On Constrained Minimization Problem
in Hilbert space
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1. INTRODUCTION

The operator equation Ax=y where A is a mapping on some space into an-
other has a solution if and only if ¥ is in the range of A, This embodies the
notion of a solution in the traditional sense., On the other hand, one may
broaden the notion of a solution, One way to do this is to seek a solution in
the least squares sense,

In 1955, Penrose(5]) introduced an analytic definition of generalized inverse,
In 1970, Minamide and Nakammia(3) introduced the concept of the restricted ge-
neralized inverse which possesses a “Constrained best approximation proper-
ty” and which has applications to certain constrained minimization problems
Our result here is motivated by the work of Nashed(4).

The purpose of the present paper introeduce the generalized inverse of line-
ar operator and investigate the conditions under which the solution of the

constrained minimization problem exists and is unique.

2. PRELIMINARIES

Let X and Y be (real or complex) Hilbert spaces and let A:X—Y be a
bounded linear operator, We denote the range of A by R(A), the null space of A
by N(A) and the adjoint of A by A*. For any subspace S of a Hilbert space H,
we denote by 8 the orthogonal complement of S and the clousure of S by S,
Then we have the following orthogonal decomposition of X and Y (Groetsch[1))

X=N(A)®N(A) = N(&) @ R@H)
Y=N@") @ N@A*)" =N@&*) GRA)
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The closed range theorem is (Groetsch [1)), R(A) is closed inY if and
only if R (A*) is closed in X.
Consider an operator equation of the first kind:

(2.1) Ax=y xEX, y= Y

DEFINITION 2.1 For a given ¥Y&Y, an element u&X is called

a least squares solution of (2.1) if and only if HAu — ¥l < ||Ax — ¥} for all

x&X,

DEFINITION 2.2 An element u is called a least squares solution
of minimal norm of (2.1) if and only if U is a least squares solution of (2,

1) and ll wll < llull for all least squares solutions u of (2,1),

For each Y& R(A) & R(A)" the set of all least squares solutions is nonempty

closed, and convex. Hence there is a unique minimum norm solution

(See Groetsch[1))

DEFINITION 2.3 Let A be a bounded linear operator form X into Y,
The generalized inverse denoted by A* is a linear operator from the subsp-

ace R(A) @ R(A)" into X, defined by A;{ =u, where u the least squares sol—

ution minimal norm of the equation Ax =y,

EXAMPLE : Let us consider the system of linear equation A R? —R?
Ax=b where A=("] ), X=(¥) b=() Sinceb is not in the ra-
nge of A, this equation obviously has not solution in the traditional sense.
However, by the euclidean norm let b be the point in R(A) which is closet

to b, then b is obviously the orthogonal projection of b on R(A). Moreover,
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we can easily note that R{(A) = span{ (1, —1)}, and b= (_g), Thus, the set

of all least squares solutions is given by {(x;, x2):. x» =%+ x;}and the least

+ 4,
+ -+

squares solution of minimal norm is (-}, 4) Hence A"'= (

R(A+) } l.S,S A* »
¥ — R&

/ b(2.1)
A / @ -

4 _ (F

¥

PROPOSITION 2.4 Let A:X—Y be a bounded linear operator and let
P be the projection of Y onto R(A) Then the following conditions on uw=X

are equivalent

[a) Au=Pb
b) |tAu— bl =|{|Ax —bll for any x&EX

(c) A* Au= A’

Proof . (a) = (b) :

Suppose Au=Pb, Then for any xé&X, we have by use of the Pythagorean pr-

operty and the fact that Phb —b & R(A)
{|l Ax—bl|? = ||Ax—Pbl|®> + ||Pb—b]||?
= {|Ax—Pbil* + ||Au—bil* Z||Au-b||*
C)=>ra) :
If A*Au=A% then Ar-bER(A) and so 0=P (Au—b)

= Au—Pb



(b) =>(C):

Since Pp = R(A), there is a sequence {Xn} in X such that Pb= lim Axa
and |lb—Pbli* = lim||b—Ax.|l* = [|b—Aqyll?, Hence [|Ay—bll? = [|[Au—Pbl|* +
b —Aul|? which gives Au—b =Ph —bER(A)" =N(A*)

i.e A¥Au= A%,

PROPOSITION 2.5 A vector uis a least squares solution of(2.1) if
and only if u is a solution of A* Ax=A'y
Proof . The problem of finding the least squars solntion of (2.1) is equi-
valent tp minimizing |lw— y{| over R(A).
A minimizing element /V\\JER(A) is obviously characterized by the condition
y ——QER(A)‘ or equivalently y —QEN(A*), ie, Ay :A*\/A\r,;. But W = Au for

some ue&X and u is a least squares solution of (2.1) Thus A*y = A*Au,

DEFINITION 2.6  The operator equation (2.1} is said to be well- po-
sed (relative to the spaces X and Y) if for each ¥&Y, (2.1) has a unique
least squares solution of minimal norm which depends continuously on ¥ Oth-

erwise the equation is said to be ill—posed.

