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I. INTRODUCTION

Let A C R be the union of a finite number of pairwise disjoint intervals.
In a sense, the "length” of this set A is the sum of the lengths of its separate

intervals. Even if A is the countably infinite union of pairwise disjoint inter-

oo
vals I, I, .. ., then the series J_I(I;) either converges or diverges to 0o; in

i=1
either case the result is intuitively ” the lenth of the set ”.

Since an open set G C R is either an open interval or a countable union
of pairwise disjoint open intervals, then G seems to have, theoretically at
least, a length. But is there a reasonable (and useful) way of assigning a ”
length ” to a set which is not necessarily a countable union of intervals ?

In 1904 Henri Lebesque introduced a generalization of the notion of
length, which is both intuitive and has many applications, extensions, and
abstractions.

On the other hand, it is well-known that (a) A sequence {a,} of real

numbers converge to a € R if and only if
n.m.an = iHan =a,

(b) (Cauchy Convergence Criterion) A sequence of real numbers is convergent

if and only if it is a Cauchy sequence.
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These facts give us a motivation to investigate several concepts of con-
vergences about sequence of sets, sequence of measurable sets and sequence
of measurable functions.

In section II, we will study properties of limit interior and limit superior
of sequence {A,} of sets. Also given two sequences {An} and {B,} of sets,
we give the inclusion relations among limits of the new sequences {A,NB,},
and {4, UB,}.

In section III , for each sequence {A,} of measurable sets, we will inves-
tigate the relations between the measure of limit ‘inferior (resp.superior) of
{A,} and the limit inferior (resp.superior) of measures of An.

In section IV , we will introduce several concepts on convergence (con-
vergence almost everywhere, convergence in measure, convergence almost
uniformly etc.) of sequence of measurable functions, and study the proper-

ties of these convergences, and the relations among these.



II. SEQUENCE OF SETS

Given any real sequence {a,},

a = sup (inf a;,) and @ = inf (supa;)
n>1 k>n n21 k>n

are the limit inferior and limit superior respectively of the sequence {a,},

and denoted by g = lima, =liminfa, and @=Ilma, = limsupa,.

Definition 2.1. A sequence of sets {4, } is said to be monotonically
decreasing if Ay D A3 D A3 D -, and monotonically increasing if A; C
A2CAsC .

For example, the sequence {4} defined by 4, = {z]0<z<1+1}is

monotonically decreasing,

[+ ] oo
Ndp= (| 4 ={z|0<z<1} and [J 4 = 4,

k=m k=n

Definition 2.2. Given a sequence of sets {A,}, form the sequence

{4,.} and {4,} by setting,

A4,= ()4 and Ado= )4 forn=1,23,
k>n k>n
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and then set

A:U_fj_n and A= ﬂ],,
n>1 n>1

A is called the lower limit (or limit inferior) and A is the upper limit (or

limit superior) of {A,}, and denoted by A = lim A, = liminfA, and

73— OO n—00

A= lim A, = limsupA,,.

n—=00 n—00

If 4 = A, then this common set is denoted by A, the sequence {4,} is

said to have limit A, and this is denoted by A = lim A,,.

Example 2.3. Let {A,} be defined by

n =

{ [0, 2, —%] for n odd.
[0.3+ 2] for n even.

Then

lim A, =[0,2] and [im 4, =[0,3).

Theorem 2.4. If m and n are any positive integers, then

4, CAn.

Proof. H n < m, then

An=mAbCﬂAECUAE=Im:
k>n k>m k>m
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but if m < n, then

An=JadJaud[)4=4.
k>m

k>n k2n

Theorem 2.5. lim 4, C lim 4,.
Proof. Let n € N, where N is the set of natural numbers. Then from
Theorem 2.4, A

A“CHZ,,,=X.

Thus A = U4, C UA = 4.

Corollary 2.6. {4, } is monotonically increasing and {4, } is mono-

tonically decreasing.

Theorem 3.7. Any monotonically decreasing sequence {A,} has
lim A,, = NA,.

Proof. By hypothesis,

and hence



but also
A4, = U Az = A, so that 4 = N4, = NA,.

k>n

Theorem 2.8. Any monotonically increasing sequence {A,} has
lim 4,, = UA,,.

Proof. By hypothesis,

and hence
A4=n4, = n[U A;] = VA,
i>1
but also
A= () A =4, sothat A=|] 4, =v4,.
k>n n>1
Theorem 2.9. For every sequence of sets {A,},

limA, = {z | ¢ € A, for all except finitely many n}; that is, z €
A if 3ng €N suchthatn>ng=>71€ A,

Proof. Let z € A = UA,,. Hence 3ng such that z € 4,, = [] Aa.

Therefore n > ng = z € A,



Conversely, let  and ng be such that n > ng => z € Aa. Then

z€ () 4n=4.C J a4nclJda=4

n>np n2ng

Theorem 2.10. For every sequence of sets {4,},

lim A, = {z |z € Ap for infinitely many n }; that is, z € A iff for each
k € N there is an n > k for which z € A,.

