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I. INTRODUCTION

Let H be a complex Hilbert space with the saclar product {, > and the norm
| - II, and let T be a bounded liner operator. It is wellknown that (a) the
approximate spectrum o0,(T) and the spectrum o¢(T) of T are nonempty com-
pact subsets of the complex number field C, (b) 0,(T)Z0o(T). and (c) 30(T)C
04,(T) where aJ denote the boundary set 4. ((2]. (6))

A 2-tuple of bounded linear operator A,, A, will be denoted by A=(A,, A,).
In recent years, there have been many definitions of joint spectrum of a
2-tuple of commuting operators on a Hilbert space. ((1), (3], (4), (5)) In this
paper, we give equivalent conditions of some definitions of joint spectrum,
compare these and study p‘roperties, in particular, compactness of these in
detail.

Throughout this paper,  all operators on H will be assumed to be a
bounded linear transformations of H into it'self. The real number field and the
complex number field are denoted by R and C respectively.

The organization of this paper is as follows. In section I, we introduce
some notations and give various spectral results needed in the sequel.

In section I, we give equivalent conditions and properties, in particular,
compactness of joint point and joint approximate spectra.

In section NV, we study properties, in particular, compactness of several

joint spectra in the sense of Taylor, Dash, Harte etc. Also we give an equi-



valent condition for a nonsingularity of A=(A,, A,), and show in detail that
for a 2-tuple A=(A,, A,) of commuting normal operators, the joint spectra of
Dash, Harte, Taylor respectively are equal to the joint approximate point

spectrum of A=(A, A,).



. PROPERTIES OF SPECTRA OF OPERATOR

Definition 2. 1. [6] Let X be a vector space over C.An inner product on X

is a complex valued function ¢, ), defined on X with the following properties.
(@) Cz+y, 2> = (z. 2> + (, 2.
(o) Cax, > = alz, V.
(©) Cx v =< 2.
(d) {x,x)=0 and {x, =0 if x=0.
X, together with an inner product is called an inner product space.
The norm, Jzx|, on Xis given by | x| =<z, x>*.
Examples 2.2. () Let ¢°(C) be the set of those sequence(§,, &,, ) of
complex numbers for which éll ¢.1? (oo, together with operations of addition

and scalar multiplication defined as follows.

For x=(¢&,, &, -) and ¥v=(7,, 9, =) in £*(C),

x+y=(&,+ 7, &,+ 7, ) and ax=(a,, af, ), a=C.

The complex valued function ¢, ,defined on 23(C)x¢*(C) by (=, y>=§ [5-‘?,
where x=(¢&,, &, -), y=(7,, 7, --) difines an inner product on 2*(C).
That is, ¢*(C) is an inner product space.

(b) Let L2((a, b)) be the vector space of all complex valued Lebesque
measurable functions fdefined on the interval a<x=b with the property that Ifl?
is Lebesque integrable. If fand ¢=L’((a, b)), then Holders inequality
implies f- g=L*((a,b5)). By indentifying functions which are equal almost

everywhere, {f §>=f: flx) a(x)dr defines an inner product on L’((a, b)).

_3_



Theorem 2.3. ([2], [3]) Let X be an inner product space. For r and y in X.

(@ <z, wI=Ilzx]l |yl (Cauchy-Bunyakowsky-Schwarz inequality.)
(®) lx+yl=lxl+lyl (Triangle inequality)

(¢) |laxi|=|al x| for all « in C.

Definition 2. 4. ([2],[6]) a sequence {x.} in an inner product space His said to
be converge to x<H, written z, — x, if |z~x — 0 as » — . A sequence
{x.} in H is called a Cauchy sequence if | x.~z,| — 0as m n — oo,

If every Cauchy sequence in H converges to a vector in H, then His
complete. A complete inner product space is called a Hilbert space.

Enample 25. (a) C" is an n-dimensional Hilbert space.

(b) ¢*(C) is an infinite dimensional Hilbert space.
(c) L*((a, b)) is an infinite dimensional Hilbert space, since the function

2

1, x, x% - are linearly independent. For, if E:., ax* is the zero function, the

a=0(0=%t<nr), since arv polynomial of degree n has at most n zeros.

Definition 2.6. H, and H, Hilbert spaces over the complex number C. A
linear operator T : H, — H, is called bounded if E}lflll Tx || {co. The norm of
T, written | T, is the nonnegative number | T |= SUP|Tz].

Let B(H,, H,) be the set of all bounded linear operator from H, into H,,
and put B(H, H)=B(H). Note that for a bounded linear operator T, SEB(H),

(@ ITH = Sup {ITxll Izl :x0}

=Sup {[ Tzl : lx] =1}
=inf {c)0: | Tx| =clxzl, x=H}.
) ITSI = ITHIS]. ((2), (7, (8)



Example 2.7. (a) Let S,: ¢2(C) — ¢*(C) be difined by S.(&,, §. -)=(0,
£, &, ). The operator S is called right shift operator (or unilateral shift).
Obviously S, is linear and | Sx =l z]. Thus S, is an isometry of ¢°(C) into
¢*(C) and | S.] =1. In fact S, maps £°(C) onto a proper subspace namely the
set of all absolutely square sequence having first term zero, i.e. S,is not
surjective. Therefore S, is not invertible.

(b) Let S;: 23 (C) — 2%(C) be defined by S,(¢ ., ., )=(52- § s )

The operator S, is called left shift operator. Obviously S; is linear, and |

S, =1, but S, is not one-one. Hence S:is not invertible.

