LINEAR OPERATORS ON A HILBERT
SPACE ¢*

1% KEB LB AT Y

EMARE BHEXBH BBHHEHK
RfHHE & * E

REER R kA

19874 7H H



N e BB #e

EINKER BH KB

&

1987¢ 711 H



CONTENTS

CHAPTER 1. INTRODUCTION rrererererraesrssnnsininsesencsissessncensssesensens 1
CHAPTER II. SOME HILBERT SPACES -+eveeressesssssnsesessasesssunsenn. 9
CHAPTER III. SPECTRA OF SHIFT OPERATORS ::eoreereeeereeeesncnees 10
CHAPTER IV. COMPACT OPERATORS ON ¢° SPACE  oeeveeeeeees 18
REFERENCES [ .. 0L L o 2 n @@l el 292

ABSTRACT (KOREAN) rrererssersemsmsinsiassississss s s 93



CHAPTER 1
INTRODUCTION

The most important single operator which plays a vital role in all parts of
Hilbert space theory is the unilateral shift. Perhaps the simplest way to define it
is to consider the Hilbert space €° of square summable sequences. The theory of
linear operators and problems in Hilbert space were introduced by P. R. Halmos,
I. D. Berd, D. A. Herrero etc, in term of shifts on Hilbert space. Also the theory
of shifts on Hilbert space was used by Sz-Nagy and Foias (1970) in the study of the
geometry of space of minimal unitary dilations of contractions.

In this paper we study properties of some Hilbert sr~.es analogous to r?
space, and investigate the consequences for spectra of shifts, compact operators
related to shifts. The outline of the present paper is as follows. In chapter II. we
define several Hilbert spaces analogous to ¢? space, and study properties (comple-
teness, separability etc) of these spaces. Also we give two examples of subspaces
according to completeness. In chapter lll, we investigate characterizations of
linear functionals on several Hilbert spaces, by Riesz Representation theorem, and
obtain results for spectra (point spectrgm, approximate point spectrum etc) of
unilateral shifts and weighted shifts. In chapter IV, we study the topological
concepts and properties of the space of bounded linear operators on ¢? space.
Using these concepts we obtain the equivalent condition of compact operator on e
space, and investigate the compactness of operator corresponding to infinite

matrix.



CHAPTER 1I
SOME HILBERT SPACES

LEMMA 2.1. [7].If £,, &, and % ,, # ., are complex numbers such
that 1 &l? <oo, Zlml? < oo.
k=1

k=1

@ L16ml < (e (S iml)
(CAUCHY-SCHWARZ INEQUALITY)
B (S1a+m < (S1ean! + (1)’

(MINKOWSKI INEQUALITY)

PROOF. (a) Let (£,) and (#;) besuchthat 2 | &, |?=1,

712 =1. Since [€; 75l

IA

% (1& 1+ 17%1?), summing over j

we obtain Z|éj7;j] g.é_.;.%:l_ (1)

We now take any nonzero x=(&;) and y=(#,) such that X [&x|* < oo

and 3 |7x|? < oo andlet

o & - 7;
. =

i . SIENE I

Then = | £,|?°=2 | #, |? =1. Substituting (2) into (1), we obtain the desired

inequality.
(b) Write & ;+# ,;=w;. The triangle inequality for numbers gives
lw, | 2= | &;+7n,| lw, | (& 1 +1n, 1) el

~-2-



Summing over j from 1 to any fixed n, we obtain
Sle P < Li&lel + Dlnllel,
i=1 i=1 i=1

Applying the Cauchy-Schwarz inequality to the sums on the right, we obtain
Blelt < LS1a T+ (Sind (S el
i=1 k=1 k=1 m=] .
Dividing by the last factor on the right, we obtain the Minkowski inequality with

n instead of . Letting n — o, the series on the left converges since on the

right this inequality yields two converging series, and (b) is proved.

