr—0, the viscous effects of amplitude
function can be ignored in comparison o the convective
effects. Also, boundary conditions should be relaxed under
the approximation of regligible viscous effects. Therefore,
we can't apply the no-slip condition at { = 0. Then the
stability equations are reduced as:

(Dz + 4CD—a'2)(§D’ ~—a"{D+2a" )w' =
—%PrRa'a"w'(l—Q)z

(D2 +4D-a" )(CD’ —a"tD+2a" )w' =0
for {>1 (27.b)

forp< {<1 (27.a)

with the following boundary conditions

w=0"=0 at {=0 (28.a)
w=Dw=D8=0 as {3 (28.b)

The inner solution can not be easily obtained as the
rapidly converging power series form because of the non-
linear characteristic of convective term. Thus Frobenius
method is applied in this study as follows:

DX @9

By substituting equation (29) into equation (27.a ), the
indicial equation is obtained as

c(e=1D(c-2)(c-3)=0 (30)

Now, we can outline the form of the solution for the
each induce "c" and obtain the solution as 5 independent

series.
a” )§‘+....}
l{ —3—:’0(%& Ra'a” +10a" —a" )§’+....}
S
g

1
_3_0(2—3'2)§’+....}
2 1 4 . . 4
{(g ~Trao3 PRaL +....)ln§+(:—2§ +]}

(3n

w, =G, 1-l(3PrR a” -
a8

where coefficient G (i=0,1,2,3,4) is an arbitrary
constants. In order to satisfy the boundary conditions

which the velocity and temperature perturbations do not
exist at the rigid-isothermal surface, G, and G, should be
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disappeared.
The outer solution in the infinite domain can be obtained
by separation equation (27.b) into
(D* +agp-a" )Y =0 (2a)
(Dz -a” )(cl) ~2)wi=Y (32b)

The asymptotic solution of equation (32.a) is the same
as equation (22). By using this solution, we can obtain the
outer amplitude function as the previous case. As the first
step, the homogeneous solution of equation (32.b) can be
produced as

A L

(33

And, equation (32.a) is transformed into those of s = {-1.
Then the solution of Y is generated as the forms of
exp(a*s)p(s) and exp(-a*s)q(s). p(s) and q(s) are the power
series forms as the function of s, whose coefficients are
dependent of the asymptotic solution. Consequently
equation (32.b) can be written through the operator
technique as

{s+1)D" -2}w; = G_‘_{exp(.'s)ip_
—exp(-a’ s)); ——t } 34)

with  p =q,=Y(). p,=DY()-a'Y(l), and
=DY(1)+a"Y(1)- For n22, the recursion formula for
pn and qn can be easily constructed, and are identical

with equation (24). The particular solution is obtained in
the form of

=e ( )Zd s +exp(-—a S)Ze s" (35.a)
d,=d,=0 (35.b)
d, =S¢ B (35.)

2a 2

G, 1
d, =-2T‘-6—{p, —a'p,} (35.4)

1 G, p }

=——{—=—2--(n-1+a2 —a'd

e n+2{2a n+l ( )d"'
forn22 (35.e)
e, =¢,=0 359
G, g, @35
=—— -8)
& 22 2
€= "?E{qx -5"10} (5h)
€,..= —-—1——{0—‘_—qJ——(n—l-HA')e"l —a'e_}
n+2(2a n+l
forn22 35.i)



A - AAF
The outer solution can be obtained as w, =w, +w, . 5000
Since the solution to satisfy all the boundary conditions are I
found in the whole domain, the following equation to
characterize the onset of convection is generated by using 4000 - Pr— o
equation (25) as the previous case:
6@ 6@ 6® fer-etwaE)p 0 3000 |
DG® DG® DG® a'e™ -a”E, 0 .
D’G® D'G® DG® -"E, 0 S T
D’G® D%G*® DG® ate -Y 2000 Unstable
D'G® D'G® D'G® 2t 42’ -DY4Y
-1 r
1 .
4G,,G,,G,.G,.G,] =0 (36) 1000 10825
Stabl
where G¥(j =0,1,2,3,4) is a infinite series with respect to 1.93 able
= exp(-a'E) 8.0 7.0 2.0 30 l
G, in equation (31) and E,:j—é—-dg. The value ‘ : Pt 0 50
4

of E can be obtained by using IMSL subroutine library.
PrRa’ results from the condition that the determinant of
resulting 5x5 square matrix is equal to zero. The minimum
value of PrRa’ in the plot of PrRa’ vs. a° is the critical
condition to mark the onset of natural convection for
extremely small Prandtl number.

4.Stability Results
The marginal stability curves obtained from computer

calculation are shown in Figs. 2 and 3. And the critical
oondition for the onset of buoyancy-driven convection are

Ra; =1062.50 and a] =193 for PrHe (37.2)
PrRa; =435.70 and ;=279 for Pr—0 (37.b)
From the aboves onset time t_ are expressed as

(38.a)
(38.b)

T, =4.66Ra;”® for Pr—e
1, =3.26(PrRa,)*" for Pr—0

Based on the results for the limiting cases, the stability
criteria for a deep-pool system may be roughly constructed
as

Ral = 1062.5({1 +ﬂ] (39)
Pr

Therefore, the onset time of buoyancy-driven convection
may have the following relation :

0.41Y"
T, = 4.&(1+T) Raj”* for t <0.1 (40)

Foster (1969) proposed that the onset time of natural
convection obtained by using the thermal penetration depth
as a length scaling factor should be too short by factor of 4.