Lemma 2.8. [2] Let T : H, — H,be a linear operator. Then, the following

conditions are equivalent;

(a) T is continuous at a point.
(b) T is continuous on H,.

(c) T is bounded.

Definition 2.9. [2] If TEB(H,, H.). then the unique operator S in B(H,, H,)
satisfying (Tx, y)=<x, Sy) for all xin H, and y in H, is called the adjoint
of T denoted by S=T*

We note the following;

(a) 0*=0* and I*=L

(b) For each S, T=B(H), and 1<C,

(AS+T)*= 21*S*+T*, (ST)*=T*S* and T**=T.

() IT*I=1T| for each T=B(H).



(d) If an operator on C' is represented by a matrix, then its adjoint is

represented by the conjugate transpose of the matrix.

Example 2.10. Let S, be the right shift operator on £?(C). Given y=(C, &,
~) and x=((&,, &, ) in £*(C),
<S>t. y>= <(0. ., & )' (C v Qo )> ‘

&, - Ez+ 2 Ea+"' =(x, 2>,

where z=(C, Cs ). Thus S*( &, Ca = )=(&s s ), i.e. S,is the

left shift operator.

Theorem 2.11. ([2], [9]) If TeB(H) such that [I-T <1, then T is in-
vertible, T™' exists as a bounded linear operator on H and T™'= $ (I-T)*=I+

n=()

(-T) + (I-T) 2 -

proof. Let S=I-T. Then r=|S|[<1. Since | S| =S| =r", the series
?_30 1S converges.

Hence U= f‘?o S* converges in B(H), since H is complete. If U,=I+S+S+ -
+35,

Then U,(I-S) = (I+S+S+S*+ - +8)-(S+§+S*+- +35™)

—]-§"

But | S| =, so S — (Qasn - o,

Hence U(I-S)= lim U,(I-S)=L

Similarly, (I-S)U=L So I-S=T is invertible and T"'=(I-S)'=U= Eo S'=
S -1

n=Q



Corollary 2,12. If TEB(H) such that | T | <1, then(I-T)"' exists (I-T)'=

§0T’, where the series on the right is convergent in the norm on B(H)

Definition 2.13. ([2], (7], [8]) Given T€B(H), (a) the spectrum of T,

denoted by o(T), is defined by
o(T)={2&C: T- 2 is not invertible}.

The resolvent set of T is defined by # (T)=C-a(T).
(b) A point A =C is called an eigenvalue of T if ker(T-2)={0}.
The set o(T) of all eigenvalues of T is called the point spectrum of T.
(c) The approximate point spectrum o0,(T) is defined by 0,(T)={2 €C|There
is a sequence {x.} of unit vectors in H such that || (T-2)z.} — 0 as n—co}.

Note that ¢,(T)Z0,(T) and o(T*)=0(T)*, where for any subset 4 of C 4*

={z:z&4)}.

Lemma 2. 14. [2] If T&B(H) and ¢ <C, the follwing statements are equi-

valent;

(a) 1 & 0,(T).
(b) Ker(T- 12)=1{0} and ran(T- 1) is chosed.

(c) There is a constant c¢)o such that | (T-i)xz | =c | x| for all z.

proop. Clearly it may be assumed that 2 =0, since ; €0,(T) if and only
if Oea.p(T— 2)

(a) & (¢) ; Suppose (c) fails to hold. Then for every =, there is a

-7~



nonzero vector x, with [Tzl =<z I /n

If v,=x./ | z.l, then vl =1 and | Tv.|] — 0. Hence o=o0,(T).

(c)=>(b) : Suppose there is a constant c¢>o such that | Tx | =c ]z | for all
x. Clearly KerT=1{0}. If Tx,— v, then | z,—x.| é;l | Tx,-Tz.ll. So {x.} is a
Cauchy sequence. Let r=lim x.. Therefore Tr=y and ran T is closed.

(b) = (a) : Let M=ran T. Then T : H—M is a contiuous bijection. By the
Inverse Mapping Theorem, there is a bounded operator S :M — H such that S

Tx=x for all z&€H. Thus if | x| =1, then |= STz =S| | Tx|. That is,

1 Tx =1/ 1S, whenever | x| =1, Hence o&o,(T).
Lemma 2,15. [2] if TEB(H), then o0,(T)Zao(T).

proof. If 1&Zao(T), then T- 1 is invertible and hence J x| = | (T- 2)7'(T-2)
| =) (T-2)"] § (T-2)x| for every vector z. Thatis, | (T-A)xl=efzx]|,

with e=1/[(T-2)"1|, for every x. By the Lemma 2.14, i <0c,(T).

Theorem 2.16. ([2], [6], [8]) For each T=B(H), (a) the resolvent
set p(T) of T is an open set. (b) closed o(T) is containedin {2 : [ A |= | TI).

(c) o(T) is compact.

proof. (a) Suppose < p (T). Then T- 2 is invertible. So there exists )0
such that if | 2 - ¢ |(e, then T-2 is invertible, because T-2 =(T-#)(-(2 - #)
(T-#7") and | (A-p)(T-2)" I =f2-#] | (T-2)" <1 implies| 2- 2| <{e=1/
| (T-)"' |. Hence #(T) is open.

(b) o(T)=C\.P(T) is closed. If | 2{= I T |, then | TIT f {1 and so I—% is
invertible. Therefore T-21=(- 1)(1—%) is also invertible.

(c) From (a) and (b), ¢(T) is a compact set.