DEFINITION 2.2. [1,2,3]. The set of all sequences x=(& »)=(& 1, § 2,

---) of complex numbers for which i | 6,12 < oo is denoted by 2*(C).
n=-i

Define the addition and scalar multiplication by x+3y=(&n +#a ), @ x=
(@ & ,) where x=(& ,), y=(7.)e ¢*(C) ' and a e C. Thenby Lemma 2.1.(b), x+ye
2%(C) and also a xe £°(C). Hence*(C) is a vector space. Also by Lemma 2.1.(a),
the series 2 | €ama] converges. With the inner product defined by (x,y) =
:; Entn, £ (C)isa complex inner product space. The norm | x i, on 24(C)

is defined by ! x| =(x, x)}= (i ]Enl”)'ﬁ . Then ¢*(C) is a normed space.
n=)

DEFINITION 2.3. [7]. A space X is said to be complete if every Caucty

sequence in X converges.
LEMMA 24. [7,8]. 2*(C) is complete.

-3~



PROOF. Let (x,) be any Cauchy sequence in the space 2% where xm=( ™,

(m)

¢m ...). Then for every ¢ >0 there is a positive integer N such that for all m,

N> N [Xo—xal = (1 &™=—&” ) < e (L

i=1
It follows that for every j=1, 2,-=-  we have | &™ — &”| <& (m,n>N) (2).We
choose a fixed j. Form (2) we see that (&}, EP e ) is a Cauchy sequence of

numbers. It converges since R and € are complete, say &M &, as m— .
Using these limits, we define x=(& ., &,,--) and show that xe ¢*(C) and xn— x.

From (1) we have for all m, n>N

S em - M|t < (k=120
i=1

Letting n -~ ©¢, we obtain for m™ ™

k
ZlE;m)_ejtz < 52<k= 1,2,"'),

J=1

Letting k — oo, then we have for m>N

b~ T LR Skt (3)

i=1
This shows that x,-x=(§ ™ -§ j)eZZ((E). Since x. € £2(C), it follows by means of
the Minkowski inequality that x =X, +{(x-xn) € ¢%(¢). Furthermore (3) implies that

%n— x. Since (x,) was an arbitrary Cauchy sequence in 2%(), this proves comple-
teness of £%(C ).

From this theorem, £*(C) is a Hilbert space.

DEFINITION 2.5. [7]. A space X is separable if there exists a countable

dense subset in X.



THEOREM 2.6. [2,7]. £(C) is a separable Hilbet space.

PROOF. From Lemma 2.4, it suffices to show that 2*(C) is separable, Let M
be the set of all sequence y of the form y=(m, 72,", 71,0, 0,-*) where n is any
positive integer and the 7,'s are complex rationals. Then M is countable. We

show that M is dense in £*(C). Let x=(& )€ £°(C) be arbitrary. Then for every
2

e >0 there is an n (depending on ¢ ) such that )E} 1§12 < 2
j=n+1

Since the complex rationals are dense in €, for each &; there is a complex rational

n 2
7, close to it. Hence we can find a yeM satisfying 35| § — 7; 12 < %
1=1

It follows that 331 &—7 1% = wi&—m1" + D167 <<
i=1 i=1 Lo
Hence M is dense in ().

We note that the standard basis e, =(1,0,0,-),e2=(0, 1, 0.---),~- is an infinite
orthonormal system in £°(C).
We shall denote by £°,(C) the set of all sequences x= (E)=(E 0, &1 & 27)

of complex numbers for which )E.‘ | €.]2 < oo, Also we denote by ¢%,(C) the set

n=¢

of all sequence x=(&.)=("§ -1, £, &) of complex numbers for which

3 8al? <o

n=—e

Similarly we can show that £°,(C) and ¢°.(C) are Hilbert spaces.

