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I. INTRODUCTION

When A is a semiring and J is an ideal of A, the collection {x+]} ., of
sets x+J=‘{r+j|j €J} need not be a partition of A.

P. J. Allen (1) defined Q—ideal and maximal homomorphism and
establised Fundamental Theorem of Homomorphism in a large class of
semirings.

Moreover, (3] builds the quotient structure in row finite matrix semirings.

This paper aims at proving an analogue of results for column finite matrix
semirings as follows; if A is a semiring and J is a Q—ideal of A, then the

collection (A)[' of column finite matrices over A is a semiring, (J)& is a

(Q)XI—ideal of (A)X' and (A)X'/(J)&'is isomorphic to (A/JR



I. PRELIMINARIES

Definition 2.1 A non-empty set A together with two associative binary
operations called addition and multiplication (denoted by+and -, respectively)
will be called a semiring provided :

(1) addition is a commutative operation,
(2) there exists o€ A such that x+o0=x and x - 0=0-x=0 for all ze A,
(3) multiplication distributes over addition both from the left and from the

right.

Definition 2.2 A non-empty subset J of a semiring A will be called an ideal

if a, be] and re A implies a+be J, rae] and are J.

Definition 2.3 A mapping ¢ from the semiring A into the semiring A’ will
be called a homomorphism if $(a+b)=¢(a)+¢(b) and #(ab)=¢(a)s(b) for each

a, beA.

An isomorphism is an one-to-one homomorphism.
The semirings A and A’ will be called isomorphic (denoted by A=A’) if

there exists an isomorphism from A onto A’.

Definition 2. 4 An ideal J in the semiring A will be called a Q— ideal if there

-2~



:xists a subset Q of A satisfying the following conditions;
(1) {q+J)qeq is a partition of A and

(2) if qi, g.€ Q such that q,2q, then (q,+])N(q.+])=8¢.

Definition 2.5 A homomorphism ¢ from the semiring A onto the semiring A’
is said to be maxmal 1t tor each a€A’ there exists Cae ¢! ({a}) such that

I+kergC Catkerg for each xe 6" ({a)), where keré=/{xe 4]%(x) = 0}.

Theorem 2.6 Let J be a Q—ideal in the semiring A. If xe A, then there
exists a unique q e Q such that x+Jcq+],

Proof : Let r e A. Since {2+ ]} is a partition of A, there exists q €Q

a€Q
such that req+].

If ye x+], there exists i, e J such that y=z+i,. Since xe q+ ], there exists
i, € ] such that xr=q+i,.

Clearly, y=z+i,=(q+i,) +i,=q+ (i,+1i,) e q+].

Thus zx=+Jcqg+],

The uniqueness is an immediate result of part (2) of Definition 2. 4.

Let J be a Q—ideal in the semiring A. In the view of the above result, we
can define the binary operations @q and g on {q+J}qeq as follows;
(D) (@+]) ®a(q.+)=q.+] where q, is the unique element in Q such that
atq.+Jcqgs+].
(2) (@, +])Eq(a:+])=as+] where q, ié the unique element in Q such that

2.9 +JCqs+],



The elements q,+]J and q,+J in {g+J}qeqwill be called equal (denoted by

q,+J=q.+]) if and only if q,=Qq.

Theorem 2.7 If Jis a Q—ideal in the semiring A, then

A/J={q+J)eeq, Do Oq) is a semiring.

Proof : It is an easy 'matter to show that @q and (Oq are associative
operations, @q is a commutative operation, and (Oq distributes over @q buth
from the left and from the right.

Define ¢ : A—{q+J}qeq by ¢(x)=q+] where q is the. unique element in

Q such that z+ Jcq+].

It can be shown that ¢ is a hdmomorphism from the semigroup (A, +)
onto the semigroup ({3+J}qeq, @q) and ¢ is a homomorphism from the

semigroup (A, -) onto the semigroup ({q+J}aeq, @),

Since 0 is the identity in (A, +), it follows that #(0)=q*+] is the identity
in ({q+J)eeq. ®a).