-8-



THeorem 2. 17. For each TE€B(H), 04(T) is a compact set.
proof. If ¢ € 0,(T),then by Lemma 2. 14 there éxists €>0 such that | (T- )1)
x | =e for all unit vector x. Hence if z is a unit vector and if | 2-p l(%. then
(T=-Dz =1 (T-2)z+ |-zl = 1 (T-)x i -1 (#- )z
=1 (T-e)xl-| p-2 lzg_
Hence 3 & 04(T), and therefore 0,(T)* is open, that is, 0,(T) is closed.

Since ¢,,(T)Co(T) and for each 2€0(T), |2 |= I TI, a,4T) is bounded.
Theorem 2. 18. [2] For each TEB(H), 8 0(T)Cou(T).

proof. Let 1< a0(T) and let {1.) be a sequence in C\0o(T) such that 1.
— 2. Claim | (T-2,)"'| — oo as n—eo, If the claim were false, then by
passing to a subsequence if necessary, there is a constant M such that | (T- 2.
Y | =M for all n. Choose n sufficiently large that | 2.~ 2 |(ﬁ.
Then | (T-2)-(T-2.) | =(4.2 )<1\l/1 <1/ 1 (T-2)7"1, and so | I-(T-2.)"
(T-2) | = | (T= 27 ((T= 2)=(T- DI I = 1(2-2)(T- 27" I =l 2~ 2 [(T-207
(1. Hence T-2 is invertible, a contradiction. Let |z.| =1 such that a.= (T~
207 )1 (T-207 1-1. Then z—~co. Put y=—3—(T- 2"z Then | va | =1,
and (T- )%= (T-2)¥.+ (2.~ D=2+ (2.~ v Thus | (T-Dv || <’ +

l yl —Zul, SO that " (T"])y, " ——)0 as n—oo, i‘ e, 2 EU.,(T).

Examples 2.19. (a) If T= pl, then the only eigenvalue is #, i.e. 0,(T)=
{#}.

(b) Let S, be the right shift operator on ¢2(C). Then 0,(S)=¢, 0(S)=1&

-g_



C: | 21=1}, and 0,(S)={2=C:|21]=1)

proof. 0(S)C{2=C: |2 |=1) since | Srl =1, Suppose z=( &, £, ‘)&
0%(C) and 2 >0. If Sx=ar, then0=21 &, 6 ,=2¢, . Hence 0=§,=¢,=
.. Since 2 =0, z=0 and so 1 &0,(S). Also since [|S.z| =]z for each x
in £%(C), ker S,={0}, and so 0&0,(S)).Hence 0,(S)=¢. Let | 2|{1 and put x=
(1 2, 2% ). Thenllzh*= £ | 2" (. Also Sx=(2,2%2° )=z,
since S,=S.*. Hence 10 (S,) and x=ker(S,~ 1), and therefore {2&€C: |1 |
QS a(S)=0(S)C(2C : | A|=1}. Since o(S.) is compact,o(S)=(2=C:| ]
<1). Ifla|l<landz=(&, &, -)=f*(C), then | (S-2)zx|=]Sa-2zx|
| ISxl-lallzli=Ilzh-l2al0xl1=0-121)0z]. By the equivalent
condition of 0.,(T), 2&0.,(S). Hence 04 (S)S{2=C: |2 |=1}. Since 20(S)<

0,(S), 8o, (S)={1€C:|i|=1)}.

Definition 2.20. (2} If TeB(H), then (a) T is hermitian or selfadjoint if
T=T* ; (b) T is normal if TT*=T*T ; (c) T is positive if (Tx, x>=0 for all
xeH ; (d) T is unitary if TT*=T*T=L

We have the following properties ; (I) The following conditions are equi-
valent ; (a) T is selfadioint. (b) (Tx, yp>=<(x, Ty) for all x, yeH. (c){Tz, =)
={(z, Tx) for all xH. (Tx, x) is real for all x € H.

(1) If S. T are selfadjoint and 2 <R, then S+T, 4T are selfadjoint, and
ST is selfadjoint if and only if ST=TS.
(1) Any eigenvalue of a selfadjoint operators T is real, for if Tr= Ax and

>0, then A | x[?=(Tz, ©)=(r, Txd=T71zl% i.e. 1=17.

_10_



(V) The following conditions are equivalent ; (a) T is normal. (b) T* is
normal. (c) | T*x| = | Tx] for all xz=H.

(V) For any operator T, T*T is positive. ((2), (6), (7)., (8))

_1 l_



II. JOINT POINT SPECTRA AND JOINT APPROXIMATE
SPECTRA

For a 2-tuple of operators A, and A, on H, we write A=(A,, A,) and A*=

(A%, A%

Definition 3.1. (4) Let A=(A,, A,) be a 2-tuple of operators on H. We
shall say that.

(a) 2=(4, 21,<=C?is in the joint point spectrum o,(A) of A if there
exists a nonzero vector x in H such that (A, - 1)x=0 for each =1,2.

(b) 2=(2a, i.) is in the joint residual spectrum o,(A) of A if 2*=(a,%,
21.%) is in 0,(A*), where 1* denotes the complex conjugate of 4.

(c) A=(2,, 2.) isin the joint point-residual spectrum ¢,(A) of A if there
exists a nonzero vector r in H such that (A—2,)x=0=(A,- 2,)*r.

(d) 2=(a,, 2a.)isin the joint residual-point spectrum o,(A) of A if there
exists a nonzero vector r in H such that (A— 1,)*x=0=(A,- 1,)x.

(e) 2=(2,, 2, isin the joint approximate point spectrum o.(A) of A
if there exists a sequence {x4 of unit vectors in H such that.