Proof. Let z € A = NA,. Then for each k, z € A;. Therefore for each k,
3ng such that ng > k and z € A4,,.

Conversely, assume that for each k,3n > k for which z € A,. Then for

each k,z € |J,5; An = As. Therefore z € [ 4x = A.
Theorem 2.11. Let A, be a subset of a universal set U. Then
lim 4,° = (im A,)° and IimA4,° = (lim 4.)".

Proof. Let B, = A,,°. Then

E“= an= nA‘,°= (UA;) =(I,,)c and

k>n E>n k>n

B =UB, =U(4,)" = (n4,)" = (A)".
Therfore lim 4,° = (m 4, )°. Similarly, im 4,° = (lim 4,)°.
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Theorem 2.12. Given two sequence {A,} and {B,}, form the se-

quence {C,} by setting Cy, = Ap U By. Then

AUB o
AUB CCC cC=AUB.

AUB

Proof. (1) Let ¢ € A. By Theorem 2.9 , choose 9 such that n > ny =
z€ A, Thenn>ny=2>z€A,UB, = C,. Thus £ € C. Hence 4 C C and
similarly B C C, so that AUBCC.

(2) Let z € C. By Theorem 2.9, choose n, such that n > ny >z € Cp =
A, UB,. If z € B, for only finitely many n, In, such that n > ny; = z € A,
and hence with ny = max(n;,ny),n > n3 => z € A, 80 that z € A C
AUB. If z € B, for infinitely many 5, then by Theorem 2.10, z € B. In
either case, z € A UB. Hence C C AUB. Similarly, CC AUB.

(3) Let z € AUB. Thenz € Aorz € B. lf z € A, then 3n; such that
n>n > €A, CC,,.Hencea:GQCE. Thus A C C. If z € B, then
for each n; 3In > ny such that £ € B, C C,. Hence 2 € C. Thus BC C.
Therefore AU B C C. Similarly, AuBcCC.

(4) Let z € C. Then for each ng, 3In > ng for which z € C,. Hence
z € A, orz € B,. Thus ¢ € A orz € B. Therefore C C AUB. Let
z€EAUB Thenz € Aorz € B. i z € A, then for each n; 3In > n, for

which £ € A, C C,. Thus 4 C C. Similarly, B C C. Therefore AUB C C.
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Theorem 2.13. Given two sequence {A,} and {B,}, form the se-

quence {C,} by setting C, = A, N B,. Then

ANB

Aﬂﬁ=gc{ }cEcZnE

ANnB

Proof. (1) Let z € ANB. Then £ € A and £ € B. Since £ € 4,
then there exists n; € N such that n > n; = z € A,. and similarly,
since ¢ € B, there exists n; € N such that n > ny =2 z € B,. Taking
n3 = max(ni,n3), n>na=>zr€ A, NB,=C,. Hencezr € C.

Conversely, let z € C. Then there exists ng such that n > np = z €
C, =A,NB, Hence n > no = z € A, and z € B,. Therefore z € 4 and
z € B, by Theorem 2.9 and soz € AN B.

(2) By Theorem 2.5, C = AN B C AN B. Similarly, CC ANB.

(3)Let € ANB. Then z € 4 and = € B. Since = € 4, for each n; € N
there exists n > n,; for which ¢ € A,,. Since z € B, there exists n; € N such
that n > ny = z € B,. For each n; € N, there exists n > max(n;, ny) for
which € C, = A,NB,. Hence z € C.

(4) Let z € C. Then for each ng there exists n > ng for which z € C, =

A, NB,. Thusz€Adandz€B ie,z€ANE.

Remark 2.14. Let A, B are any sets on R. Define Ax B = {(a,b):
a€ A,be B}. Then



(1)IfA;, CA2CAC - and B is any set, then put C, = A, x B for
n=123, - -.Hence Ch C Cry1 and so nleNCn = UC,.

(2) f 4; D A; D As--- and B is any set, then put C, = A, x B for
n=123,-.Thus C, D Cpny, and so nlean = NC,.

(3) Given two sequence {An.} and {Bn}, Put Cn = An X B, forn=
1,2,3,--

AxF o _
Then AxBCCC{ CC=AxB.
Ax B
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III. SEQUENCE OF MEASURABLE SETS

Definition 3.1 The outer measure of a set A C R is denoted by m*(4)
and defined by

m*(4) = inf{ Y 1(L) | ACUL} = inf 371(L),

where each I, is an open interval in R and I (],) is its length.

From the definition, it is easy to show that
(3) m*(4)20.

(b) I AC B, then m*(A) < m*(B).

(c) m*(z)=0 forany z€R.

(d) m*(@®)=0.

(e) If A is countable, then m*(A) = 0.

Theorem 3.32. For any sequence {A,},

m® (U4, ) < Z m® (4,).

Proof. If one of the sets A, has infinite outer measure, the inequality
holds trivially. If m® (A,) is finite for every n,then given ¢ > 0, there exists a

sequence {I, ;},, where i =1,2,3,--- such that 4, C UIn, and YidIni) <
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m* (Ap) + 2~ "¢. Now the collection {I,i}n,i = U{la,i}i is countable being

the union of countable number of countable collections, and covers UA,.

