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I. INTRODUCTION

In this paper, we introduce some properties of the most basic tools used
in the study of differentiable manifolds, and we also examine the basic tools
for the special two-dimensional smooth manifolds, e.g. the unit sphere
S={(x,y,2); x+y'+z=1} and the ellipsoid N={(xy.2) ;4 Ty’ tZ=1}.

In chapter II, for a n-dimensional smooth manifold M, we define the tangent
space T,(M) attached to each p € M. Each element X, of T,(M) can be
considered as an operator on C’'= functions defined by some neighborhood
about p, and we calculate the tangent vector on the unit sphere S in R' and
on the ellipsoid N in R’ in the view of the definition of the tangent space.
With the computation of the frame on the tangent space about the unit

sphere S, we can explicitly represent the tangent " space of S2



On the other hand, we introduce the fact that a C*—mapping F:M—N
induces a linear map F« :T,(M)—T;,N on the tangent space at each point.
About the unit sphere S* and the ellipsoid N, using proper coordinate neighbo-
rhoods(U, ¢) and (V, ¥ ) on $° and N, respectively, the author shows that
the function F:S*— N defined by F(x,y,z) = (%,y, z) is a C*— mapping, and
by the differentiation of function of several variables, he also calculates the
exact formular F. and F.

In chapter III, assigning a vector X, to each p € M, we obtain a vector
field on M, and study some properties of the vector field on a C*— manifold
M. Defining Lie Bracket between two vector fields, the author introduces the
concept of Lie algebra, and show that the vector space V * with dimension
3 is a Lie algebra with the Lie Bracket as the usual vector product and show
that the space of all n x n matrices is also Lie algebra with the Lie Bracket

[X, Y] =XY-YX,



II. TANGENT VECTOR SPACES

In this thesis, if we put (U, ¢) a coordinate neighborhood then for any
peU, ¢:U— R defined by #(p) = (X', X, ***, X) Is a homeomorphism on
U.

Definition 2.1. Let f be a real-va]uéd function on an open set U of a n-
dimensioﬁal manifold M. Then f:U—R is a C— function if each p € U lies
in a coordinate neighborhood (U, ¥) such that f (%, +++, x) is C* on ¢(U).

Example 2.2 The unit sphere M=S"={(x,y, 2); ¥+y*+Z=1} is a nontrivial
two-dimensional manifold realized as a surface in R’.

Let U,=SJ 00D}, U.=S\{(0,0,-1)} be the subsets obtained by deleting

the north and south poles respectively. Let
¢q;Ua— R ~ {(x,y,0)}, (@=1,2)

be streographic projections from the respective poles, so

X

y _ y
l_zv I_Z)v ‘pz(xerZ)_(

X
14z ' 1+z

Pi(x, Y, z) = ( ).



It can be easily checked that on the overlap U, NU:
‘Plo 14 2.1 . R‘Z \{ (O) O)} - RZ \ {(O’ O)}

is a smooth diffeomorphism, given by the inversion

P09, (x,y): = (

X
x*+y?, x

Stereographic projection
The Hausdorff separation property follows easily from that of R’ so S is
a differentiable, indeed analytic, two-dimensional manifold.
Let f be a real-valued function on S’ defined by f(x,y,2) =x+ty+tz
For any pe S, say p e U,

f e y)= ;zjyzzx—;T

—-4-



By similar computation, on the other case, we can see easily that fisa
C*~function on the two-dimensional manifold S’

Definition 2.3. Let W and N be C*-manifolds. A function F is a C~mapping
of W into N, if for every p € W there exist (U, ¢ ) of p and Vv, ¢ )of

F(p) with F(U) = V such that
yoFeo'(U): ¢ U)— v (V)
is the C*-function in Euclidean sense.

Furthermore We call F homeomorphism if ¥ F- ¢ is homeomorphism.
A C*mapping F:M — N between C=manifolds is called a diffeomorphism

if it is a homeomorphism and F and F' are C*-mappings.

Example 2.4. The Ellipsoid N={(x,y,2);4x’+y’+Z=1} is a nontrivial

two-dimensional manifold realized as a surface in R*.