Note: When A is a linear operator with inverse, Then A* =A™' and the

least squares solution of minimal norm coincides with the exact solution.

PROPOSITION 2.7 Let A:X-—Y be a bounded linear operator. Then
the following statements are equivalent:

(a)] The operator equation (2,1) is well — posed,
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(b} A has a closed range in Y,

e} A" is a bounded linear operator on Y into X,

Proof, A has a closed range in Y if and only if A’ is bounded, and if A has
a closed range then Y =R(A)@® R(A)" =D(A"') where D(A") is the domain

of A", Thus, we can easily check that (a), (b}, (c}. are equivalent.

3. CONSTRAINED MINIMIZATION PROBLEM

Let X, Y and Z be three (real or complex) Hilbert Spaces. Let A : X—Y
and L . X—Z be bounded linear operators. We assume that the range R (L)
of L is closed in Z, but the range R(A) of A is not necessarily closed in Y.
we cosider the following minimization problem;

(3.1) For ¥ in the domain D(A") of A", let Sy={u&EX: [|[Au—vylly =
inf[|[Ax— yllx, x&X]}
Then the problem is to find w& Sy such that
| Lwilz = inf { || Lullz : u&S }.
In this section we state the conditions under which the solution of the pr-

oblem exists and is unique.

PROPOSITION 3.1 The constrained minimization problem has a solut -

ion for every Y&D(A") if and only if LN(A) is closed.

Proof, Since for any u&Sy, u=Aj; +v for some v&N(A), the problem

(3.1) is equivalent to inf {|IL || : u& Sy} = inf {|/IL(AY+ ¥)Il : vEN(A)]=
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inf {|lull : uELSy},

Note that LS, is a translation of the subspace L N(A)

Thus, we can easily check that the proposition holds .

PROPOSITION 3.2

In proposition 2.1. There exists a unique solution

if and only if N(A) MIN(L) = {0}.

Proof . (<), Suppose that N(A) (AIN(L) = {0}. Then since N(La) = {0},
where La is the restriction of L onto N{(A), there exists a unique w, &N (A)
such that ||{Lw;, +L (A7) || <||Lx, +L (A})]|l for all x, &EN(A),

It shows that there exists a unique v =A} +w, such that [|Lw|= ||Lxl|

for all x&Sy.

(=) Suppose that N(A) (IN(L) % {0}, Then there exists at least one

W,

&N(A) NN(L) which is not zero.

Thus, |[Lwll=[IL (w+w,)il =||ILx|| for all x &Sy Hence w is not unique .

We define a new inner product in X ;

(3.2) [u,v])=<Auy Av>y+<Lu, Lv>>z for u. v&X. Let M= {(xEX:
L* LxEN@A)*}.

PROPOSITION 3.3 (a) The equation(3.1) defined an imner product in
X,
(bl M is a closed subspace of X and is the orthogonal complement of N(A)

with respect to the new inner product, i e X=N(A) @ M where @ denotes

the orthogonal decomposition with respect to [

)



Proof . (a} for u. v, w&EX and scalar a,
(utv. w) =<A(u+tv), Aw>+<L(u+v), Lw>
=<Au, Aw>+<Av, Aw>=<Ilu. Lw>+<Ly, Lw>
=(u, wl+ (v, w)
Cau, v] =<Aau, Av >+<Lau, Lv>

=a( <Au, Av >+<Lu, Lv>») =a(u_v)

(uv]=([v, u) (u,v] =0, iff u=0
(b) Since X is complete and M is closed,M is complete., SinceM is
convex, for every x& X, there is a m&M such that x =m—+n where n&
M™ (See krezig [5. p.146))

(n,m] =<An, Am >y +<LnLm>z =<n, A" Am>x +<n, L*Lm>x =0

Thus <n.L* Lm>x=0_ Since L* LmENQA)*,

n&EN(A), Hence X=N@A) P M,

We denote the space X with the imer product [ -,-J by X,

THEOREM 3 4 An element w&X is a solution to the problem (3.1)

if and only if A" Aw=A'% and L* LweN(@A)*

Proof, For any u&Sy ={uEX : [|[Au—ylly= inf [[Ax—ylly x&EX},
u=Ay+v for some v&EN(A)
Let WESy such that [|[Lwilz<||Lyllz for all uEesSy .
Then A* Aw=A'y by proposition 2.5 and |IL{A¥ +v)|| < |IL (A} + x,)I| for
all x, EN(A) - (%)  where w=Ay+ v,

Note that N(A) is a closed subspace of X. Now, consider the restriction of
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L onto N(A). denoted by LA Since Z ZR(IK)Q-)R(IA)" the above condition (*)
is equivalent to L(Ay+ v) &R (LAY,
Thus for all x&N(A), (Lx, L(A%+v)) =0 if and only if (x, L'"L(A} + v))

=0 for all x&N(A). Namely L*Lw&EN(A)~,

By this theorem, the problem of constrained minimization (3.1) is equiva-
lent to finding an element w&M such that A* Aw=AY |
Thus the solution w is the least squares solution of X,—minimal norm of

the equation(2.1).
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