Let qeQ and let z€ A such that ¢(x)=q+]. Since z - 0=0 - =0, it is
clear that
@ +I=p0)=4(0 - V=4(0) - $()=(a*+)Oala+]) and
Q*+J=¢(0)=¢(x - 0)=¢(I)¢(0)=(Q+J)®Q(Q*+J).

Thus, the element q*+J satisfies condition (2) in Definition 2. 1.



Theorem 2.8 Let ] be an ideal in the semiring A. If Q, and Q, are

subsets of A such that J is both a Q,—ideal and a Q,—ideal, then

({a+ T aeq, @a. Oa)=({q+J}eeq, Do Oa).

Proof : Define ¢ : {q+J}geQ,—>{q+J}qu, as follows ; If q,€ Q,, then
#(a,+]J)=q.+ ] where g, is the unique element in Q, such that q,+JCq.+].
It can be shown that ¢ is an isomorphism from the semiring

({a+J}aeq. @a, Oq) onto the semiring ({q+J}eeqn Pa. Oa).

If J is an ideal in the semiring A, then it is possible that J can be
considered to be a Q—ideal with respect to many different subsets Q of A.

However, the preceding theorem implies that the structure

({a+Jleea, @Pa. (Oq) is “essentially independent” of the choice of Q.

Thus, if J is a Q—ideal in A, the semiring ({q+ J}qeq. Pa, () will be

denoted by A/J or (A/], @, ©®)]

Lemma 2.9 Let ¢ be a homomorphism from the semiring A onto the
semiring A’.

If ¢ is maximal, then kerg is a Q—ideal, where Q=/{Ca}aea’.

|
Proof : 1t is clear that .‘é'A'(Ca+ker¢) =A.
Let Ca and cv be distinct elements in Q, i.e axb

Assume { Cat+kerg) N (Co+kerg) x¢



then there exists k, k’e kerg such that Ca+k=cv+k’.
Thus a=g¢(ca) +¢(k)=¢(Ca+k)

=g(cotk’)=g(co) +¢(k")

=b, which is a contradition.

It follows that kerg is a Q—ideal.

Lemma 2.10 Let A, A’, ¢ and Q be as stated in Lemma 2.9, and let

Ca. Cv and cc be elements in Q.
(1) If Ca+ cv+kergc c.+kerg, then a+b=c,

(2) If CacCotkergCce +kerg, then ab=c.

Proof : Since ca+cv € Ca+Cbv +kergC cc+kerg, there exists k e ker¢ such

that Ca+cv=cCc+k.
Thus a+b=g¢(Ca)+¢ (Co)=¢(Ca+ Cb)
=g(cct+k)=g(c)+¢(k) =c.

Since C,C, € c, c,+kerdC c.+kerg, there exists k e kerg such that caco=cc+k

Thus ab=¢(Ca)p(Cb) =g(CaCs)
=¢(Cctk)=¢(c)+ (k)

=C,

Theorem 2. 11 If ¢ is a maximal homomorphism from the semiring A onto

the semiring A’, then A/ker¢ = A’.

Proof : Define @ : A/kerg—A’ by @ (Ca+kerg)=a for each c.€ Q,
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It is clear that @ is an one-to-one function from A/kerg onto A’.
It will be shown that @ is an isomorphism and the theorem will follow.
From the definition of addition in A/kerg, it follows that
O((catkerg)D(cs +kerg))= @(cc+kerg)=c where c. is the unique
element in Q such that c.+ cvtkergC cc+kerg,
In the view of Lemma 2. 10, it is clear that
@(Catkerg)+ @(Cot+kerg)=a+b=c
= 0 (ca +kerg) @ (Co+kerg)).
The definition of multiplication in A/kerg implies
o ((catkerg)©(co+kerg) )= @(c.+kerg)=c.
where c. is the unique element in Q such that c,c»+kergC c.+ kerg.
In the view of Lemma 2. 10, it is clear that
O(Ca+kerg) @(cv+kerg) =ab=c