0,1,0, (0,0,-1)
/’/, _----/~\\\\\
,/’ ,/ \l \\\ (é_'o,o)
——————————— l x
(-%,0,0) KO.U.O)I;
(00,1 Ll
kO'_lpO)

The Ellipsoid N={(x,y, 2) : 4*+y*+2’=1}
Let

Vi={xy,2:2= {1-4—y }
Vo={(xy,2): 2= —{1-4¢—y |
Vi={xy.2:y= Vi—4—7 }
V= {xy,0:y= —{1-4—7 }
Vo= (& y2)ix= 3/Ty—7 |
Vs:{(x,y,Z):x:‘%m }

6
"Then UVi=N.  Let ¥a:Va— R’ be defined by
i1 -

v(x,y,2) = xy),(*=1 2)
v, (xy,2) = (.2,(8=3 4.
¥, (xy,2) = (x,2,(7 =5 6).

—6-



It can be easily checked that on the overlap

Vo o ¥5' {2 VKL= (R y) : 48 +yX1
\1-y+2

given by Yeoyp' (¥:2)= (£ 5

veyit 1 (x,2) 1 4x+ 21 = {(y, 2) : ¥ +2X1 )

2 Y) (The sign depends on a« and j),

given by Vpoys! (x,2)= (i\rl_—Txt_zz-, z2) (The sign depends on 8 and 7 ),
and ¥pe¥at (&) 4yl — {(x z): 4x+2X1}
given by y,eyzt (X,¥) Z(X,im (The sign depends on ¢y and a).
By similar computation, on the other case N is a differentiable two-dimensional
manifold.
Let F be a function from $* into N defined by F(x,y, 2)2(%-, y, z). For
any point p=(x,v,z) € S, say p € U, and F(p) € V,

2
v, F o' xy) = (x2+}}’tz+l, xz+_§2+1 )_

By the same method, on the other case, we can show that F is a C*-mapping,

homeomorphism and diffeomorphism, since



2x y )
1-v1-4x-y?, 1-y/1-4x°-y°*

@ oF vt (xy) =
is C".

Given any point p € M, we define C*(p) as the algebra of C*-functions
whose domain of definition includes some open neighborhood of p, with func-
tions identified if they agree on any neighborhood of p. The objects so obtained
are called “germs” of C*—functions.

Definition 2.5. We define the tangent space T,(M) to M at p to be the
set of all mapping X, : C*(p)R satisfying for all @, s €R, andf, ge C*(p)

the two conditions ;

Q) X, (af+ Bg=aXn + B X
(i) X, (i) =X He®+ {p)X:Q),

with the vector space operations in T{M) defined by
Kt Y =XA+YS, (aX)f = a Xf).

Any X, € T, (M) is called a tangent vector to M at p.



Example 2.6. Let M={(x,y,2) : X'ty +z’=1} be a two-dimensional mani-

Xo Yo)

fO]d, and let P :(Xn, Yo, Z()) and ¢1(P):(u0, VU): ( 1- Zo> 1- Zo™"

For any C“-function f defined by some open neighborhood of P,
consider any C” —curve (u(t), v(t)) (=1{t{1) and (u(0), v(0))=(u, vo)
passing through the point (w, o) in R% Then
eiu(t), v(t)=x(), y(t), z(t)) is a curve on the unit sphere S* passing
through the point P. Also Xp_= (¥’ (t,), ¥(t,), Z(t;)) 1s a tangent vector

at P to the unit sphere, because

lim fx(t), y@)., zt) — f&xt), y(t), z(t,
Altrf:, (x(), y(), zt) - (x(t), y (t), z (t)) (At=t—to)

o af af af . ! ' '
= (;((p).;y—(p). 3P (Xt ¥ (t), Z(t)
= Df(P)- X.,.
If we denote the limit by X, (f)=Df(P)-X, then X, is a mapping from C*(p)

into R satisfying the conditions (i) and (ii) in the Definition 2.5..