I (A- 2)x.l — 0 as &k — oo, (=1,2).
(f) 2=(a, 1. isin the joint approximate compression spectrum o; (A) of
A if 2% is in o.(A¥).

(g) a2=(2a,, 2.) is in the joint approximate point — approximate

compression spectrum o.;(A) of A if there exists a sequence {x} of unit

_12_



vectors in H such that || (A= 1)z =0 and | (A= 2.)*x.| —0 as koo,
(h) 2=(2, 1. is in the joint approximate compression—approximate
point spectrum o;(A) of A if there exists a sequence {x}of unit vectors in H

such that | (A-2)*x ] —0 and || (A~ 2.)x | —0 as k—oo.

Lemma 3.2. For each 2-tuple A=(A,, A,) of operators on H.

(a) o, (A) o.(A)
(b) o, (A) g (A)
(c) 0,,(A) C a;(A)
(d) 0,,(A) C ,(A)

N

IN

proof. (a) If 2=(2,, 4. <0,(A), than there exists a nonzero vector y in
H such that (A~ 2)y=0@=1,2). Put x=y/ |y | for all /=1,2,3,-~. Then {z.}
is a sequence of unit vectors in H and (A~ 2)x,—0 as k—oo(i=1,2). Hence ie
a.(A).

(b) if 20, (A), then 2*=(21,* 21.9)s0,(A*). By (a) i*so.(A%).
Hence 1 e0; (A).

(c), (d) : The proofs of (c) and (d) are similar to that of (a).

Lemma 3.3. For each 2-tuple A=(A,, A,) of operators on H, 12 =(1,,
2.) is in o.(A), if and only if,

B,(A- 1)) +B.(A,-A,)=I1 for all B,,B.=B(H), i.e.

B(H) (A= 2,)+B(H) (A-2 .)=B(H).

proof. If 2=( 24, 1. isin o¢.(A), then there exists a sequence {x.)

of unit vectors in H such that | (A~ 1)z, ] —0 as n—oo(i=1,2)

_13_.



We claim that the expression B(H) (A,- 2,) +B(H) (A~ 2,)= B(H) does not
hold. Assume contray. Then there are operators B,, B, in B(H) such that B,
(A~ 2,)+B,(A,- 2,)=L This implies that.

I=lxli=lLl=1®B(A-1,)+B(A- 2,)]z|

=| (B/(A-2)])x,+ (B:(Ar-2,) )z |

<IB/ I I (A= 2)x |+ B I} (A 22)xa | =0 as n—oo,
which is impossible. Thus for all B,, B, in B(H),

B, (A-1,)+B. (A 2.) =L

Conversely, suppose that B(H) (A- 1,) +B(H) (A,- 2,)>=B(H). Then this
implies in particular that (A,-2,)*(A- 2,)+ (A;=2.)*(A,~ 2,) is not invertible
in B(H). Hence 0 is in the spectrum of the positive bounded operator

(A= 2)*(A- )+ (A 2,) (A 2,).

Since the boundary of the spectrum of a single operator is a subset of the
approximate point spectrum, there exists a sequence {z.} of unit vectors in H
such that | ((A- 2)*(Ai= 30+ (A= 2.)*(A- 2,) ) | —0 as n—oo. But

I (A= 2 )z 2+ I (A2 ®

=CA-2)* A= 2)z, t)H(Ar 2% (A 202, T

=(((A= 2)* (A= 1)+ (A= 22)* (A 2)) )z, z0

= HA-2)*A- 20+ (A 2)% (A 2))x |

Therefore | (Ar 1)z, || =0 as n—oo for all i=1,2, i.e. & is in 0.(A).
Corollary 3. 4. For each 2-tuple A=(A,, A,) of operators on H, 2 =(1,,

2,) is in o5 (A) if and only if

(A-2)BH) + (A 2)BMH*BH).

_14__



proof. From the Lemma3. 3, and taking adjoint of operators, 2 is in o,
(A) if and only if 2*=(1.* 1.%) isin o.(A*) if and only if B(H) (A*-21.*)
+B(H) (A*-2,*)>B(H), if and only if (A~ 2,)B(H)+ (A~ 2,)B(H) > B(H)

Lemma 3.5. For each 2-tuple A=(A,, A,) of operators on H, 2=(1,, 2,)

is in o,,(A) if and only if B(H) (A= 2,) +B(H) (A~ 2,)*>~B(H).

proof. By definition and Lemma 3.3, 1 is in o.,(A) if and only if there
exists a sequence {x,} of unit vectors in H such that.
I (A-2,)x. 1 —0, and || (A~ 1.)*x. | —0 as n—oo, if and only if B(H)(A~ 4.)
+B(H) (A*-2,.*)>B(H).

Lemma 3.6. For each 2-tuple A=(A,, A,)of operators onH, 2 =( 1, 2,)

is in 0,.(A) if and only if B(H) (A- 2.)*+B(H) (A- 1,)~B(H).

proof. The proof is similar to that of Lemma 3.5,

In each case, it is implied that a point 2=(2,, 4.) of Ctisin a set o -
(A) if and only if 0=(0, 0) in 0 - (A= 2., Ay 2.), so in proofs, we will often
confine attention, without loss of generality to the question of whether 0 is in
o - (A). From the above lemmas,we have the following : For a 2-tuple of
operators on H,

(a) 0 is in 0.(A) if and only if for all B, B, in B(H), BA +BA,=L

(b) 0 is in o, (A) if and only if for all B, B, in B(H), A B+ AB,=L

(¢) 0 is in ., (A) if and only if for all B,, B: in B(H), B.A+BA’=L

(d) 0 is in 0,(A) if and only if for all B,, B, in B(H), BAM+B:A =L

_15_



(e) 0is in o, (A, A,) if and only if 0 is in o,(A;, A.*%).