Thus

m® (Udn) < 301 (hn,) = PP ®)
<Y (m* () +e27")

= Zm' (4n) + €.

Since ¢ was arbitrary positive number,

m* (UA) <Y m® (4,).

Definition 3.3. A set A is said to be measureble, if for each set E,

1) m*(E) = m* (E N A) + m* (E N A°).

Remark 3.4. (a) A set A is measurable iff for every set A,
(2) m*(E)>m*(En A) + m* (E N A°%).

(b) A set A is measurable iff A° is measurable.

Theorem 3.5. A set A is measurable iff (2) holds for every set E
having m*(EF) < oo.
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Proof. H m*(E) = oo and A is any set whatever, then
m* (ENA)+m* (ENA®)=co.

Hence if m*(E) = oo, then (1) holds as 0o = oo whether A is measurable or

not. Thus a set A is measurable iff (2) holds for all set E with m*(E) < oo.

Theorem 3.6. If m*(A) = 0, then A is measurable.

Proof. Let E be any set. Since ENAC A and ENA° C E. Therefore,

m* (E N A) + m* (E N A°) < m*(4) + m*(E)

=m*(E).

Theorem 3.7. If A;, A;, Ay, -, Ay wWith n € N are each measur-

able, then

OA}_ and ﬁAk

=1 k=1

are measurable.

Proof. First, for n = 2, let E be any set. Since A3 is measurable,
(#) m‘(EnA]")=m°(EﬂA;°nAg)+m‘ (EnAlangc)

and

EN(A;UAy) = (ENA)U(ENA;NA°).

-13



Therefore
m* (EN[A; U A3)) + m* (EN[4; U 45))
<m*(ENAy)+m*(ENA;NA )+ m® (EN A °NAY)
=m*(ENA;))+m* (ENA,°)  ,by(s)
=m*(E) ,by Definition.

Thus A; U A5 is measurable.

Next suppose,

n-1 n-1
m*(E) = m* (E n{lJ A.]) +m* (E nflJ A,,]C)

k=1 k=1

Then

m® (En[o Ak]) +m* (En[LnJ Ah]")

k=1 k=1
=m'[ENn{4, U (Dl Ak)}] +m*[EN AN (”L—J A.) ]
k=1 k=1

<m* (EnA)+m'((ENA4,)N (U A:.)]

k=1
+m*[(ENA,°)N (D A;,) )
k=1
=m*(ENAp)+m* (ENAS)
=m"(E).
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n
By induction, |J A; is measurable.
k=1

Finally by the similar argument, (] A; is measurable.

k=1

Theorem 3.8. Let A be a measurable subset of a set B. If W is any

set with m*(W) < oo, then
m* (WNBNAS)=m*(WNB)—m*(WnA).
Proof. Since A is a measurable set,
m*(U)=m* (UN A)+m*(UnNA°)
for any set U. Hence with U = W N B,

m* (WNB)=m*(WnBNA)+m* (WnBn A

=m*(WnA)+m*(WnNBNA"), fromACRE

Since m*(WNA) < m* (W) < o0, m*(WNBNA°) = m*(WNB) -

m* (W N A).
Lemma 3.9. A monotonically decreasing sequence

Ay DA DA D
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of measurable sets has measurable intersection

n=1l

Proof. Let W be any set with m*(W) < oo. The numerical sequence

{m* (W 0 A,)} has finite-valued terms, is convergent, and
m*(WND)< lim m* (WNA4,),
since D C A,. Also D° = A;°U (4 NA°)U (42N A3°)U--- and
m* (W n DF)

[-~)
_<_ m' (W n Alc) + z m' (W n An N An+1c)

n=1

=m* (W NA°)+ lim Y [m* (W N A) - m® (W N A
k=1

m* (W NA°)+m* (WnA;)-— ull’n:o m* (W N Apy1)
<m*(W)-m*(WnD)

from the measurability of A,and Theorem 3.8. Thus

m* (W) > m* (W ND)+m*(WnD)

for every set W having m*(W) < co. Hence D is measurable.
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Theorem 3.10. A sequence {A,} of measurable sets has measurable
intersection, union, limit superior, and limit inferior.

Proof. By Theorem 3.7, each of the sets
n
B,=[)4, n=123,
k=1

is measurable. Since B; D B; D Bs D - and NB, =NA,, then N4, is

measurable by Lemma 3.9. Hence UA, = (nA,,°)° is measurable.

[ -]
With B, redefined as B, = |J 4, then B, is measurable and

k=n

ﬁB, = lim 4,

n=1
is measurable. Hence lim 4,, = (Im A,.°)° is measurable.

Remark 3.11. Let A be a measurable set. If B is any set, then it

is easy to show that

(1) m*(AUB) + m* (AN B) = m*(4) + m"(B),
and if in addition A N B = @, then

(2) m*(AUB) = m*(A) + m*(B).