Let H be a Hilbert space with inner product <, >. Let 2*(H) denote the set of

all sequences (x,) of elements in H for which X [ ¥a1]® < co  Define addition
n=1

and scalar multiplication by x+y=(x+3), @ x=(@ x,) where x=(x), ¥y=0n)e



¢*(H). Then ¢° (H) is clearly a vector space by Schwarz inequality and triangle

inequality. Also we define the inner product ( , ) on ¢*(H) by (x,y) =

I

(X2, Ya) . andthemorn | x | ong*(H) is defined by |' x|l = (v ,x)} =

n

8

(32(%a, ¥a))*. Hence ¢’(H) is a normed space, and also £°(H) is clearly an inner
n=}

product space.

THEOREM 2.7. ¢*(H) is a Hilbert space.

PROOF. From the above remark it suffices to show that ¢*(H) is complete.
Let (a,) be a Cauchy sequence in the space ¢*(H) where G =(x™ , xP ,-). Then

for every &€ >0 there exists an N such that for all m, n>N
o y
lam — a@sll = (kZHx‘ni“’ —x@1?)" < e, (1)
=1
It follows that for every j=1, 2,--- we have

xy — 2| <'e (m,n>N). (2)

We choose a fixed k. From (2) we see that (x , x@ ,---) is a Cauchy sequence of
elements in H. It converges since H are complete, say x§' —x as m — .

Using these limits, we define a=(x, %, ) and show that ae ¢°(H) and @,—a. From

(1) we have for all m, n>N
i
:L_:”xi(m) - xl((m”z < 52(j = lvzo"')
=1
Letting n — oo, we obtain for m>N

éllx‘{“’—xk\lz < S (j=1,2,-),



Letting j — o, we have for n>N

S —nr <400
This shows that am-a=(x -x)e ¢*(H). Since ame 2%(¢), it follows from Lemma
2.1.(b) that @=an +(a-am)e £°(H). Since (an) was an arbitrary Cauchy sequence in

¢*(H), this proves completeness of 2*(H).

Let w =(w,, @, ") be a sequence of strictly positive numbers and let

22 (C) to be the set of complex sequences x=(&, &yo0) with Y | & 12 <oo .
1=1

With respect to the coordinate linear operations and the inner product defined by

(¥,Y)e = ’;l ©; §; 75 We can similarly show that the set £5 (€) is a Hilbert
space. In particular,if @ = (1, &, a@?) for @ >1 then x = (1, %, 5 )

e 42(C)
On the other hand, let £ (N xN) be the set of all double sequences (&mn)
with m% ’l €m |® < o0, With respect to the coordinate linear operations and

the inner product defined bY (&, 7)=((& ma), (7 mn)) = i Emn 7—7mn , we see that
m n=1

2% (N xN) is a Hilbert space.

THEOREM 2.8. Let #£2(C) be the subspace of £*(C) consisting of all
sequence (x,) where x, =0 for all but at most finite number of n. With the inner
product inherited from Zz(d:).elf (C) is aninner product space,but e: (C)is not a

Hilbert space.



PROOF. C(learly g:_ (C) is an inner product space. It suffices to show that

£%(C) is not complete.

S S S L 1y 2
Let an_(zs 22r 23! » 2n| 0! ] O)E ZF(C).
Then for n>m .
N — e (L Lo 1 -
||an am!l _”(2: 22’ ’ 2“' 0’ ’ 0)
11 1 o5 2
(2 » 22 » ’ 2ms 01 0)”
= || (0, - 0 _IT ...... 1 O, coeeee 0°?
’ » * 2rn+ 13 ] 2n * ’ 3
=\/0+ ...... ‘+.0+(‘)1m“)2+ ...... +(—i;)24-0_;. ......
1 1 > i 1
4 e — _ = —
< 2m+l ! + 2n < k§1+1 Zk 2m

Since |l @-a@m | = 0asn— oo, (@), isa Cauchy sequence, which converges in
1 1
2 (C)to a = (5 =T )¢ ¢f (C), Consequently (x,) can not converge

to a vector in l: (€C) since limits of sequence in ¢*(C) are unique.

