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1. INTRODUCTION

Let us assume a situation where a random variable X is recorded which
depends on a design parameter, e.g. time or age. A parametric approach is
very often based on a clever guess, and not on any a priori knowledge in the
field of application. In contrast to phisics or engineering, a parametric data
analysis is often not appropriate in biomedicine for curve data. One reason
is that modeling is more difficult for living organisms ; a second one is that
whenever a sample of curves has to be analysed, it may be difficult to find
one well fitting parametric family of functions for descriptive purposes.

In the last decade, nonparametric regression methods have gained consid-
erable interest. Nadaraya(1964) and Watson(1964) introduced kernel estima-
tors in the random design case, where the independent variable is random.
From a practical point of view, the fixed design regression model, where
the values of the independent variable are fixed in advance, seems to be
of broader applicability. Therefore we will concentrate on the fixed design
regression model.

For fixed designs the design variable is usually assumed to be restricted

to some interval say [0,1]:
Y, =m(z;)+ ¢, i=1,.,n, (1-1)

where 0 < z; < z3 < --- £ z, <1 and(¢;) are independently and identically
distributed, E(¢;) = 0 and Var(¢;) = o2
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If there are several measurements made at one fixed point z, Y; can also be
sample means or medians,or other location estimators based on the repeated
measurement made at the same point. The error structure and the class to
which the regression function m belongs have still to be specified for (1 —1).

If the regression function m belongs to a class of functions that are de-
termined by a finite number of parameters,i.e. if m belongs to a parametric
family,e.g. the linear functions, the regression model (1 — 1) is called para-
metric, if m belongs to a smoothness class ,e.g. m € C* for some k > 0O,i.e.
the class of k times continuously differentiable functions,it is called nonpar-
metric.

As a nonparametric estimator of the function m, Gasser and Miiller(1979)

introduced the following kernel estimator:

» 1 e o r—u
m(z) = XZ/ K(—5—)duY; (1-2)
j=1v?%-1
where 8; = -zﬁ-zﬂﬂ, 80 = 0,5, = 1. The value A = h(n) is the band-

width or smoothing parameter, steering the degree of smoothness of the esti-
mated curve m, variance and bias of m. The kernel K satisfies [ K(z)dz = 1

and further conditions to be given in the following section.



2. SOME PROPERTIES OF KERNEL ESTIMATOR

A proposal for estimating m is due to Priestly and Chao(1972);

ma(e) = Y SRR (2 By, (2-1)

j=1

where h is a sequence of positive bandwidths depending on n such that
h—0, nh— oo asn — oo and where K is a nonnegative kernel function

satisfying:

/K(z)d:r:l /Kz(z)da:<oo.

A further kernel estimator proposed in Gasser and Miiller(1979) is defined
as in (1 —2).

The definition of Priestly and Chao(1972) is very close to the definition of
Gasser and Miiller(1979), since it is a Riemann sum approximation to m(z)
in (1-2).

A minor advantage of the estimator of Gasser and Miiller(1979) is that
weights always add to 1. In the rest of the paper, we will concentrate on
the kernel regression function estimator m(z) in (1~ 2). In what follows, the

kernel K is assumed to be satisfied the following conditions:
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Al. K has compact support [-1,1] a.nd/ K(z)dz = 1.

A2. |[K(w)—K(v)| < |lu—-v) for some v > 0 and for u,v € [-1,1].

A hierarchy of kernels may now be defined.
Definition A kernel satisfying A1 — A2 is called a kernel of order p

if the following holds:

/HK(::)da::O j=1.--,p-1
/:r’K(a:)d:c = B,(K) #0

Optimal kernels were previously derived in terms of Legendre polynomials
(Gasser et al.1985). Gasser and Miiller (1979) derived the following theorems

and corollary.

