On Structure of a P-ring
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] . Introduction

Stringall (5] and Haines (3] studied the properties of P-ring and they

extended the properties of Boolean ring,

This paper will be primarily concerned with a P-ring.

This P-ring is a generalization of a Boolean ring.

In this paper, we have some structural theorems for a P-ring.

That is, a P-ring becames a reduced ring and every right ideal of a P-ring
is two—sided and so on,

And we show that imbeding theorem to a P-ring with identity.

Moreover, we prove the commutativity theorem for a P-ring.

I . Preliminaries

Let P be a prime number,

The P-ring is a ring R which satisfies the identity x* = x for arbitrary x in

If P=2 thenR is called a Boolean ring,

Stringall established that the Categories of P-rings are equivalent,

And David C. Haines established that a P-ring is an injective object in the
category of a P-rings if and only if it is quasi —orthogonally camplete.

In this paper, we use the following properties on ring theory.

So we state them without proofs.



Theorem 2 .1. Let R be a ring with identity JR and characteristic nbo.
(i) If g:Z—>R 1is the map given bym*+— m IR,
then g is a homomorphism of rings with kernel
<n> ={kn | kEZ},
(1i) n is the least positive integer such that nlR= 0.
(iii) If R is an integral domain, then n is prime.

((1], Chapter [—1)

lemma 2.2, Let R be a division ring of characteristic gr0,qis a prime.
Suppose that the element a in R, a&E center of R, is such that a¥ =a for
some myo.
Then there exists an x&R for which
1) xax"! x a,
2) xax ! = a“& Zq(a),
the extension field obtained by adjoining a to Z,, for some k= 2.

([(2), chapter 9)

Theorem 2.3. (Wedderburn’s Theorem)
Every finite division ring is field,

((1], chapter [{—6)

Proposition 2.4 A ringR is completely reducible if and only if it is
isomorphic to a finite direct product of completely reducible simple rings,

((6]). chapter 3—4)



Proposition 2.5 If F is a finite field, then F has exactly q™ elemen-

ts for some prime q and m&Z 4+,

({(4]), Chapter [—1)

Proposition 2 6, Let p be a prime and n=1 an integer.
Then F is a finite field with p” elements if and only if F is a splitting

field of x¥*" —x over Zp.

({1), Chapter V-9

Proposition 2 .7. The Radical of R is the set of all =R such that 1-
rs is right invertible for all s&R,

((6], Chapter 3-2)

Proposition 2 8. In a nonzero ring R with identity maximal (left) ideals
always exist,
In fact every(left) ideal in R (except R itself) is contained in a maximal
(left) ideal,

(1], Chapter [-2)



Il . Structural theorems and Commutativity

theorem for a P—ring.

In this section, ring R is a P—ring

(not necessarily with identity)

Proposition 3.1. Let R be a P-ring then R is reduced ring.
Proof. Let x &R be an element such that
x" =0 for some m.
Then x =xP= ™ = x Pt -m X xm
for some K |, Px=m
Since x™ =0, x=0.

Therefore, O is the only nilpotent element

Proposition 3.2, Every idempotent element of R must be in the center of R,
Proof, If e=e’&R,
then for arbitrary x in R,
(xe—exel = (xe— exe) (xe —exe)
=xexe — exexe — xeexe 4 exeexe
=XeXe — exexe — Xxexe+ exexe
=0,
By Similary method,
(ex— exe)? =0,

Then

xe —exe=0=ex—exe by proposition 3.1 _



Therefore,
Xe = exe — ex
Hence,

x 1s in the center of R

proposition 3,3, For every x in R, x*"! is an idempotent element of R.
Proof. Let e = x*"! then
62: (xp-l)z

= X 2p-2

Proposition 3.4, Every right ideal of R is a two—-sided ideal of R
Proof . Let I be a right ideal of R
If a1 with a* =a, then

~! is an idempotent element by proposition 3. 3.

aP
Hence a° "' is in the center of R
by proposition 3.2
Therefore,
for any r in R
ra=r-(a’""-a)
:(ap'l.r).a

= a(a®"%.r-a)

—5-



=ar'e1l where r' =4 2.r.3 =R
Hence ra= 1 and this shows that

I'is a two—sided ideal of R,

Proposition 3 5. The homomorphic image of P-ring is also a P-ring.
Proof . Let f:R—R’ be an epimorphism,

Where R is a P-ring.

For any y&R/,

there exist x &R such that fix)=y, since x* =x

We have
y=f{lxi=f(x?) = flx)P=y*
Therefore,

R’ is also a P-ring,

Corollary 3 6. (1) The quotient ring of a P-ring is also a P-ring,
(2) The subring of a P-ring is also a P-ring.