THEOREM 2.9. Let ¢2 (C) be the subspace of 2*(C) consisting of all

sequences (£,) where &:,=0 for all n. With the inner product inherited from
2’ (), £:(C) is a Hilbert space.
PROOF. Clearly ¢ 2(@) is an inner product space. It suffices to show that

2%(C) is complete. Let (%)=, be a Cauchy sequence in the space 4 %(C), where

%W=(E®,&® ..). Then &3 =0 for every k=1, 2+, and (%a)ne: is a Cauchy

-8-



sequence in the space £°(C). By Theorem 2. 4, (%)ne: converges to £, for every

k=1, 2, and &, =0 for k=1,2,-~--. Hence ze £;(C).



CHAPTER 1II
SPECTRA OF SHIFT OPERATORS

DEFINITION 3.1. [1,2]. Let H, and H, be Hilbert spaces over the com-
plex number € . A linear operator T: H,» H, is called bounded if " S‘-RPSIIITx I
xXh =

<oo. Thenorm of T, written | T |is the nonnegative number || T =" Slhlp | Txl.
x| =1

Let B(H,, H,) be the set of all bounded linear operators from H,; into H., and
put B(H,H)=B(H). Note that B(H,C) is the set of all bounded linear functional on
H, and that for a bounded linear operator Te B(H,;, H,),

(@ [Tl =supl | Txl  Ixll:x#0i=sup! 1 Txl: "x| =1}

=inf{c>0: I Tx <clxl,xe H}.
() I Tl =sup{<Tx,y>: lxll=1lyl=1xeH, yeH}

=sup{<Tx, y>: IxI =1, |yl 1, xe H,, ye H,}.

EXAMPLE 3.2. (a) Let S;: £%(C)—¢%C) be defined by S(& ., § ) =(0,
&, &,). The operator S, is called right shift operator (or unilateral shift) [2,3].
Obviously Srislinear and [ S;x || = | x| (xe €%(€)). ThusS; is an isometry of
2*(C) into £*(C) and | S, I =1. In fact, S, maps 2%(C) onto a proper subspace,
namely the set of all absolutely square sequence having first term zero. i.e,S;is
not surjective. Therefore S; is not invertible.

(b) Let S,: £*(C)—¢*(C) be defined by S«& ., &2 )=(£2 &) The



operator Sq is called left shift operator (or backward shift) [2,3]. Obviously S. is
linear, and 1S, =1, but S, is not one-one. Hence S, is not invertible.

(c) Let @ =(w ) be a sequence of complex numbers and let T : ¢ 2(C)—€%C)
be defined by T(x, %, )=(wx, @;%, ). The operator T is called the diagonal
operator [2,3]. It is easy to show that (1) T is bounded if and only if @ =(w.) is
bounded, in thiscase | T =sup| @n|,(2) inf| w,| x| = | Tx| for any xe
2% ), and (3) T is invertible if and only if inf | @, | >0.

(d) Certain infinite matrices give rise to bounded linear operators on 2*(C)

as follows: Given an infinite matrix (a;);, ;-, where

¥ Y layl?<oo, (x)  defineT: £%(C) — £°(C) by

T(&, &, )= (9, My, e ) where y; = i‘ai,-éj,

i=1

The operator T is a bounded linear operator on £° and
ITI? < 5 Slasl®
1=]11=1

. ©0 © o« i '
since  [7;] < ’Z_leaue,-l < (X laii %) (21617  (by Cauchy-Schwarz
= J=1 1=1

inequality) implies that for x = (§,, §,, - )
Tl = S0t <l 5 1awl?
1= i=1j=1 .

Condition (*) is not a necessary condition for T to be bounded.
Since the identity matrix (a;)=(d;) does not satisfy (*), yet T=1. Here ¢ ;,
denotes the Kronecker delta.

_11..



By Riesz Representation theorem [1], we see that a functional f on 2%(¢g) is
bounded and linear if and only if there existsa y=(7 1, # 2,"**) € 2*(C) such that for
all x = (&, &, ~)e £2(C), f(x)= 3 &

n=t

Similarly we obtain the following theorem.

THEOREM 3.3. Let @ =!w.! be a bounded sequence of positive numbers.