From now on, let m(A4) be the outer measure of a measurable set A.
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Theorem 3.12. A sequence {A,} of pairwise disjoint measurable

sets has

m (U An) = m(An).

n=1 n=1

Proof. If {A,} is a finite sequence of disjoint measurable sets, then its
holds from the above fact (2) by induction. Let {A,} be an infinite sequence
of pairwise disjoint measurable sets.

Then

(Ge)en ()£

n=1 =1 =1

By letting n — oo, we have m (UA,) > 3 m(A,). But the reverse in-

equality holds by Theorem 3.2 and thus the equality holds.

Theorem 3.13. A monotonically increasing sequence
Ay CA3CAC--

of measurable sets has

m (G A,.) = ,.li.“;,m(A")'

Proof. If m(A:) = oo for some k € N, then

m(UA4,) > m(4;), m(A,)=oco0 foreachn>k
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and the equality holds. Hence consider m(A,) < 00, n=1,23,--- . Since
UAp, = A1 U (42N A °)U (43N A°)U---
is the union of pairwise disjoint measurable sets, by Remark 3.11,

m(UAp) =m(A1)+ m (A2 N A )+ m(A3NA°)+---

n
=m(A;) + nlin;oz [m(Aig1) — m(A))] ,by Theorem 3.8

=1

= “llr’neo m(Ans1).
Theorem 3.14. A monotonically decreasing sequence

A;DA;DA;D -
of measurable set, with m(A4,) < oo for at least one n has
oo
(1)
Proof. Let k € N be such that m(A4;) < co. Then
n>k=>m(A)>m(A,)>m(Ap41)2 - 20

Therefore
lim m(A4,) < m(4:) < oo.

n—00
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oo
Let D = [} An. Then

n=1
A} = D U (Ab n Ag+]c) U (A}+1 n Ak.’.zc) u---.

express A; as the union of pairwise disjoint measurable sets. Hence, from

Theorem 3.12,

m(4) = m(D)+ Y_m(4i N Aipr°)

=k
k4n
=m(D) + "lirgo Z[m (Ai) — m(Ai41)] ,by Theorem 3.8
i=k

m(D) + m(Ay) — lim m (Aiyn41)-
Therefore m(D) = lim m(A4,).

Note that "with m (4,) < oo for at least one n € N” in the above
Theorem is a necessary condition.

For example, let A, = {z€R|z>n} (n=1,23,--). Then
A3y DA D A3 D - ,m(4,) =00 and lim m(4,)= oo
n=->00

However, NA, = @ and thus m (N4, ) = 0.

Theorem 3.15. A sequence {A,} of measurable sets has

m (lim A,) < limm (4,).

- 20-



If in addition m (4p U Apy1 U Anga U---) < oo for at least one n € N, then

m (lim 4,) > imm (A,).

oo
Proof. Let B, = (] A:. By Definition, lim A, = UB,. Also, m(UB,)

k=n

= limm (B, ) by Theorem 3.13. Thus
m (lim 4,) = limm (B,).

For each n € N, B, C Ap4t and m(B,) < m (Apqs) for k=1,2,3,.--
Thus

m(B,) < lim m(A,4s) = lim m(A;) foreachné€N.
k—oo k—o0

Consequently r.li’rrolam (Bn) <limm(A,). Therfore m (lim 4») < limm
(An). Assume that in condition m (A4, U A, U---) < oo for at least one
n € N. Let C, = |J;=, At. By Definition, lim A, = NCh,. Also by hypothesis
m(C,) < oo for at least one n. Thus m(NC,) = limm (C,) by Theorem

3.14. Hence

m (ﬁr;A,.) =limm (Cy,).

For each n € N,C, D An4i and 50 m(Cp) > m(An4x) for k =
1,2,3,--+ Thus

m(Cp) > Tim m (An4s) = lim m (4,)
k=0 k—o0
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for each n € N. Consequently

lim m(Cn)> Iim m(4,)

n—00

Therfore m (EA,,) > lim m (4n)-

Note that "with m ( U A;) < oo for at least one n € N” in the above
k>m

Theorem is necessary condition.

(n,00) for n odd

(—00,—n) for n even.

IanetA,.:{

Then for all n, m (A4,) = 00. Hencem ( U Ag) = 00 and so limm(A4,)
k>n

= oo, However,

and thus m (lim 4,,) = 0.

Corollary 3.186. I {A,} i8 a convergent sequence of measurable sets

with each 4,, C B where m*(B) < oo, then lim m (4,) exists and
m(lim A,) = limm (4,).
Proof. Since {A,} is a convergent sequence,

lim A, = lim A, = Iim A,,.
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Also by the above Theorem,
m (lim 4n) = m (liza 4») < limm (4.
Since A, C B for each n and m*(B) < oo,
m(A4,UApp1U---)<m*(B)< o0 for each n.
Again applying the above Theorem,
m (lim 4,) = m (Im 4,) > Imm (4,).

Hence lim m (4,) < m (lim An) < limm (A,).
le.

m(lim 4,) = limm (A,) = imm (4,).