Fig. 2. Maginal stability curve for EMBED

Equation
2500
Pr-0
2000}
1500}
‘o
&
a 1000k Unstable
so0L-435.70
L Stable
2.78
4 1 4 "y " 1 A 1 A A A
8o 1.0 2.0 30 4.0 5.0 6.0
(o]

Fig. 3. Maginal stability curve for EMBED
Equation

By accepting Foster's concept, we suggest that the
disturbances set in at 1, Will lead to manifest convection at

4t . Thus, we foretell the onset time when the convective
motion can be detectable experimentally, <. as follows:

25
T, = l8.64(1+%) Ra;*® @1

The relationship T, =4t can be seen many other systems
(Yoon and Choi, 1989; Choi et al., 1988).

Heat Transport
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The possibility of connecting the stability criteria to
fully-developed turbulent thermal convection has been
discussed by Howard (1964). According to Howard's
concept called the boundary-layer instability model, the
heat transport in fully-developed turbulent state is
govemed by the narrow region of the heated surface for
systems heated isothermally from below. Its modification
extending Howard's concept is shown in Fig. 4.

From the boundary layer instability model the Nusselt

2

Sd
number, Nu=-—— can be expressed as follows :
kAT

Nu= .;_ for Ra,—e “)
where §, is the conduction thickness. This may be replaced
by 8, following Howard's concept. su

penetration depth at the onset condition of buoyancy-
driven convection. Thus, by using the relation of
Ra, = RaNuequation (42) can be expressed as

is thermal

720 Isothermal I
5 — N . _ AT],
Turbulent
Core
Z= ——— -
d S T G e,
Adiabatic

Fig. 4. Schematic diagram of turbulent heat
transport model.

e
Nu= [%’x_] for Ra, — oo “3)

L2

where Ra, ls represented by
3
Ra - gNT;AHl (44)
31, oav
AT|, is the temperature difference across the boundary
layer and can be expressed as

a1, -t )

From the equations (44) and (45)

substituted by Ra’. Then the heat transport in the fully-
developed state is govemned by

Rahcanbe

__0.1752Ra;"

T for Ra, 5 o0 (46)
(1+0.41/Pr)

Long (1976) and Cheung (1980) proposed the backbone

equations to predict the heat transport for the horizontal
fluid layer heated intemally or from below. By modifying
the Long and Cheung's results, a new backbone equation to
govem the buoyancy-driven heat transport in the present
system can be obtained as follows:

A(Ra}* —Ra¥!
Nu=2 +_..(’—‘~‘) én
1-BRa;"

where A and B are the undetermined constants. R,auisthe

minimum value of Ra, to mark the onset of buoyancy-
driven convection, of which value is 2772.

The finite-amplitude heat transfer characteristics slightly
over Ra,, can be obtained by using the shape assumption
of Stuart (1964). For the region of Ra, — Ra, . Roberts
(1967) expressed the Nusselt number as

2 r

—=1-—(Ra,-Ra,,) “43)
Nu Ra,

The constant " is obtained from the distribution of
disrbance quantities at Ra = Ra, :

1 1
2sz (:] dzjw 0,dz
rN=—2—_2 __ __=0.5994 49

(w,8,) dz

© S, |

Thus from the equations (48) and (49), we obtain the
following relation :

dNu - 2r (50)
dRal Ray—oRag, 1e

Assembling the equations (46), (47) and (50), we can

| Present Stud

------- Fielder & Wille (1971)
Kulacki & Emara S1977
Kulacki & Nagle 975\
Kikuchi et ol.” (1978

1 aanel x poceed g osiaeed Lamat s couml ;oo oo
10’ THECHECH 10' 10'10'10"10" o
Ra,

Fig. 5. Comparison between present heat transport
correlation and experimenta results,
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derive a new heat transfer correlation for the whole range
of Ra, as
A(RaY* -2772)

Nu=2+ for Ra, 22772 (51
1-BRa;"
0.4\
where A =0.175 x+?r— and B=19360

ve
—0.5132/(1+-°-'ﬂ) i
Pr

The experimental data of water is compared with the
above correlation with Pr=7 in Fig. 5. As shown in Fig. 5,
the above equation predicts the heat transport guite well.

Conclusion

The onset of regular cell-type motion in a horizontal
fluid layer with uniforn volumetric energy sources has
been analyzed analytically by using linear stability theory.
Our propagation theory predicts that the onset time of
buoyancy driven motion is a function of the Rayleigh
number and Prandtl number. Also, based on the boundary-
layer instability model, heat transfer characteristics of the
layer are predicted as a function of the Rayleigh number
and Prandtl number. These results show that the
propagation theory we have developed is a powerful tool in
analyzing buoyancy-driven phenomena.
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