(f) 0is in o,,(A,, A,) if and only if 0 is in o.(A* A,).

Lemma 3.7. [1)} Let A, A, -, A, be operators in B(H) such that
AA=AA foralliandj. If 2,, 2, -, A.. are scalars such that B(H)(A-21,)
+ - +B(H) (A~ 2.)>=B(H), then there is a scalar 1. such that

B(H) (Ai-2)+ B(H) (A~ 2,)>=B(H).

Theorem 3.8. Let A=(A,, A,) be a 2-tuple of commuting operators on H.

Then o¢,(A) is a nonempty compact set.

proof. Since o.(A,) is nonempty and o, (A)={1<=C:BH)(A-2,)=8B

(H)}, by Lemma 3.7, o.(A)=0.(A,, A,) is nonempty. Cleary 0,(A)=0.(A,)x0,
(A;). So it is bounded. Thus we need to show that o,(A) is closed.  Suppose
2'=(2.", 2.9 is in 0,(A) for #=1,2, - and lim z'= 2, for i=1,2. Suppose,
for contradiction,  that 2=( 1, 2.) is notin o.(A). Then by Lemma 3.3,
B(H)=B(H)(A,- 2,) +B(H) (A,- 1,), so there exists operators B,, B, in B(H)
such that I=B,(A,- 1,) +B,(A,— 1,). Then

=B, (A= 2,9 +B.(A-2.0] |

=1 (2~2)B+ (2.~ 1)B. |

Sla=ad 1Bl +1 a2 1B I

Hence for large enough k, we have

I T-(B. (A= 2.9 +B. (A 1.0 [ <1.

But then B,(A:- 2. +B.(A,~ 2.") is an invertible operator which contradicts

_lb'_



the fact that 2'=(2.%" 2.9 is in 0.(A). Hence 0,(A) is closed, and therefore

o.(A) is compact.

Corolary 3.9. Let A=(A,, A,) be a 2-tuple of commuting operators on

H. Then o;(A) is a nonempty compact subset of C2

proof. 1e0;(A) if and only if 2 *eo.(A¥)

if and only if i< o, (A®)*,

i.e. o,(A)=0.(A")*.
Since A A,=AA,, A*A*=A*A,* by taking adjoints. Therefore A*=(A*,

A,*) is a 2-tuple of commuting operators. By Theorem 3.8,0.(A*) is a

nonempty compact subset of C?, and hence o;{A)=0c.(A)* is a nonempty

compact subset of C-.

_17_



V. DASH, TAYLOR, HARTE AND COMMUTANT
JOINT SPECTRA.

Throughout this section, F will denote the real field R, or the spectrum
field C.

An algebra over F is a vector space & on F that also has a
multiplication on it that makes « into a ring such that if a=C and a, b= d, afa

b)y=(aa)b=a(ab).

Definition 4.1. (2] A Banach algebra is an algebra & over F that has a
norm || - | relative to which & is a Banach space and such that for all @, b

ind labl=lal lbl.

If o has an identity e, then it is assumed that |e | =1.
Examples 4.2. (a) Let C([0, 1)) be the set of all continous functions f:
(0, 1)—=F. For f g¢in C([0, 1)), define f+g¢: (0, 1)—F by (/+9 (x)=Rfx)+g
(x), for « in F, define (af) (x)=al(fx)), and define | fIl =sup{|Ax)| : x<(0,
1)}. Then C((0, 1)) is a Banch space. Furthermore #=C((0, 1)) is a Banach
algebra if (f7)(x)=fx)g(x) whenever fg=A and z=(0, 1). (b) Let H be Hil-
bert space and #=B(H). If multiplication is defined by composition, then = is

a Banach algebra with identity L

If o is an algebra, a left ideal of = is a subalgebra M of such that am =
M whenever a=ga, m=M. A right ideal of a is a subalgebra M such that

ma=M whenever a=y« meM. A(bilateral or two-sided) ideal is an
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subalgebra of # that is both a left ideal and a right ideal. ((2], (7))
If & is a Banach algebra, an involution is a map a—a* of &« into « such
that the following properties hold for ¢ and b in « and « in C;

(i) (a)*=a (i) (ab)*=b*a* (ji) (ag+d)=a*a*+b* ((2), (7))

Definition 4. 3. (2) AC*-algebra is a Banach algebra o with an involution

such that for every a inw, l|a*al=1al?’

For example, (a) C((0, 1)) is a C*-algebra where f*(x) =j?x—) for fin
C((0,1)) and x in X, and (b) B(H) is a C*-algebra where for each A in
B(H), A* is the adjoint of A.

A sequence(T,) from B(H) is said to converge to TEB(H) weakly, or T,
—T in the weak operator topology (WOT) if for all x=H, the sequence(T.r)
weakly converges to Tx in H, i.e. {T.x, y>—(Tz, y» for all x, ¥y in H. An
subalgebra of the algebra B(H) is called a weakly closed algebra if it is closed

in the weak operator topology in B(H).