Theorem 2.1 Let K be a kernel of order p, and that the regression
function m(z) is s times differentiable with a continuous sth derivative on
[0,1] (s > p). Assume h — 0 and nh — 0o as n — 00. Then the bias and
variance for all z € (0,1) can be expressed as follows:
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Bias(i(z)) = LR (mO()By(K) + o(1)) + O(2)

Var(h(e)) = Z([ K(a)de +o1)

n

Theorem 2.2 If the assumptions of Theorem 2.1 are valid,and if:
1 1
m).&xlsi — 81— ;l = O(;),
we have for all z € (0, 1) for the mean square error:
. 0’2 h2p 1
MSE (m(z)) == / K3(z)dz + F—B,(K)’m(’)(z)’ +0(=5) + o(h*")

Corollary The asymptotically optimal bandwith A with respect to

MSE is as follows:

1 _
;- (lp!’a’ [K?*(z)dz _1_) 2p41
p B,(KPm®)(z)? n

where m(®)(z) # 0.

The above result of the Theorem 2.1 are obtained by approximating sum
by integrals, using Taylor expansion.
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By the bias and variance of f;l(:t) the M SE optimal bandwidth sequence is

P o 2
seen to be h ~ n~ 2p+1 and this yields the rate convergence MSE ~ n 27+1.

For function m € C([0, 1]), this rate is optimal. Consistency in MSE of the

estimate m(z) is established by the following Theorem 2.3

Theorem 2.3. Let m be s times differentible and k bounded. Then
. . . .
m(z) is a consistent estimate of

a) m is continuous at z.

b) nh — 0o, h — 00 as n — oco.
We quote the following two results by Gasser and Miiller (1984)

Theorem 2.4 Let us assume the conditions of Theorem2.1 and in
addition :

1
i) Elei]? < oo for some p > 2,n?h — o0
oo 1__,1_ 1
i) 3 exp[—(n "Ph)2) < o0
n=1
Then m(z) — m(z) as n — co.

Theorem 2.5 The estimate (m(z1),---m(2a)) (z; € (0,1),§ =
1,---n) are asymptotically normally distributed given the following condi-
tions hold:

i) k is Lipschitz continuous of order y (0 < vy < 1)
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ii) max|s; — 5.1 — %‘ = O(;‘,),é >1

iii)h — 0,nh — 00 as n — oo.

To obtain the desired result in chapter 3, we need the some lemmas. In the
following, & and ¢ denote cumulative distribution function and probabilty

densty function of standard normal random variable , respectively.

Lemma 2.6 Let Z be a standard normal random variable. Then

a) / Tapde = pe) wnd [ abs)dz = —oto)
b) ¢'(2)z = —¢(2)2>.

Proof. For a),

R

Similarly, [ z¢(z) = —#(2).
For b),

$(2)z = —\/—22=exp(—— = —¢(2)2>.
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Lemma 2.7 Let Z be a standard normal random variable and y be

a real number. Then
E|Z - y| = 2%(y)y —y + 2(y)

and

E|Z -yl = E|Z + ).

Proof. Note that E|Z — y| = [ |z — y|é(2) dz.
Since [ |z — yl#(2)dz = f! (v—2)p(2)dz + f:"(z —y)¢(2)dz,

we obtain
E|Z — y| = 2®(y)y — y + 2¢(y) from Lemma 2.6.

Also, E|Z +y|=E|Z - (-y)| = 2(1 — &(y))(—y) + y + 2¢(-y).

Hence the desired results are obtained.



3. MINIMIZATION OF MAE

For pratice applications of curve smoothing methods, the choice of a good
bandwidth is a very important issue. For kernel and weighted local least
squares estimators this is the choice of the bandwidth, which besides the
choice of the correct order of the kernel or polynomial has a strong infulence
on the quality of the estimate. The badwidth,losely speaking,provides infor-
mation about the signal-to-noise ratio in the data. In many finite sample
situations it is very difficult to make the right decision. Therefore a com-
pletely satisfying finite sample solution of the bandwidth choice are problem
18 not possible. The methods proposed for bandwidth choice are motivated
by asymptotic considerations.

Under certain regularity conditions on m(z) an exact expression for the
asymptotically optimal value of h is readily derived (see e.g. Gasser and
Miiller (1979)). An alternative measure of loss is the mean absolute distance
between m and m, which we shall call the mean absolute error (MAE).

Specifically,

MAE(m(z, b)) = E|m(z, h) — m(z)| (3-1)

which is local analogue of the L, distance between m and m.
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P.Hall and M.P.Wand (1988) constructed a simple algorithm, which per-
mits asymptotic minimization of L, distance for nonparametric density esti-
mators.