To show that, we let f, g € C"(b) and «, feR. Then



X.(aft+ pg = D(aft g (P)X

= lim (aft g @), yO, i(t))—(a f+ 6 (P) (A=t 1)

otlo /s

= lima [f(x(®), y(t), z(t)— {(P)] + lim 8 Lg(x(t), y(t), 2(t)— g(P)]
Otlo At atlo At

= aDf(P)-X,+ ADgP X,

= aX,()t BX®,

Xp(fg) = D(fg)(P) * XD

= lim (f , y(), —(fp(P
Altrlno(g)(X(t) y( .)_\tZ(t)) (f)(P) (At=t— 1)

= lim f(x), y(t), z(t)) gx(t), y(t), zt)—{(P) g(P)
atlo At

= liin Lf(x(t), y(®), z(t)— f(P)Jg(x(®), y(t), zt)+ f(P)Lgx(t), YV, z(t) —g(P)]
L4 0 ) At

= [Df(P)- X, Jg(P) + f{(P)[Dg(P)- X,]

= (X,Hg + f(X,g).

_10_



Hence X, is a tangent vector at P on M.
Theorem 2.8. Let F:M—N be a- C*—map of manifolds.
Then for p €M the map F* :C*(F(p)) = C*(p) defined by F* ()=f F is
a homomorphism of algebras and induces a dual vector space homomorphism
F.: T,M) = Tr(N), defined by F.X)I=X,(F*f), which gives F.(X,) as a
map of C*(F(p)) to R.
proof. The proof consists of routinely chc;,cking the statements against defini-
tions. We omit the verification that F* is a homomorphism and consider F.
only. Let X, € T,(M) and f,’ g € C*(F(p)): we must prove that the map
F.X,): C*(F(p))—R is a vector at F(p), that is, a linear map. Wwe have
F.Xfe = XF'(f®
= XL P)g P
= X«f P)gF@p) + {FENX(( G),
and so we obtain

F. X)) = (F«X)Dg(F(p)) + fFE)F.Xy)g.

_.11.._



Thus F.:T.M) — Twe@). Further, F. is a homeomorphism
Fo(aX,+BY)f = (aX, + BYNF D
= aX(FH + BY,(F1
= aF.X)f + BF.(Y)f

= [aF.X,) + BF.(Y,)]f

Corollary 2.9. If F:M—N is a diffeomorphism of M onto an open set
UCN and p €M, then F.:TyM)— Te(N) is an isomorphism onto.

Example 2.10. Let F be the diffeomorphism from S’ into N defined by
F(x,y, z)=(§-, y, 2. Here we calculate Fu:Ty«S) = Tre(N).
Let (x(t), y(t), z(t)) (a<t<b) be a curve on the unit sphere S’ and
P=(x(t), y(ts), z(t)) (@<t<b). Then F(x(t), y(t), z)= (%w'. vit). zt) is a
curve on the ellipsoid N= {(x, y, 7): 4ty +7=1]

Furthermore, by Example 26,

(x'(t,), y'(t.), z'(t.)) 1s a tangent vector at P on the unit sphere §°, and

similarly,

—12-



_d%t=t, Fx(®), y(), z(t)
is a tangent vector at F(P) on the ellipsoid N.

From the calculation of

d
dtlt=t, F&®), y®©, z(t)
- (8 X, @ X5 3 X\ \
9xk2) aykz) az(_z') ( x' (to)
] Y 2 ,
%Y/ a—yky) =2z ) y'(t)
La—;(z) —a—;(z) '%(Z)J L z’ (t,) )
( N
= % 0 0 (%)
0 1 0 vA(t)
0 0 1 ’
~ 4 L J’
(% %’ (), y’ (), 2’ (t:)) is a tangent vector at F(P) on the manifold N.
Hence, we can think
_ _1_ ~.
0 1 0
L0 0 1)

-13-



Remark We see that if (U, ¢ ) is a coordinate on M, from corollary 2.9.
the coordinate map ¢ then induces an isomorphism ¢. : T(M) = Tpw(R")
of the tangent space at each point p€ U onto Ta(R"), a= ¢(p).

To establish a coordinate frame at a point p on a manifold, we first investigate
a basis of the tangent space in the manifold R'. We note that any vector
X,= (X1, X, """, X») with the initial point P=(x,(0), x,(0), *-*, x.(0)) is a

tangent vector at P on R", since we think that

=1 (), x —
X,() N tl.rtg f(xu(t) Xz(t)i/—Xt » () —f(P)

= Df(P)+X,, (At=t—t).