Therefore
m(lim A,) = imm (An).
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IV. SEQUENCE OF MEASURABLE FUNCTIONS

Definition 4.1. Let f(z) be a real-valued function defined on a mea-
surable set E. f is called a measurable function, if for each a € R the set

{z € E | f(z) > a} is measurable.

Let ¢ be a constant and f and g be measurable functions defined on the
same domain. Then the functions f + ¢,cf, f + 9,9 — f, and fg are also

measurable.

Definition 4.2. A measure space is a triple (X, 7, 4) consisting of
a set X,a o-algebra 7 of subsets of X, and a measure y defined on X. We
will denote by M the class of Lebesque measurable sets. Then the class
M is a o-algebra, and so (R,M,m) is a measure space. A null set means
a measurable set of measure zero, and a property is said to hold almost
everywhere (abbreviated a.e.) if the set of points where it fails to holds s a
null set.

In this section, we shall consider only real-valued functions defined on a

fixed measure space (X, 7, 4).

Definition 4.3 (a) A sequence f, of functions is said to converge

almost everywhere to the real-valued function f, defined on X, in case there

— 24.



exists a null set E such that z € X — E implies fo(z) — f(z). Briefly,
n— [ ae

(b) A sequence f, of functions is said to be fundamental almost every-
where if there exists a null set E such that z € X — E implies that f,(z) is

a Cauchy sequence ; Briefly, f, is fundamental a.e.

Theorem 4.4. Suppose, f, — f a.e. Then

(a) fn is fundamental a.e.,

(b) f=gae,iff,—ogae

(c) fa — g ae, if g is the real valued function such that f =g a.e.

Proof. Let E be a null set such that f,(z) = f(z) forallz € X — E.

(a) ¢ € X — E implies fo(z) is a Cauchy sequence.

(b) If F is a null set such that f,(z) — g(z) for allz € X ~ F, then EUF
is a null set such that f(z) = lim f,(z) = g(z) forallz€ X ~ (EUF).

(c) H F is a null set such that f(z) = g(z)forc € X — F, then EUF is
a null set such that f,(z) = f(z) = g(z) forallz € X — (EUF).

Theorem 4.5. If f, — f a.e., and f, = g a.e. for each n, then

(a) gn— fae

(b) f=gae ifgn—gae.

(c) gn—gae if f=gae

Proof. Let E be a null set such that f,(z) = f(z)forallz € X — E, and
E, anull set such that f,(z) = g,(z) forallz € X — E,. Let K = EU(UE,,).

Then K is a null set;
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(a) For all z € X — K, ga(z) = fn(z) - [ ().
(b) Let F be a null set such that gn(z) — g(z) for all z € X — F. Then

K UF is a null set and so
f(z) =lim fo(z) = limgn(z) = g(z) forallze X - (K UF).

(c) Let G be a null set such that f(z) = g(z) for all z € X — G. Then

K UG is a null set, and so
9»(1') = fn(z) - f(z) = g(:t) forallze X — (K U G)

Theorem 4.6. I f, > fae, g, > gae,cisareal number, and
A i8 any subset of X, then

(8) cfn —cf ae,

(b) fatgn—>ft+gae,

() lnl—lflae,

(d) { max (fa,gn) — max(f,g) ae, and
min (f», gn) — min(f,g) ae,, '

(e) fo¥t = ftae,and fu7 = f7 ae,

(f) xafn — xaf ae,

(€) fagn — fgae.
Proof. Let E be a null set such that both f,(z) = f(z) and gn(z) —

g(z) forallze X - E.
(a)For all z € X — E, limcf,(z) = clim fo(z) = cf(z)-
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(b) im (fa(2) + gn(z)) = lim fa(2) + limga(z) = f(z) + g(z) for all
z€eX -FE.

(c) lim |fn(z)| = |lim fa ()| = |f(z)| forallz € X — E.

(d) Since max(f, ) = £(f +g+If ~gl) and min(f,g) = 5(f +-1/~gl)
(d) holds by (a),(b),and (c).

(e) These follow from (d) and the fact that f* = max(f,0) and f~ =
~ min(J, 0)

(1) im (xafa) (2) = X4(@)lim fa (&) = xa ()f(2) for all = € X ~ E.

(8) im (fagn ) (2) = lim fu(z)lim ga(z) = f(z)g(z) for all z € X — E.

Remark 4.7. (1) The characteristic function xg of the set E, is
measurable iff E is measurable.
(2) Let < f, > be sequence of measurable functions, and f, — f point-

wise. Then f is a measurable function.

Theorem 4.8. I f, is fundamental a.e., there exists a function f
such that f, — f a.e. If moreover the f, are measurable, we may take f to
be measurable.

Proof. Let E be a null set such that f,(z) is & Cauchy sequence for all
r € X — E. Define f(z) = lim fo(¢) forz € X — E, and f(r)=0forz € E.
Clearly f, — f a.e.
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Suppose,moreover, that f, are measurable. Define go = xx-£ fa. Then

gn are measurable, and gn(2) = (xx-£fa)(2) = (xx-£f)(z) = f(z) for all

z € X — E. Hence f is measurable.