A functional f is bounded linear on the Hilbert space ( £2 (C), <,>. ) if and only

if there exists a y=(7 1, 7 2,~")e¢ €& (C) such that

flx) = (x,¥), = n‘éwnenin for all x=(& ,, £ )€ £2 (C).

PROOF. Suppose f is a bounded linear functional on 2% (C). Then by
.Riesz Representation theorem, there exists a unique y=(7 ,, 7 2,""")€ £% (C) such

that for all x=(& , £ »,~")e €5 (C). f(x)=<x, y>, . Hence f(x) =(x,¥)a

= Z Wy, en 7n .
n=1

Conversely suppose that there exists a y=(7 ,, 7 »,*")¢ £a (C) such that

©

fX) =(x,Y)0 = 3 0l . Then f is clearly a linear functional and

N f1l = kf_]wk | 7¢/*< oo sofisa bounded linear functional .
=1

Also we apply the Riesz Representation theorem to ¢*(H), and see that a
functional f on €*(H) is bounded and linear if and only if there exists a y=(y, 3,

-)e £%(H) such that for all x=(x,, %, )e £*(H), f(x) = i (Xn, Ya) .
n=)

_.12._



DEFINITION 3.4. [1,2]. If Te B(H,, He), then the unique operator S in
B(H,, H,) satisfying <Tx, y>=<x, Sy for all x in H, and y in H, is called the
adjoint of T and is denoted by S=T*

We note that if an operator on C"is represented by a matrix, then its adjoint
is represented by the conjugate transpose of the matrix. Indeed, let H be the n

-dimensional unitary space €" with basis e "_, and let the linear operator T be

. . n n
given by a matrix «a =(@ whsiegn. I 4= 3 &e, and C = 3 ek
k=1 k=1

are any vectors in H=C", Then we have

M=

(Txy>=(i(ia“51)ek, i’?kek): ; Tnax ¢ |
! k=1 ¢=1 ] k=1 = ’

k=1¢

il

Let a* = (ai )i=ks=o be the matrix with the elements af = aix .

(a* is called the adjoint matrix of @ ) Then we have

(x. T*y)= (é §cex , 2::1( éa:’tvl)ek )

= ZZEka::l’Jt: i 3 ;lal'kEk = (Tx,¥).

k=] £=1 k=11¢=1
The operator T* corresponding to the matrix a *= (@%, ¢ )12k ¢e<n 1S therefore the

adjoint of T, and adjoint operators correspond to adjoint matrices.

DEFINITION 3.5. [1,3]. Given Te B(H), (a) a point A € € is called a
regular point of T if A I-T is invertible. The set p (T) of regular points is called
the resolvent set of T. The spectrum o (T) of T is the complement of o (T). (b)

a point 1 € C is called an eigenvalue of T if ker(d I-TV=-.0-. The set o,(T) of

-13-



eigenvalues of T is called the point spectrum of T. (c) The approximate point
spectrum 64,(T) of T is defined by Gap(T)=1{ 1 € C | there is a sequence {x,} in H
such that | x, || =1 for all n and | (T-A Dx, | =0}.

Note that 6 »(T) S0 «(T)S0 (T) and @ 6 (T) S0 o(T), where 2 o (T) de-
notes the boundary of o (T). [1,3]. Also we recall that for every T in B(H), o (T)
is a nonempty compact subset of €, ¢ (T)Z{A€e C: A | 1T}, and o (T*)=

o (T)*, where for any subset A of €, A*={Z: ze L.

LEMMA 3.6. Let @ =(w,) be a sequence of strictly positive numbers such

that SUP w;<co and infw;>0. Define S? : 2i(C) — ¢i(C) by
; ;

SU(E&, &, ) = (0,8, &, )

Then (S?)™ is given by (S*)* (&, &, = ) = (22§, L&, ).
In particular, S; =S,, where S; denotes the right shift operator on 2%(C).

PROOF. For any x=(£,) and y=(7,) in £, (C).