Throughout this section, let A=(A,, A,;) be a 2-tuple of commuting
operators on a complex Hilbert space H. Then the commutant (A)’ of the set
J=1{A,, A,} is a weakly closed subalgebra of the algebra B(H) containing S

and the identity I, where (A)’ is the set of all operators in B(H) that commute

with A,, A, ie (A)’={BeB(H) :BA=AB for j=1,2}. T‘he double
commutant (A)” of the set of f={A, A, is a weakly closed abelian

subalgebra containing J and the identity I, where (A)” is the set of all
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operators in B(H) which commute with the operators of B(H) that commute
with A,, A,, i.e. (A)” =((A)’)’. We denote by(A) the closed subalgegra of
B(H) generated by A,, A,. Note that (A)=(A)” < (A)'<B(H) and that (A)

and (A)” are commutative Banach algebras. (4]

Definition 4.4. ((3), (4)) Let A=(A,, A,) be a 2-tuple of commuting
operators on H. (a) The commutant joint spectrum ¢’ (A) of A is defined as
the set of all points 2=(4, 1.) in C® such that the set {A-2,, A,- 2.} is
contained in a proper (two-sided) ideal of (A)’. Equivalently, 2=(41,, 1,) is in
o’ (A) if and only if for all B, B, in (A)’, B,(Ai-2,)+B;(A,+ 2,) =L
(b) The double(Dash) commutant joint spectrum 0" (A) of A is defined as
ths set of all 2=(1,, 1. in C® such that the closed ideal generated by the
set {A—2,, A.,~ 1.} is a proper ideal in (A)” . Equivalently, 2 isin 6" (A) if
and only if for all B,, B, in (A)" , B,(A,-1,)+B,(A,- 2,)>=L (¢c) The Harte
joint spectrum ¢%(A) is defined as o®(A)=0c‘(A) {Jo'(A),where the left(right)
joint spectrum o¢‘(A) (0’(A)) is the set of all points 2 =(21,, 1.) in C? such
that {A-2,, A,-1,} generates a proper left(right) ideal in B(H).
Equivalently, 2=(21,, 1,) is in o®(A) if and only if for all B,, B,=eB(H),

B. (A= 2,)+B, (A~ 22) =I or (A= 2,)B,+ (A~ 1,)B,~L

Consider the sequence
EH A :0 — H2ZXH®H % H — 0. 1)
where 6 ,(x)=(-A.x;P(Aix) and §.(x,®Bx,)=Ax,+Ax,, for x,, z,=H.

Then it is evident that 6, - 6,=0. We say that a 2-tuple A=(A,, A,) of
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commuting operators on H is nonsingular if the sequence E(H, A) is exact,

i.e. Ker 6,=0, Im 6,=Kerd, and Im &,=H.

Definition 4.5. ((3), (9)) (a) A point 2=(21,, 2,)=C is in the Taylor
joint spectrum o7(A) of A if A- A=(A-1,, A, 2,) is singular.

(b) The joint spectrum ¢*(A) of A=(A,, A,) is defined as the set of all 2
=(2,, 2, such that the closed ideal generated by {A,-1,, A,- 2.} is a
proper ideal in (A). Equivalently, 2=(2,, 2.) is in ¢’°(A) if and only if for
all B,, B, in (A),

B,(A- 2)+B, (A~ 2.)>1 or (A-2)B,+(A,-2.)B,xL

Recall that all these notions of joint spectra coincide in case of a single
operator, as well as in the case of operators on finite dimensional spaces.

o

Lemma 4.6. For each 2-tuple A=(A,, A.) of commuting operators on H,
M (A) ST (A) = e (A) C_ 0" (A)Ea*(A).

proof. Since (A)<(A)" < (A) <B(H), o’ (A)So " (A)Sd*(A).

The first inclusion is a direct consequence of the proposition (10). The

fact that ¢"(A)S o’ (A) is discussed in (9].

Even }in the very simplest situations, the Dash joint spectrum is empty ; in
the algebra M,.(C) of complex 2x2 matrices, take A= (A,, A,) with A'=(8 (1) )
A,= 8 ?) Then the only possible point of the spectrum is (0,0) by the fact
that of(A)Co(A)xo(A,)={0}x{0}, but A2A1+A,A2=G) ?) is the identity

matrix, i.e. 0=(0,0) 0" (A).
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Lemma 4.7. Let A=(A,, A,) be a 2-tuple of operators on H. Then (a) o,
(A)=0'(A). (D) os(A)=0'(A).
2
(¢) 2=(2,, 2,)=0,(A) if and only if 0=0,( _g}l(A.-ls)*(Ae‘—l )],
_ ‘é_
(d) 2=(1, 21,)=0¢'(A) if and only if 0=a, [5‘ (A=2)%(A-2)).

(&) 2=(1, 2.)=0'(4A) if and only if 0&—0( (A 1) (Ai=-2)%).

proof. (a) 2=( A, 2.) is in o.(A) if and only if for all B,, B, in B(H),
B (A~ 1) +B,(A~ 2,)~1if and only ifa=( 2,, 21.) is in ¢’(A).

(b) The proof is similar to that of (a).

(c) 2=C(2, 1.)e0,(A)if and only if there exists a nonzero vector r in H
such that(A~ 2)x=0, for eachi=1,2. If 2<0(A), then there exists x0in H
such that (A- i )r=0for eachi=1, 2.Thu5['.§2_3l(A. -2 .)*(A,-Z.-)h:’)%,l (A~ 2)* (A
-i1)x = ( and so 050,[‘_22"(A,— Y(A- 1)),

Conversely if Oc—:a,[ 22, (A— 2)*(Ar- 1)), then there exiets a nonzero vector
x in H such that [ (A— 2)*(Ar- 2))x=0. Thus

0=<[Z (Ar 2) (Ar 2)]x,

—-(Z, (A- )*(A- )z,

ft
sx'MMuanMm

=1
((A,— ¥ (A- D)z, )
<

(A- 1)z, (A- )T

I

lI (A-2)x]? and so A~ 2a.l=0,
]

for each =1,2. Hence Ax= a.x for =1,2,i.e. 1=(2,, A,)=0,(A).