Proof, By Proposition 3.5 and definition, it is trivial,

Proposition 3.7 Any P-ring R of characteristic p can be imbedded in

a P-ring with identity,
Proof. Consider the catesion product RX Zp,
where RXZp={(r,n)| r&R, nEZp ),
If addition and multiplication are defined by
(a,n) 4+ (b,m) = (a+b, n+m(mod p))
(a,n) (b,m) = (ab4+ma+mb, nm(mod p))

then RXZp forms a P-ring,



Since,
(a,n)® = (a®+2npa, n°(mod p))

= (a,n)

by Fermat's theorem and characteristic of R.

And this system has a multiplicative identity (0,1);

(a,n)(0,1) =(a0+1la+n0, nl(mod p))
= (a,n)

and similarly,
(0,1) {(a,n) = (a,n).

Next, consider the subring RX {0} of RXZp
consisting of all pairs of the form (a,0),

This subring is isomorphic to the given ring R
under the mapping f:R—RX{0} defined by fla)=(a,0).

This process imbeds R into RXZp, a P-ring with identity.

Theorem 3. 8 Let R be a P-ring with identity.
If R forms a division ring, then R is commutative ring and hence a field,
Proof. First, let us show that R is of characteristic q )0,
where g is a prime,
If characteristic of R is 2, we have done.
If characteristic of R is not 2, let us consider any element a in R.
Since a®=a and (2a)? = 2a, we have
2%a® — 2a = (2°-2)a
=2(2'~1)a



But 2a7#0, we have (2P "'—1)a=0_

Therefore |

there exists a least positive integer q such that ga=0, which implies that

the characteristic of R is g,

where q is a prime by Theorem 2.1

Since the center of R is a subfield of R, R contains a prime subfield Zq
of characteristic q.

Since 2" =a, a is algebraic over Z,

because a polynomial

fixl=x* —x=0

with its coefficients in Z, has a as its root by proposition 2.6,

Hence the extension Zyja) constitutes a finite field.

Since Z4la) is a finite extension of finite field 7 e

Say, Zgfa) has g™ elements by proposition 2.5

In particular, a&Zga), so that aa™ = 4.

If we now assume that a is not in the center of R, then all the hypothesis
of Lemma 2,2 will be satisfied.

Thus there exists an element b&R and integer k>1 satisfying
bab™ =a* £a —(#),

Similar reasoning applied to the extension field Zq®} indicates that b¥
=b for some integer m)>1,

At this point we tum our attension to the set of finite sums

n m

gq-1g=1 o
W=} % rij a' b' | rij&=Zq
1=90 j=0



It should be abparent that w is a finite set which is closed under addition,
Since the relation a*b=ba allows us to bring the a's and b's together in a
product |
W is also closed under multiplication .
Hence W is a subring and a finite division ring by corollary 3.6,
Therefore, by Wedderburn’s Theorem 2,3
we know that W is necessarily commutative,
In particular, a,b&EW so that ab=ba
which contradict to(x) ; bab™=a*=#a |
Therefore, a must be in the center of R,

Hence R 1s commutative .

Proposition 3 9 Let R be a P-ring with identity,
For any a andb in R, we have ab-ba& Rad R,

where Rad R is the intersection of all maximal ideals of R,
Proof. Since R has a maximal right ideals by proposition 2.8 .
We have that they are two—sided ideals by proposition 3.4 .
Hence R/M is a division ring and

R/M is a P-ring by corollary 3.6(1)
Theorem 3.8 shows that

RM is commutative and hence it is a field,
In other words, for all ab in R,

(a+M) (b +M) = (b+M) (a+M)

or equivalently ab—ba&M,



As this last relation holds for every maximal ideal of R, it follows that

ab—ba is in Rad R,

Theorem 3 .10. Let R be a P-ring with identity,

Then R is semisimple ,

Proof. Suppose that the element x i1s in the Rad R.

Then x?~' is an idempotent,

Since Rad R is an ideal, we have x? '&Rad R,

In the proposition 2.7, if we have S=!, then we see that 1-x*"!is right
invertible, say (1-x""')y=1 where y&R.

This leads to,
xP P =xP (1 =x? )y
= (x*' -x® %)y
=0.
Then x=0 by proposition 3.1
Therefore,
Rad R=0,

Hence R is semisimple .

Theorem 3.11. Every P-ring with identity is a commutative ring.
Proof. Let a,b&R then ab—ba&Rad R by proposition 3.9,

Since Rad R= {0} by Theorem 3,10, ab—ba&{0}.

Therefore , ab=ba,

Hence R is commutative

—-10-—
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