((s?)*x, y) =(x, S¢ =&, 6. & w2 (0,70, 7200 =

(02625] + w3$3;]2 + ------ = w, (-Z—fez);]l +w2(%53)52 + ......
2
= ((_Z—T_EZ' 2363, ...... ) , (’711 ;72' ...... ))

Since this holds for every v =(y,). the result is proved. In particular, if @ =(1, 1.--*).

then S,* =S, since St =S;.

_.14_



COROLLARY 3.7. Let w =(w,) be a sequence of strictly positive numbers
such that sup w,<oo and inf @,>0. Define S%: £2(C)—> £.(C)by Si(§,,
i b

§2)=(& 2, & 5,). Then (S7)* is given by (SD*(&,, & o) =

w w R .
(0'»‘¢t £, 7:‘52, ------ ). In particular, S} =S,.

THEOREM 3.8. Let S; be the right shift operator on ¢*(c). Then o (Sy)=

AeC: |2 |51}, 0,8)=¢,and c,(S)={2eC: |2 | =1}.

PROOF. Since 1S =1, 6(S)C{de €: |4 | =1}. Suppose x=(& 1,
£,-)eC)and A #0. If Sx=21x,then 0=1 & ,, =1 §,~.  Hence0=¢,
=¢&,=-. Since A #0,x=0,andso A ¢ & »(Sr). Alsosince |S;x )l = x| for
each x in £C). i. e., S is an isometry, ker S;={0}, and so 4 =o¢ @ »(S¢). Hence

o

o ,(S)=¢.Let |1 | <landputx=(1,1,247%:). Then x|? = E)Ilzl" <
o AlsoSix= (1,4 2..3=1 x. Hence X € ¢ ,(S,) and xe ker(S,~11). Since
S*=S,{deC:11 | <11Ca(Sp=0(S)C{r e C: A | €1 If |42 [ <]
and x=(£ )e £%(C), then | (S-ADx | = ISx-Ax 1= | ISex - 1A § Ixl|=
I lxt-1A2 | Ixy]=0-12 {)Ixl.By the equivalent condition of ¢ ap(T)

(1], A ¢ o &(S:). Hence 0 (SEid e € : |2 | =11 Also by the fact that 9 o

(T)gdap (T), Cap (Sr):{l e C: I A | 21} .

COROLLARY 3.9. Let S, be the left shift operator on £*(C). Then o (S)=

Ae€C:!2 | =ll,and o,(T={1eC: 11 | =1},



PROOF. Our results follow from the theorem and the fact that

o (S:*)=0 (S

REMARK 3.10. Let S; be the right shift operator on ¢c¢). Then o (S,
S, )+06 (S*S;). Indeed since S,.*S,=S5,5,=1, ¢ (§;*S;)={1}. On the other hand
since S;5:*(§ ., § 2,"')251-5;(& L& z,"'):Sr(‘E 2, §3,)=(0, &, §307), © (Srsr‘)

={A € € : S,S;*-1 1 is not invertible} ={0, 1}. Thus & (5;*S:) £ o (5.5:*).

THEOREM 3.11. Suppose o<w1§w2§ .-~ such that lniE w, = r < oo.
Define T : £*(C)—~€(C) by T(& \, & ,,)=(0, @ &1, @28 2,+).

Then 6 (T)={A2e €C:| A | =r}, 0 ,(T)=¢ and o ,(T)=2 o (T).

PROOF. Since | Ti = sup | Txl =sup w,=r, 6 (TN&S{AeC:| |

Txl =1

<r}. Suppose x=(& 1, & ,,)e £°(C) and A #0, If Tx=A x, then0=21&, w,&,
=1 &, Hence0=&,=£&,=--1ie,x=0. Sinced #0,x= 0, and so 1 ¢ o ,(T).
Since | Tx | =10, @,&,, @:&4 )| 2w, x| for x= (&) in£*(C), ker T=
{0}, and so A =0¢ o ,(T). Hence 6 ,(T)=¢. Let |2{<r and put x = (I,

A a2

’
0, o v,

...... 2 _ L LT -5
, ). Then Ilx|| —l+|w1| +lml +---—r§oan<oc,

| 2n+| 2
. . . W, o W, @ 12
since ¢ = lim |2 = |im — = = lim lzl
n—oo an n-—-rco | '2 N-co wﬂ"‘l
wl ------ u)n
. 1 [4]*
= |2 lim —=— = | <1
oo 41 r

_16._.