=@ ((Catkerp)O(co+kers)],



. THE QUOTIENT OF COLUMN FINITE
MATRIX SEMIRING

Consider a semiring A and non-empty countable index set I. Mappings
M : IxI—A are called matrices over A. The values of M are denoted by mj
where i jel. The values m; are also referred to as the entries of the matrix.
In particular, m; is called the (4 j)—entry of M.

The matrix M is denoted by (m;) and the collection of all matrices M over
A as defined above is denoted by [A)™,

For each M={(m;) e (A)* and each jel, consider the set of indices
CM. )= {ieIlm;>0}.
| Then M is called a column finite matrix iff C(M, j) is finite for all jel.

The collection of all column finite matrices over A as defined above is

denoted by (A)Z!.
Theorem 3.1 If A is a semiring, then (A)%is a semiring.

Proof : For M={m,), N=[nde(A) we define the addition and the
multiplication by
M+N = (m;+ny for all { jel and

MN = [§€3 my; ng for all { kel
1€1



Then the addition and multiplication are well-defined operations on [A]&‘TI

as follows ;

For each jel, if 1€C(M+N, j), then my+n;>0, i.e. m;>0 or n;~0.

Thus. 1 eC(M,j) or 1 eC(N,j),i.e. 1€CM,j)HUN,}J

Hence CIM+N, j)CCM, j)UC(N, j) is finite for all jel

For each jel, if 1€ C(MN,j), then Xmam= ¥ manjx0.
r€1 REC (N,
Thus there exists k&, € C(N, j) such that mu.nw;=0.

Thus mu, =0 ie. 1€C(M, k).

Thus [ € ;U CM. B,

€ C(N,
Hence C(NN. j)c.eLg(N,DC(M, k) is finite for all jelL
Now we introduce the zero matrix denoted by 0 that the entries of 0 are 0.
Then 0 is an additive zero.
Furthermore, the multiplication is associative.

For, let L=(ag=(A)g, then
(LM)N = (X ap my) N
3

:IZG:K < :%:1 2 My ) nyj )

=X [ X {(aumu)n;})

I€1 ~ a€l

=3 (X {an(mgny)})
[€1 "vel

kel

=3 Z{ap(mung;)})
l€el



=% (au( X myn;)
L€ lel
=L ( ¥ myng;)
l€el

=L (MN).

It is clear that the addition is commutative, associative and distributes over

addition both from the left and from the right.

Hence (A)'is also a semiring.

Corollary 3.2 If A is a semiring and J is a Q—ideal of A, then

(A/1)%lis a semiring.

Proof. It is obvious by Theorerm 2.7 and Theorem 3.1. In this corollary,
the binary operations are defined as follows;
(1) (a5+ D+ +D=[(qs+]J) where q+ qs+Jcqs+]J for all i, jel
(@ (aj+ DG+ D=(a+]) where = qf ais+ JCai+] for all ijel
Since N=(q”;+]) is column finite, the range of k in (2) is C(N, j). So the

range of k is finite.

Theorem 3.3 If A is a semiring and J is a Q—ideal in A, then

D& is a (Q)¥'-ideal in (AN .

Proof. It is clear that (J)g' is an ideal in (AJF.
(1) Suppose (ms)e(A/])cF.

Since m; € A for all {jeI and J is a Q—ideal in A, mge Zala+]} for all
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% jel, i.e. for all i,jel, mj=qs+n; for some q; €Q and some n;e J,
(my)={(qs+ny)=(a:) + (ns) e P+ ()X for some P=(qy) € (Q&

Hence (mg) € P+ (NE).

pe(%]’x‘
(2) Let (p;) and (qi)be in (Q)% and let (pg)=(qs). Then there exist {jel

such that ps>=q;.