Theorem 4.9. Suppose, fn — f a.e. and fa, f,g are real valued
functions. Then

(a) f20 ae iff,>0ae,

(b) f<g ae if f, <gae. foreachn,

(c) IfI<lgl ae if|fa) <lglae.

Proof. Let E be a null set such that £ € X — E implies f,(z) = f(=).

(a) Let E, be a null set such that f,(z) > 0 for z € X — E,. Then
F = EU(UE,) is a null set, and £ € X — F implies f(z) = lim fo(z) > 0.

(b) Sinceg— f, >0ae,andg—f, - g—fae,by(a), thusg—~f>0
ae.

() Since |fa] = If| 8.e,1f] < lg] a.e. by (b).

Definition 4.10. (a) A sequence f, of measurable real-valued func-
tions is said to converge in measure to a measurable real-valued function
if for each ¢ > 0, nl_i‘n;op({z: [fa(z)— f(z)] 2 ¢€}) = 0. Briefly, f, — fis
measurable.

(b) A sequence f, of measurable function is said to be fundamental in

measure if, foreach ¢ >0, lim u({z:|fm(z)— fa(z)| 2 €}) = 0. Briefly,
m,n— 00

f» is fundamental in measure.



Theorem 4.11. If fa — f in measure and g is a measurable func-
tion, then

(a) f» is fundamental in measure,

(b) f=gae iff, > gin measure,

(¢) fe — g in measureif f =g a.e.

Proof. Let E, = {z : |fa(z) - f(z)| > %} for any «.

(a) Define Emn = {2 : [fm(2) — fa(2)| 2 ¢ }

The relation |fm(2)~ fo(@)| < |fm (€)= ()] +1£(2)~ fa (2)| implies that
Enn C EnUE,, hence m’lirﬂwp (Emn) < m’l"{r_nimp (E.,,)+m’lni13°oy (En) =0.

(b) Given any € > 0, we have
{z:1/@)-9@) 2 €} C {z: (@)~ fa()] 2 51012 Un(2)-0(a)] 2 51},

hence it is clear that u({z : |f(z) — g(z)| > ¢}) = 0. Our assertion then

follows from the relation

(a1 = 9)@) £ 0} = [ {=: (&)~ g(a)| 2 =}

m=1

and the fact that a countable union of null sets is a null set.
(c) Let E be a null set such that f(z) # g(z) implies z € E. Then for

any £ > 0,

{z:lfa(z)—g(a)l 2 e} C{z: |f(z) - g(z)| 2 g} U{z:|fa(z) - f(2)]

>}CEU{z:|fa(z) - f(2)| > fz-}and 80 (c) holds.

| ™
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Theorem 4.13. If fo — f in measure and f, = gn a.e., then

(a) gn — f in measure if gn is a sequence of measurable functions.

(b) f=gae if g, — g in measure.

Proof. Let E, be a null set such that f,(z) = ga(z) forallz € X — E,,.

(a) Put E = UE,. Then E is a null set.

For any € >0, {z : |gn(s) — (@) 2 ¢} CEU{z : |fulz) - f(z)| 2 €}
for all n. Therefore g, — f in measure.

(b) For any ¢ > 0,

{z:1f(z)—g(e)l 2} C{z:|fa(z) - f(2)| 2 % Yu{z: |ga(2) - g(z)|

2 - }UE,.

™

for all n. By hypothesis, {z: |f(z) — g(z)] > ¢} is a null set for any ¢ > 0.

Therefore f = g a.e.

Theorem 4.13. If f, — f in measure, g, — g in measure, c is a real
number, and A is a locally measurable set, then

(a) c¢fa — cf in measure.

(b) fa +9n — f + g in measure.

(¢) )fal = }f| in measure.

(d) { max (fa,gn) — max(f,g) in measure,and
min (fn, gn) — min(f,g) in measure.
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(¢) xafe — xaf in measure.

Proof. (a) Thisis clearif c=0 ;if ¢ # 0, then
{z:lch(z)—cf(z)| 2 e} ={z:|fa(e) - fl2) 2

£
el
(b) Let An = fa + gu,h = f + g. The relation |ha(z) — h(z)| < |fa(z) -
f(2)| + lgn (=) — g(=)| implies

{z:ha(x) = h@) 2 e} C{z: |fa(z) - f(2)| 2 % Fu{z: lgn(=) - 9(=)l

} for any e > 0.

£
2 -
>%)

(c) Since || fa(2)] = If(@)l] < 1/a(2) = f(2)I,)fn] = | /| in measure,

(d) Since max(f,g) = ‘i;(f + g+ |f — gl), (d) bolds by (a),(b) and (¢).
(e) Since |xafa — xafl = xalfa = f1 £ |fa — f|, it holds.

Theorem 4.14. If f., f, g are measurable, f, — f in measure, then

(a) f>0 ae if fo>0 ae

(b) f<g aeif frn<g ae foralln.