22 a3
Also since T" (&) = (@, &,, ©,&, = )y, T x=(2, o' e , eeeee)

= 1(] -i A ) = lx,Thus,l € GP(T*) R and x € ker(T*_
b ] w * ’

W,

*

a1). Hence {2 € € : |2 <r} & (T =a(T)S{rec: 41,
Since ¢ (T) is necessarily closed, ¢(T) ={ 2 € C : |A|<=r}.
Finally since 20(T) = {2 €€ | |2|=r} and 30(T) S 0,(T),

o.p(T) = {41 ]2l =1},

_17_.



CHAPTER IV
COMPACT OPERATORS ON ¢ SPACE

A Hilbert space has two useful topologies(weak and strong),but the space of

operators on a Hilbert space has several.

DEFINITION 4.1. [3,5]. Let H be a Hilbert space with inner product

¢. . (a) The norm operator topology or the uniform operator topology on B(H) is

the metric topology induced by the norm. (b) The weak operator topology on B(H)
is the weak topology defined by the collection of functions T — < Tx, y > from B(H)
to € for x and y in H. (c) The strong cperator topology o B(H) is the strong

topology defined by the collection of functions T — Tx from B(H) to H for x in H.

A sequence of operator {T,: converges to T in the weak [strong, uniform
respectively] operator topology if lim < Tex, y >=<Tx, y> [lim Tax=Tx, lim
T.=T respectively] for every x and y in H.

We will investigate the relation between these topological concepts and shift
operators.

(a) Let S, be the unilateral shift operator on£%(C), and put
T.=S,**=S¥ (k=1. 2,~). Then (1) T, — 0 strongly, but the sequence{T,*} is
not strongly convergent to anything, i.e., the adjoint is discontinuous with respect

to the strong operator topology. For || Tx (&;, &, === M= || (Eur s Exez s

------ YiIIE = i 1€.1%  sothat | Tuwx || 2 is, for each x=(& ,), the tail of a

n=k+1



convergent series and therefore T,x — 0. But if x=(§ ,)#0, then | Tmia®x-To*x
2= S™n x-Stx | 2 = || S;x-x || 2= || Se™x || 2-2 Re(S:™x, x)+ I x I? =2( ] x | *-Re
(x, S:*™x)). Since || S,*™x || -0 asm—oo, | Th,a x-To*x | isnearly equal to v 2
I x1,i e, {T.*x} is not a Cauchy sequence.

(b) Let S, be the right shift on£*(C) and put T,=S;"and S,=Sr, n=1,2,"".
Since T,—0 strongly by (a), it follows that T,—~0 weakly, and hence that S,—0
weakly since | <Spx, y> | =1<x Sa*y> | =1<x, Toy> | = | <Twy, x> | for
any x, ye £YC). Since T,S,=I for all n, it is not true that T,S,—0 weakly.

Therefore multiplication is not weakly sequentially continuous.

The image or range of an linear operator T : H,—H,, written Im T, is the
subspace TH,={Tx: xe H,}. Also the kernel of T, written ker T, is the closed

subspace ker T={xe H,: Tx=0}.

DEFINITION 4.2. [2,5,8]. A linear operator T: H,— H, is called an
operator of finite rank if Im T is finite dimensional. T is called a compact operator

if for each sequence {x,} in H,, | x || =1, the sequence {Tx,} has a subsequence

which converges in H; .