We note that

Df(P)*X,= (z—il(P). %}P)- -:ix"(P))-(xl. Xa Ty Xo)

N | of
= Xigg, Pt xag o P)t oo+ x,,%n(P).

Hence we can rewrite

f
XD = X P) YL@ +2 5 ) = (xZ vy Tag)pl).

-14-



So it is reasonable to write that

Xp_ X““f'yay +Z

Hence X, is a linear combination of x, y, z with a kind of frame

9 E}

3 ) ) .
‘5;:.5. az} So we usually think that {ax -@ 55} is a basis of R".

_ )
From corollary 29, we may put E,= @,' \ox;

Example 2.10. In the two-dimensional manifold M=§’, we calculate the

coordinate frame at PZ(%, % ‘El). since ¢,:U—R? we think [i , ;9; }is

2+¢2‘ 2+x/2' )

a basis at ¢ (P )=(

sl’l,., (— M) ——(f 14 )Igpl(p‘)‘.
Let f(x,y,2)=x, gx, y, 22= y and h(x,y,2=Z. Then

3-2
Eu(©= 4’1*( )Kf)——Kf o7t )|‘P,(P):_4@

b= i1 - 5,
Ew(h)= 9"1*(—)(h) ——-—(h ?7 l)l«p ®) :.Z_T%/_?

1
EalD= #7405y 00 =59 | P)—-%

l
Ex@= ¢id sy )e) =5ye¥it)], o =3-2v2
Ea(h)= i3 (55 )th) =35 (hevit)| o) :‘Ts/?' .

— 15__



4 * 4' 4 ,
_ 1 3-2+42 2-
Es = (_4 4‘/—, 4ﬁ)
Hence

is a frame at P =( % ?1_ , 712-) on the unit sphere in R’

-16—



. SOME PROPERTIES OF THE VECTOR FIELD ON A

C*—MANIFOLD M

Definition 3.1. A Vector field X of class C* on M is a function assigning
to each point p of M a vector X, € T,(M) whose components in the frame
of any local coordinate (U, ¢ ) are functions of class C* on the domain U
of the coordinates. Throughout this thesis, we will use a vector field to mean

a C*—vector field.

Lemma 3.2. If X is a C*—vector field on U and f is a C*—function
on U, then f > Xi map C-(U) — €. (U)

Proof. Let X be defined by (X)(p) = X,f, and let the components of X be
the functions & (@), =+, a'(p) so that X=34' Ex.

Then we have

XDp) = Xf

[_i_l‘_.;a"(p)E.p](f)
n .
= L' GIELD

_17_



= 2 ®) P G0

n s
= ; (D)ch';(f ¢ ) ep)
= L O35 0

ax:

a(p)e C*(U) and ;X—%E C*(U) induce that the Xf is C* —function on U.

Lemma 3.3. A vector field X is a linear map of C*(U) to C* (U).

Proof. For all a, € R, and C”—function f, g on U,

[X(af+B2)(p) = Xplaf + 89

= aXh + &g

= aXfp) + 8 Xp)
[(X(f2) )@ - X:NgP) + f(p)X:g)

= [Xfp)lgp + fp [Xp)l.

- 18_



Definition 3.4. If X and Y are C* —vector fields, then the product of
X and Y defined by [X, YJ = XY—YX is called the bracket of X and Y,

where XY is an operator on C*—function on M.

Remark Here XY(f) = X(Yf) is a C* — function by Lemma 3.3.

We denote by % (M) the set of all C*—vector fields defined on the C*— ma-
nifold M. It is itself a vectar space over R, since if X and Y are C*~ vector
field on M so is any linear combination of them with constant coefficients.
In fact any linear combinaton with coefficients which are C*— functions
on M is again a C* —vector field. ForX,Y €% (M) and fge CM)

implies that the vector field Z = fX+gY, with the obvious definition

Z, = f(p) X, + g(p)Y, for each p€eM, is a C* —vector field.