() If1<lgl ae if |fal<lgl ae. foralln.

Proof. (a) Modifying on a null set, we may assume that f, > 0 everywhere
for all n. Given ¢ > 0, define E = {z | f(z) < —¢} and E, = {7z :
|£(z) = fn(z)| > €} By hypothesis, lim u (E) = 0. f z € E, then f(z) < —¢;
Since f(z) = [£(2) ~ fa(2)] + Ja(#) > F(2) = fa(2), () — fa(®) < —¢, and
hence |f(z) — fu(z)| > €. i.e, E C E, for all n, hence m(E) = 0. Thus

{z:f(z)<0} = G {z:f(z)g—f—i-} is a null set, and so f > 0 a.e.
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(b) We have g — fo > O ae., and g — fo — ¢ — f In measure by Theorem
4-13(b), hence g — f > 0 a.e. by (a)
(c) Since |f,| — |f| in measure by Theorem 4.15(c), we have Ifl < lgl

a.e. by (b).

Remark 4.15. (a) Convergence a.e. does not always imply con-
vergence in measure. For example, let u be discrete measure on the class
7 of all the set X = {1,2,3,---}. If f, is the characteristic function of
the singleton {n}, then f,(z) = x{a}(z) — O pointwise on X. Taking
e=1u({z:)fa(2)]>1}) =p{n} =1,foralln, ie fo-h 0in measure.

(b) Convergence in measure does not imply convergence a.e. For exam-
ple, let m be a Lebesque measure, and consider the sequence of intervals
[0,1),[0,3),13,1),10,3),[3,}),--- . I fn is the characteristic function of the
nth term of this sequence. i.e. f; = x[0,1), f2 = X[o,})»f-‘s = X}y - Since
m({z :|fa(2)] 2 €}) = length of the nth term of this sequence of intervals
for any 0 < € < 1, fo — 0 in measure. But f,(z) does not converge, for all
z € E =[0,1), and f,(z) — 0 for all £ € X — E. Therefore f, does not

converge to O a.e.

Theorem 4.16. If a sequence f, is measurable functions which is
fundamental in measure, then there exists a measurable function f such that

fn — [ In measure.
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Proof. For every positive integer k we can find a positive integer n; such

that for n,m > n;,

b (12 1m) - £ 2 561) < 31,

and we may assume that for each k,np41 > ni. Let By = {z : |fa,(z) —

1 ]
Jai (@) 2 ?-} Then, if z ¢ |J Ei, we have forr > s> m

k=m

r

@) An @)=t @NE Y @) = S @< Y 2l=.21_
i=e+41

s=s41

o0 (- <]
So {fa,(z)} i8 a Cauchy sequence for each z ¢ limsupE; = (| | E,

m=1lk=m

But, for all m, u(limsup E}) < p( U E;) < i Zl‘ = 2"‘1_1. So {fa,}
k=m

k=m

converges a.e. to some measurable function f. Also from (%) {fs,} is uni-

formly fundamental in X — | U E}], for each m.

=m

[+ ]
So fa, — f uniformly on X — [ U E;], and hence for every positive ¢,
k=m

(++) p({z:m(@) - £ 25)) >0 ms koo
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But {2 : [fa(z) = Sl 2 £} C (21 1fa@) — S (@) 2 5} U {22 1f(2) =

fo{z)] > =} H n and m are sufficiently large, then p({z : |fa(z) -

8| ™

fan (@) 2 %}) — 0 from (*x) and that f, is a fundamental in measure.

Therefore p({z : |fa(z) - f(z)|2€}) >0 as n — oo

Definition 4.17. (a) A sequence f, of functions is said to converge
almost uniformly to the function f, if given § > 0, there exists a measurable
set F such that u(F) < é and f.(z) = f(z) uniformly on X — F. Briefly,
fn— [ au

(b) A sequence f, of functions is said to be almost uniformly fundamental,
if given any §, there exists a measurable set F such that u(F) < 4, and such
that f,(z) is uniformly fundamental on X — F. i.e. For each ¢ > 0, there
exists a positive integer ny such that m,n > ng imply |fm(2) = fa(2)| < €
for all z € X — F. Briefly, f, is fundamental a.u.

i f. — f a.u., then f, is fundamental a.u.; this is immediate from the

relation |fm — fal < |fm — fl+1f — fal.

Theorem 4.18. If the sequence f, is fundamental a.u., there exists
a function f such that f, — f a.u. If moreover the f, are measurable, one
can take f to be measurable.

Proof. For each positive integer m, let F,, be a measurable set such that

1
p(Fn) < - and f,(z) is uniformly fundamental on X — F,,. Then the
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set F' = ﬁ F,, is measurable, and u(F) < p(F,,) < -j‘— for all m, hence

m=1

©0
F is null set. Moreover, for each z in the set X —~ F = | (X - F,,), the

m=1
sequence f,(r) is Cauchy. For each z € X — F, define f(z) = lim fn(2),
and f(z) = 0 for z € F. For each m, f.(z) — f(z) on X — F,,,, and f,.(z)
is uniformly fundamental on X — F,,, hence f,(z) — f(z) uniformly on
X — F,. It follows at once that f, — f a.u. If the f, are also measurable,
then so are the function g, = xx—F fa. Since g,(z) = f(z) for all z, f is

measurable by Remark 4.7.