In this chapter we apply the results of P.Hall and M.P.Wand (1988) to
find for asymptotically optimal bandwidth minimizing M AF in fixed design
regression.

From well known Theorem 2.1, we obtain

m(z,h) — m(z) = (_T)Ph’m(”)(z)B, (K) + (;ﬁ(/ K*(z)dz)¥ Z + O(h?)
(3-2)
as n — 00, h = h(n) — 0 and nh — oo, where Z = Z(z) is a standard

normal random variable.
To balance bias and standard deviation we must choose h so that each

of these quantities are of the same order of magnitude. This involves taking

1
h = u?n” 2+ for some positive constant u not depending on n.

Let b; and o; stand for (=1)r m®)(z)B,(K) and oV (K)¥ where

p!

V(K) = [ K*(z)dz ,respectively.

Theorem 3.1 Let the conditions of Theorem 2.1 be satisfied and

1
let h = u?n” 2P+1 where u is a positive number.
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Then the M AE(r‘n(:n,h)) is asymptotic to

P
n #+1§ (u)

where

§:(u) = / [4?b, — ™oy 2|d(2) d2 (3-3)

and ¢ is the standard normal density function.
Proof.  Note that MAE(m(z,h)) = E|m(z,h) — m(z)|.

Using (3-2),we obtain the expression

i . .
Elm(z, 6’°n " #+T) = m(z)| = n~ PHEbu¥ —u"'0: 2|

where Z is a standard normal random variable.

Then
. . i
MAE(((z, b)) = Elm(z, un~ #¥T) - m(z)|
.
=n"»H /]b,u"’ —u" oy z|¢p(2)d=.
Theorem 3.2 Under the conditions of Theorem 3.1, there exists

only one u minimizing 6;(u) in (3-3).
Proof. From Lemma 2.7, §;(u) is expressed as follows:
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b

§e(u) = /Iug’b, —ulopz|g(z)dz = 2oku‘1*§(u2’+‘%’-)u2’+l -
k k

b
+ 20 u~tp(uP ! ;i) —u®b,.
k

Using Lemma 2.6,we obtain

_1_! R | 2p+1 2p+l_bi _l _ 2p+l££
261(u) = w2 (BT 2) = )} - nd(uH ]

=u"2A, (uPt)

where

£.(v) = 2pobe[B( ) — 3] - 010 2).

Now, by b) of Lemma 2.6
4 bx 1 2 -1 bx
AL(v) = 2pub [®(v—=) — =] + (2p + 1)boy ve(v—"),
Ok 2 Ot

which is positive for all v > 0.
So,A.(v) is an increasing function of v.
Also lim A, (v) = oo, while for b, # 0, and
liII'IJ A (v) = —0:¢(0) < 0.
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This proves the fact that there exists only one v such that A (v)=0.

Therefore there exists only one % such that &, (1‘1.) = 0.

Theorem 3.3 Let the conditions of Theorem 3.1 be satisfied.

Then the value of A which minimizes M AE at z is asymptotic to

o2 i . b,
(v)?+1n" 3P+1 where v is the root of A.(v) = 2pvb,[(l>(v;—) -1]-
k

or (v g’: ).

Proof. From Theorem 3.1, we see that minimizing M AE(m(z, h)) is
equivalent to minimize §;(u) in (3-3).

From the fact that 36, (u) = u=2A,(u?+!), the value of u which is the
zero of A;(u?**1) = 0 is the value which minimizes 4. (u).

Let the value of v for which A.(v) = 0 be v. Then the value of u for

1
which minimizes 6 (u), is 4 = (v)®2+1.

1
Therefore the value of A = u?n~ 2p+1 which minimizes MAE at z is

3 __1
asymptotic to (v) P+ n~ 24T,
ymp

In practice the equation A;(v) = 0 may be solved using Newton’s method,

as follows.

Let H(v) = g—f%
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Then
1
H(v) = {2pva{§(vb) - 5} - ak¢(vb)] x
1 -1
[2pvb,{§(vb) - 5} +2(p+ 1)b20'1v¢(vb)] .
K v, is an approximation to the solution of A;(v) = O, then v3 = vy —
H(vl).

Continuing this process, we form the sequence v;,v,,- - . where v;4; =

v, — H(v,) such that lim v, = v for A,(;}) =0.
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