EXAMPLE 4.3. (a) Every operator T : H,— H, of finite rank is compact.
For, suppose {x,} CH,, Il x | =1. Then {Tx,} is a bounded sequence in the finite
dimensional space Im T. Since Im T is linearly isometric to C* for some k, It

follows that {Tx,} has a convergent subsequence.
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(b) The identity operator on an infinite dimensional Hilbert space is not
compact. For if e, e, is an infinite orthonormal set in H, then || lea-leml=+/2

which implies that {Ie,} has no convergent subsequence even though | e, [ =1.

LEMMA 4.4. [2]. Suppose {k,} is a sequence of compact operators in

L(H,, H,) and | ka-k || = 0 as n = o where k is in L(H,, H;). Then k is compact.

PROOF. Let {x} be a sequence in H;, | % [l =1, since k, is compact.
There exists a subsequence {x.} of {x,} such that {k,x.} converges. Since k; is
compact, there exists a subsequence {%a.} of {x.} such that { k.xn} converges.
Continuing in this manner, we obtain for each integer j =2, » subsequence { X e
of {%y_nateey such that {k;xa}a-, converges. We now show that the “diagonal”
sequence {kx..} converges, which proves that k is compact. Given € >0, there
exists by hypothesis an integer p such that || k-k, | <& /2. (1)

Now {kp¥%.} converges since n=p implies that {ky%.} is a subsequence of the
convergen.t sequence {kp¥%n). By || kxnn-K¥mm | = | K¥n-Kp¥an | + | KpXoa~KpXmm
I+ 1 KpXmn-Kdmm | 2 1 kp=k | + | KpXnn=KpZmm | <€ + || KpXon-KpXom | = € as n,
m — oo, Thus it follows that {kx.,} is a Cauchy sequence which must converge

since H, is complete.

THEOREM 4.5. A diagonal operator on ¢*C) with diagonal {w,} is

compact if and only if w,—~ 0 asn—> oo .
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PROOF. Let T be a diagonal operator on ¢%(C) with diagonal {w,}, and
for each positive integer n, consider the diagonal operator T, with diagonal {w,,
e, @n, 0,0,+}.. Since T-T, is a diagonal operator with diagonal {0, ---, 0, @ nt1s
@ qaa ), s0 that | T-Ta | =supi | @n |, it is clear that the assumption @ ,— 0
implies the condition | T-T, | — 0. By Lemma 44, if w,— 0, then T is compact.
To prove the converse, consider the standard orthonormal b.asis {eq} that

makes T diagonal. If T is compact, then Te,— 0 strongly because e,— 0 weakly. -

Since | @nenll = | @n | leal =0, wo— 0.

THEOREM 4.6. Let (a,)7,-; be an infinte matrix where i | @ijl2< o0 .

i,i=1

Define T : 22(C)— ¢°(C) by T (&,, &, - ) = (1, Mg, woeee ) where 7; =
2.aij &, . Then Tis compact.
=1

PROOF. Let T.e £%C), n=1.2,- be the operator corresponding to the

matrix (a,™)-. , where a,”=a;, 1<i, j<n and &, =0 otherwise. Since T, is of

finite rank, it is compact. Moreover || T—Tall < i i lai;|1> — 0

i=n+} j=n+)

as n — co. Hence By Lemma 4.4, T is compact.
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CEXPHS

YHEZEH ¢ Lo BAEARA T R

s F E

M KB BH KB BREEBER
fgpdR & k h

A HwelAdE AAE oz FF9 25 EAMEN ol =M % BHEH
o] Hilbert ol =|&x off& =gt FA2 Riesz RBEEE o83t o
o ¢® R ke B BHS 2Astn o] M EolA &G #B EREFEL mME
S %Y HAMEN % 2P ez, approximate®h ~FE 7 AHEHS
Fabch, A E 07 S Lol A #F (ERFRS ofdh ole] frfEe ME o =i Lol

4] compact fERFE S EMEKESES w3l

_23_



	표제면
	I. Introduction
	II. Some hilbert spaces
	III. Spectra of shift operators
	IV. Compact operators on l2 space
	References
	Abstract(Korean)