Theorem 4.19. If f, = f a.u., then f, — f a.e. If moreover the
Jn and f are measurable, then f, — f in measure.

Proof. For each positive integer m, let F,, be a measurable set such that

p(Fp) < —71; and f,(z) — f(z) uniformly on X — F,,. Then F = ﬁ F, is

m=1
a null set, and f,(z) — f(z) for each z € X — F, thus f, — f a.e. Suppose,
in addition, that the f, and f are measurable. Given any ¢ > 0, define

E. = {z:|fa(z) - f(z)| > ¢} We must show that u(E,) — 0 as n — co.

. e 1 .
Given é > 0, choose a positive integer m so that p < §, and consider the set
F, defined earlier. Since f,(z) — f(z) uniformly on X — F,,, there exists

an positive integer ng, such that n > ng implies that |f,(z) — f(z)| < ¢ for
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all z € X — F,, and hence (X — F,,) C (X — E,,) whenever n > np. Then

1
n > no implies E, C F,,, and hence u(E,) < p(Fn) < - <.

Remark 4.20. Convergence a.e. does not always imply convergence

almost uniformly. For example, let X = [0, o), and let

1-n(z—k) o kg::_(_%-*—k,

fﬂ(z)= 1
0 ,if ;+lcgz<k+1,forlc=0,1,~-.

Then lim f,(z) = 0 except for z =0,1,2,--- , but m({z : fa(2)2€})=0
n—oco
for each ¢ with 0 < € < 1 and for each n. So f, — 0 a.e. but not in measure.

Therefore f, — 0 a.e. but not a.u.

Theorem 4.21. Let f, — f a.e. and f,, f are measurable functions.
H pu(X) < oo, then fp — f a.u.

Proof. We suppose without loss of generality that f, converges at ev-

oo
ery point of X to f. K m,n € N, let E,(m) = |J{z € X : fe(z) =

k=n

=) 2 -'1;}, so that E,(m) € 7 and E,41(m) C E,(m). Since f,(z) —

f(z) for all z € X, it follows that ﬁ E,(m) = 0. Since u(X) < oo, we infer

m=1
that p(En(m)) =0 as n — c0. If § > 0, let k,, be such that u(E;,, (m)) <
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oo
-2—:5“- and let Es = |J E, (m), so that Es € 7 and u (E5) < é. lf z € X — Ej,

m=1

then z € X — E;_ (m), so that |fi(z) — f(z)] < -:; for all k > ky,. Therefore

fi — f uniformly converge on X — Es. ie. fy — f au.

Theorem 4.23. Suppose f, — f in measure. Then
(8) fo— f au if f, is fundamental a.u.
(b) fo—f ae if fo is fundamental a.e.

Proof. Since f, — f in measure, forany ¢ > 0 4 (En) = p({z: |[fu = f| 2

1
¢}) — O0asn — oo. For every § > 0, choose ng € IV such that - <4é
0

(ie. no> %) and u(E,) < é for n > no.
(a) Since X — E, = {z: |fa(2) — f(2)] < €}, fa(2) = f(2)| < € for each
z € X — E,. Hence n > ny implies f,(z) — f(z) for z € X — E,. Therefore

fn— fau

(b) Let E = () E,. Then u(E) < p(Ey) for all n, hence E is a null set
n=1

and f,(z) — f(z) for z € X — E. Therefore f, — f a.e.

Theorem 4.23. Suppose f, — f a.u.
(8) f=g ae if fa > gau,

(b) fon—g au if f=gae,

(c) gn—g au ifg,=f,ae
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1
Proof. For every k € N, let F; be a measurable set such that u (Fe) < E
and f,(z) — f(z)forall z € X — F}.

(a) Let G; be a measurable set such that m(Gy) < % and fa(z) —

oo

g(z) forallz € X —Gi. Put H= () (FtUG:). Then p(H) < p(FrU
k=1

Gi) < %{or all k£ and so H is a null set. Hence f(z) = g(z) forallz € X — H.
rLe. f=gae.

(b) Since f = g a.e., there exists a null set E such that f(z) = g(z) on
X—E.PutHy=F,UE (k=1,2) Then pu(Hi) < p(Fi)+ u(E) =

p(Fp) < 71(:_ and f.(z) = f(z)=g(z) forallz € X — H;. ie fn —gau

(c) Since f, = gn a.e. for all n, for each n € N, there exists null set

oo
E, such that f,(z) = gn(z) for éach z € X — E,. Put E = |J En. Then

n=1

E is a null set and fo(z) = gn(z) for any € X — E. Put H = Fi U

E (k=1,2,). Then u(H) < u(Fe) + u(E) = u(Fy) < 1 and fa(2) =

gn(z) — f(z) for each z € X — H. Therefore gn — f a.u.
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