(d) if a=(2a,, 1, isin ¢‘(A), then for all B,, B, in B(H),
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Bl (Al— A |) +B(A2" lz)é’FI-
So this implies in particular that (A= 2)*(A- 2,) + (A= 1) * (A 2,) L
2 2
Thus 0o ( »E_JI(A‘- 1)*(A~2)). Since _E_JI(A.— A1)*(A,- 1,) is a positive alge-

2
bras and 9 o(T)So.(T), for any operaotr T, Oea,[éI (A2 )*(A- 1)

2
Conversely, suppose that 0o, ( 'ZI (A 2)%(AF 2)]).
i=

2 *
Then there exists a sequence {z) in H with || z.l=1 such that | £ (Ar 2)
(Ar 2)x. |l —0 as k—oo,
Therofore we have
A — 4 =< (Ai=2)xs, (Ai—2)xe
=< (A—2:)(Ai—2)xe, T

< <’2§0 (Ai— 2D (A, — 2Dz, T00

2 *
=l 'éo (Ai—2;) (Ai—=2,)x:l| >0 as koo,

for each #=1,2. Thus i=( 2, )0 (A).

Part(e) follows by taking adjoints.
For each 2-tuple A=(A, A,) of commuting operators on H, o.(A) is
nonempty by Theorem 3.8 and so ¢%(A), 0"(4), ¢’(A), o "(A) and 0*(A) are

nonempty.

Theorem 4.8, For each 2-tuple A=(A,, A,) of commuting operators on H,

o¥{A) is a nonempty compact subset of C%.
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proof. ¢#(A)Zo(A)xo(A,). This is because, if for any i=1,2, 2 go(A),
then we obtain B=(B,, B,) such that B,(A~2,) +B,(A.-1,)=I], by setting,

B=(A-1)", B=00=i).
Since each o(A;) is a bounded subset of C, o(A) is a bounded subset of
C?. To show that o(A) is also closed, suppose that A=(2,, 1. =C?is not
in 0(A)=0'(A)Uo’(A). Then there are B,, B; and C,, C. in B(H) such that
2 B(Ar )= (A 1)CAL

Now if #=(#,, p,)=C?issocloseto A=(2, 2. inC’that élll Bl g,
-2./{1 and él fcih l#~2.4{, then each of the elements '_.%):IB.(A,—;:.) and
é](A.— #)C, is invertible in B(H), since | I—'é'B.-(A,— #)l= ".él B.(A- 2,—)—élB.
(A=)l = 1£B(r-2) I SZIBI L ar 211 and 11-5 (A #)CA QL.

Hence p=(p#,, #,)Zd(A), and so o¢%(A) is closed.

From the proof of the above theorem, we see that o'(A) and o'(A) are
nonempty compact subsets of C* for each  2-tuple A=(A,, A,) of commuting

operators on H.

Theorem 4.9. (9) For each 2-tuple A=(A,, A,) of commuting operators,

o'(A) is a nonempty compact subset of C*.

Lemma 4,10. Let A=(A,, A,) be a 2-tuple of commuting operators on H.
If A=(A,, A,) is non-singular, then A *A +A,*A, and A A *+A,A,* are in-

vertible.
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proof. If y=x,®x,, then §,(y)=A,x,+A,x,. And the dual map 4,* of 4,

is the map from H to H®H such that §,*(x)=A*x@A.,*x for x&H, since
(2@, 6 FW=(8,(2.Dx), w=C(Ax+Ax:, ¥
=(x;, A+ (T, AN ={2. @1, AYYDAMY, ie. §,(1)=A%DAy.

Also §,(x)=(-A,x)®(A,x) for z=H, so the dual map é.,* of 4, is the
map from H @ H to H such that § *(z,®x;) ==-A,*x, + A *r,.
So we obtain the dual sequence of (1), namely

0 ~E%HeE ¥ H - o 2)

Now let us show that A,A *+ A,A,* is injective and surjective on H. If (A,A*
+A,A,*)x=0 for a certain reH, then A*x @ A *x=Kerg,  SinceKerd,=
(Im 3 .,*°  A*c @ Are(Ims *)* But A*z @ A*x<Ims,* by difinition
of &,.*
Since (Imé.*)N (Imés *)* ={0}, A*x=A*r=0. Since Ker §,*={0}, we
have x=0. Hence A A *+A,A,* is injective.

Take an arbitrary y=H and let us find an z=H such that y= (A A *+ AA,%)
x. We infer that &,: (Kerd,)* —H is an isomorphism since Im 8,=H, and
therefore y= 6,(v.® v,) with v, ® v.= (Ker 6.3)L=Irn 5.*. Hence y, @V:= §,*
(x)=A*xr @ A,*x for some x<=H. Therefore

=08,y ® v.)=8.(A*xr ® AXx)=A,(A*1r) + A, (A*xr) = (A A Y+ AAM)x,
iL.e. AA*+AA* is surjective.

Analogously, the operator A *A, +A,A,* is invertible and this completes

the proof.
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Theorem 4. 11. Let A=(A,, A,) be a 2-tuple of commuting operators on

H. Then A is non-singular on H if and only if the operator
A A,
a(A)=|
_A2* AI*

proof. If A=(A,, A,) is non-singular on H, then both A A *+A,A,* and A}

is invertible on H @ H.