Definition 3.5. We shall say that a vector space ¢ over R is a Lie
algebra if in addition to its vector space structure it possesses a product,
that is, a map & x & — &, taking the pair (X, Y) to the element (X, Y]

of ¥ which has the following properties :

-19-



(i) it is bilinear over R:
[ aX + a 2X2Y] - al[Xl, Y:] + az[Xz, Yl

[X, @Y, + a.Y.] = alX, Y]+ aX Y.]
(i) it is skew cpmmutative:

[X, Y] = —L[Y, X]
(iii) it satisfies the Jacobi identity :

[X, [y, Z11+0Y, [z, x11+(z, [X, Yl =0

Example 3.6. A vector space V', of dimension 3 over R with the usual
vector product of vector calculus is a Lie algebra.
To show that, we let X=(x, ¥, ¥), Y=, V>, ¥) and Z = (2, 7, 7))

be vectors in a vector space V. Then
() LeX+ a.y, Z]

=[x, ¥ X) + adfy, v2y), (@ 2, z°]
=[(ax' + ay', a¥ + a’, X T ay), @, 7, 2)]

= (ax'+ ay', ax*+ ay’ ax’t ay) X (@ 7, 2)

-20-



(i1)

= {(ax + a '~ (ax’+ ay)zle—{(ax' + ay)7
—(ax + ayPle+ ((ax + ay)r—(ax’ + ay)ile
= a,{(x2 — ¥De — X7 — ¥ze: + (x'2' — X’2)es)
+ a2 — yDe — (V7 — ye: + (yZ — y'z2)es)
= a[X, Z] + a.lY, Z].
By similar method,

[X, axY + azZ] = al[X, Y] + az[X, Z]
(X, Y]

= [, ¥ X)), &, ¥, )]

=&, %)X G, ¥y

= (Y — xy)e — XY — ¥yde: + X'y — xyNes

= — (% — y¥e + (X — yX)e: — (y'¥X — yxDes
= — [ (% — y¥e — (% — yxde: + (7' — yx)es)

-, YY) X (&, X, X))

= —[¢ v ¥) &, x5 x)]

= — [y, X]

_21_



Gi) [X, Ly, 211

=&, &) G, yYYIXE, 2 2)]

= [, ® ¥), 7 —¥7Z y7 — vz, yZ —y’2) ]

= [¥(y'Z — v2) — Xy’ — ¥l e

- X'(¢y'2? — ¥'2") — X2 —yD) e

+ {xl(ylz’i _ Y';Zl) _ xz(yzzs — Yﬂzz)} g ene e

By the same computation,
LY, [z, X]]
= {y(@@x — 2X) — y¥@'¥ — 2% e

—{y'@x — &) — Y% —7¥) | e

+ {yl(zlx3 = szl) —_ y2(zzx3 — ZIXZ)} @ e

[z, [X, Y]]

= {Z&Y — xy) — 2&Y — xy))e

—{Z&Yy — x¥) — 7Y — ¥y} e

+ {Zl(x1y3 — x”yl) — ZZ(XZ}F — x3y2)}.e3 ..............................

—22—



Adding both sides of (1), (2) and (3),

(X, [y,z]] + v, [z Xx]1) + [Z [X Y]]I=0.

Example 3.7. Let M.(R) denote the algebra of n x n matrices over
R with XY denoting the usual matrix product of X and Y.

Then [X, Y] = XY—YX, the commutator of X and Y, defines a Lie al-
gebra structure on M.(R): For, let X, Y and Z be n x n matrices in
M.(R), and let a, e R. Then

) [eX+B8Y, 2] =(aX+ BYZ — Z(aX+8Y)

= a(XZ) + 8 (YZ) — a« (ZX) — B (ZY)
= aXZ —ZX) +  YZ — ZY)

= alX, 21+ BLY, Z]

(X, aY+ BZ] =XaY+BZ)-(aY+BZ)X

= aXY) + B XZ) — a (YX) — B (ZX)
= aXY - YX) + BXZ — ZX)

= alX, Y]+ BIX Z].

) [X, Y] = XY - YX = — (X — XV = — [Y, XJ.

—23—



Giy [X, [Y, 2J1+ 0y, [z, x31+ [Z [X Y]]
=x[y, 21 - [y, ZIX + Y(z, X] - [z, XJY + Z[X, Y] - [X Y]z
=X(YZ — ZY) — (YZ — ZY)X + Y(ZX — XZ) — (ZX — X2)Y
+ ZXY — YX) — XY — YX)Z
= X(YZ) — X(@ZY) — YZ)X + (Z)X + Y(ZX) — YXZ) — (ZX)Y
+ X2)Y + ZXY) — Z(YX) — XYV)Z + (YX)Z
= 0.