Since J is a Q—ideal in A, (p;+]) N(g;+])=9¢. So ps+m=q;+n for all
m, neJj.

Consequently, the (i j) —entry of every matrices in (ps)+ (J)&F is different
from the (4 j) —entry of every matrices in (q;)+ [.D]<:>§=l

Thus ((pa) + (&) N (lad + D) =¢.

Hence ()& is a (Q)& —ideal in (A&,

Corollary 3.4 If A is a semiring and J is a Q—ideal in A, then

A&/ ME =P+ DF re! @, O) is a semiring.

Proof. This corollary is the immediate result of Theorem 3.3 and Theorem
2.7.

The operation are as follows;

1) @+ ME®CE.+ NE)=P+ (D% where P,+P,+ (NECP+ (N and

2) P+ NE)OP+NE) =P+ (NG where P,P,+ (X P+ (& .

Proposition 3.5 If J is a Q—ideal in a semiring A, then J is a

zero—element in A/J.

Proof : Let q*e Q such that Jq*+]. Then q*+] is a zero-element in

_11...



A/] by Theorem 2.7.
Since 0 € JCq*+]J, 0=q*+ i for some r€],
Thus q*+J=q*+0+J=q*+q*++JCq*+q*+].
Since q*+q*+] is contained in a unique coset q”+J where q" ¢ Q,
Q' +J=q*+] ie. q*+q*+]J=q*+].
Thus a*+q*=q*+4 for somei, €],
Hence q*+J=q* +0+J=q*+q*+i+]
=q*+4+i+J=q*+i+i,+]
=0+4+]JC].

Therefore q*+J=].

Proposition 3.6 A Q—ideal J of a semiring A is a k-ideal of A.

Proof : Recall that an ideal ] is a k-ideal if x+i1€J, where re A and i€],
implies x € J.

Suppose x+i€], where zeA and ie]. Then there exists a unique coset
q+]J such that x+Jcq+]. Thus x+ieq+],

Since x+ieJ=q*+], q=q*.

Therefore z e z+JCq+J=q*+J=].

Theorem 3.7 If A is a semiring and J is a Q—ideal in A, then

(A& / (& is isomorphic to (A/] ety
Proof : For each mge A, there exists a unique qze Q such that
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m;+Jcqs+]J by Theorem 2.6.

Define the map ¢ : (A)or —(A/J)& by #((ms))=(qs+]) for each
(ms) € (A)&Y, where m;+ Jcqs+] for each 4jel.

Let ¢((agd)=[(qs+]), ¢((bad)=(q;+ J) and ¢ (as+bg)=(q; +J.

Then a;+JCqs+], b;+JCq;+ J, ag+b;+JCqj+ J and also
a;+bi+JCas+qs+].

Thus qs+q;+ JCq+ J.

To prove that {q;+J)+(q;+ J)=0(a} + JJ,

let (qs+J)+(qs+J)=(a%+ J). then qs+q’,+ Jca+ .

So. Q)+ J=q]+ ] foralli, jel, ie (o) +N=(a] +J,

Thus ¢ ((as)+ (bs))=4((as))+¢((bs)).
Similarly, we can show that ¢((a;)(bs))=¢((ag)s((bg) .

Hence ¢ is a homomorphism from (A)&r onto [A/J]g-!.

And ker¢=(J)& is clear by proposition 3.5 and proposition 3.6.

For each (qs+J) € (A/DN&F, (aa) € 7' ((as+ D).

If (ag) €' ((qs+])), then ag+Jcqe+] for all § je L

Thus (as) +kerg=(ag + (J)& C(aq) + ()& =(qq) +kers.

Hence ¢ is a maximal homomorphism from the semiring (A)E onto the
Ix

semiring (A/JJ¢F -

Therefore (A)&/(JJ& is isomorphic to (A/D& by Theorem 2.11.
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