A,+A,*A, are invertible on H by the above lemma. Clearly the operator

{ Al”(AlAl*'*'AzAz*).1 'Az (AI*A1+A2*A2)-]:]
AF(AAMAAY) A (A*A +AA,)

is a left inverse for the operator a(A), since

A ADITA, (A A] + A,AY) ! ~A, (ATA, + AJA,) !
[—A; A,‘:I[A;(A.A;' + A,A7) ! A (AA, + AJA,) - ']
- (AIAT + A A)(A,AT + 8,A5)71 (“AA; + AA, )(A%A, +A7A, )T
B [ (-AZAT +ATA(AA] + A,A7)70 (AJA, +AJA,)(ALA, + A%A, )-'J

Lo

Hence a(A) is surjective on H®H. Let us also notice that a(A) is injective

too. Indeed, if a(A)(x,Px,)=0, then

(Al A,

a(A) (x,@x,) = \:A2* A,’;‘Lfﬂ =(Az,+ Ax) DA r + A *x,) =0.

Thus x,@z, =Ker 6. Ker 8,*=Ker 3, N (Im 4, =Kers, N (Ker(sg)‘L = {0},
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and hence x,=x,=0.

Conversely, suppose that a(A) is invertible on H®H. Then a(A)* is in-

vertible. Therefore

(A, A, | A -a, AJAT +AA7  -AA; +AA, |
a(A) - a(A)® = . . . T a%at oAt .
A= ar Al LA, A, | |-AiAl +aAlAl AzA,+A‘.‘AlJ
[A,A] +A,A; 0
0 AA, +AZA,

is invertible and hence (AA *+A,A,*)" and (A *A,+A,*A,)™' are operators
in B(H).

Let us prove that the sequence 0 oy — H®H % H — 0 is exact. Indeed,
it 8, (x)=(-A,x)@®(A,x)==0, then(A*A,+A,*A,)x=0, because 0={(-A.x)D(A,
1), (FAD@AX))=((-Ax), (-Ax)>+<{-Aix, Az

=(A*Ax, oD+ (AFADD={(A*A+A*A)zx, 1),
Hence x=0, and so Ker 4,={0}. = Assume now that §,(x,®x,) = Aix+ Az,

=0(.e. x,@Pxr.,=Ker d,). If y=-A,*x,+A *r,, then

Al A2 X Alxl +A2I2
< |= S =02y
a(A)(z, Dzx,)= & & .
Ay AT | % AT, HALT
Hence r,@r,=a(A)'(0@y), and Thus by(*),
e [AT(A,AT +A2AE)‘I ~A2(AEA, +AEA2)— j| e
UL ANAATFAADTY A(ATA, FAIA,) !

,.27_.



=0 (A*A+AA,) " y
and so
iIZ:A](Al*Pm +A*A) " y
i.e. 1,®x,=(-A, By @ A, By)= 6,(By), where B=(A*A, +A,*A,)"", i.e. 7,@x,
= Ims,. Hence Ker 5,5Imd,. Since 6,6,=0, Im J,=Kerd,. Therfore Ker
5,=Imag,.
Finally, if yH is arbitrary, the x=AX(AA*+AA*) 'y(=1,2) satisfy
the equation
Az +A=AAFAAX+AAY) Y FAAFNAAFHAAY Y
= (A A+ AAY) (A A*+ AAY) y=y,
i.e. y= 4.,(x,®x,) and so yIm 6,. Hence H=Im 4,.
Therefore 0 — H 2 HOH % H — 0 is exact and so A=(A,, A,) is

non-singular on H.

Theorem 4.12. Let A=(A,, A,) be an n-tuple of commuting normal

operators. Then 0.(A)=a"(A)=0"(A)=0"(A).

proof. Since 7.(A)Uo,(A)=0*(A)SoT(A)S0’(A)S 0”(A), and o’ (A)=0,(A),
it suffices to show that if 0=0o” (A), then 0<o0,.(A). By defintion, 0 is in ¢” (A)
if and only if é‘lB.A,#I for all B,, B, in (A)". Since (A)” is a selfadjoint
algebra (4), this means in particular that A,*A,+A,*A, is not invertible. Thus
there exists a sequence {r} of unit vectors in H such that II(élA.-*A,)z. [—0 as
k—co, Hence é'ﬂ Azl *—0 as k—oo, and therefore | Ax,| —0 as k—oo for

=1,2, Le. 0=(0,00=0.(A)
Corollary 4. 13. Let A(A,, A,) be a 2-tuple of commuting normal operators
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on H. Then A=(A,, A,) is non-singular if and only if A*A,+A,*A, is in-

vertible on H.

proof. If A=(A,, A,) is non-singular, A *A,+ A,*A, is invertible by Lemma
4.10.

We must show that if A,*A,+A,*A, is invertible, the A=(A,, A,) is
non-singular. If A=(A,, A,) is singular, then 0€0T(A)=0,(A)=0‘(A) by
the above theorem. By Lemma 4.7 (d),

0= a.( 5231 A*A)Co( ‘zi?l AXA).

Hence A*A,+A,*A, is not invertible.

From the above facts, we have the following questions ;

(a) Is it true that oH(A)=0"(A)=0"(A)=0"(A) for a 2-tuple A=(A,, A;) of
commuting non-normal operators on H?

(b) Is it true that o.(A)=0"(A) for each 2-tuple A=(A,, A,) of

commuting non-normal operators on H?
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