Now suppose that X and Y denote C*—vector fields on a manifold M,
that is, X, Y€ 2(M). Then, in general, the operator f+>X,(Yf) defined on
C“(p) does not define a vector at p. Thus XY, considered as an operator
on C*—functions on M, does not determine a C*—vector field. However,
oddly enough, XY — YX does; it defines a vector field Z € ¥ according

to the prescription
Zf = XY — YX)f = X, (YD) — Y,(XD), f €C=(p).

Theorem 3.8. Z € (M) is a C*—vector field on a manifold M.

Proof : If f eC*(p), then Xf and Yf are C* on a neighborhood of p, and

— 24—



the prescription above determines a linear map of C"(p) — R.
Therefore if the property (i) of Definition 2.5. holds for Z,, then Z,
is an element of TAM) at each p e M. Consider f, g e C*(p).

Then f, g e C*(U) for some open set U containing p. We have the rela-
tions :
XY — YX) (fg) = X(Yfg) — Y.(Xfg)
= X,(fYg — g¥H) — Yo(fXg — gXD
= XhH (Yo, t+ {(p)X(Yg) — Xog) (YD), — g(p)X, (Yf)
— (V:f) Xg), — f(pY.X + (Y,g) X + glp)Y:X0),

so that Z(fg) = XY — YX), (fg)

= f(p) XY — YX)g — g(p) XY — YX)f

= f(p)Z,g + g(P)Zyf.

Finally, if f is C* on any open set U< M, then so is XY — YX)f,

and therefore Z is a C*— vector field on M.

_25_



Theorem 3.9. ®(M) with the product [X, Y] is a Lie algebra.
Proof: If a,f€R and X, X, Y are C* —vector fields, then it is straight-

forward to verify that
[aX, + X, YIf= alX, YIf+ 8 [X, YIf

Thus [X, Y] is linear in the first variable. Since the skew commutativity
[X, Y] = — [Y, X] is immediate from the definition, we see that linearity
in the first variable implies linearity in the second. Therefore [X, Y] is
bilinear and skew-commutative.

Using the definition, we obtain

X, [y, 213t = X(({LY, Z)p — LY, Z] X

= X(Y(Zf)) — X(Z(YDH) — YZXD + ZY(X1)).
If we evaluate [X, [Y, Z11 + LY, (Z, X]1 + [Z, [X, Y]] applied to a
C* — function f, then the Jacobi identity follows immediately.
Theorem 3.10. For any C* — vector field X, Y € (M) and C* — func-

tion f on M, we have the relation :

[X, fY] = XY + (X, YI.
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Proof. By means of bracket of X and fY, at each point p on the

C* —manifold M,

X(EY) — (DX () = XLV — )X
= XAEDY + (XY — (p)YX
= X, DY +ip) Y — Y.X)

= (XD,Y + f(p) XY — YX),.

Theorem 3.11. Let F: M —> N be a C* — mapping and suppose that
X, X. and Y,, Y. are vector fields on N, M respectively, which are F-related,
that is, for i = 1, 2, F«(X;) = Y.. Then [X, X.] and [Y,, Y.] are F-related,

that iS, F. [Xl,xzj = [Fa(xl)s F‘(XZ)] .

Proof. Before proving the theorem we note the following necessary and
sufficient condition for X on N and Y on M to be F-related : for any g

which is C* on some open set V< M,
(%) ) F=X@gh

on F'(V). This is essentially a restatement of the definition of F-related,
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for if p €eF'(V), then F.(X,)g = X(g F) = X(@g F) (p); and Yrog is the
value of the C* — function Yg at F(p), that is, ((Yg) F)p). Thus the con-
dition holds if and only if F«(X;) = Yp‘;, for all pe M.

Returning to the proof we consider f € C"(V), V<= M, so that Y\f and
Y.f € C*(V) also. Apply (*) first with g = Y.f and then

with g = f giving the equalities

Interchanging the roles of Y, Y. and X; X. and substracting, we ob-

tain
(Y, Y.Jf F = [X,, X.] (f F),

which according to (*) is eguivalent to [X;, X.] and LY, Y.] being

F- related.
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