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[ . INTRODUCTION

Introducing a set of 4 linearly independent basic null vectors,
V.Hlavaty(Geometry of Einstein’s Unified Field Theory, P, Noor—
dhoff Ltd, 1957) introduced the concept of the nonholonomic fr—
ames and used it successfully as a tool to develop the algebra
of the unified field theory in the space—time X,

In the present papers, the curl of the vector a, will be proved
in a refined way as application of orthogonal nonholonomic fra—
mes,

Let Vn be a n—-dimensonal Riemannian space refered to a real

coordinate system x"” and defined by fundamental metric tensor

h

A whose determinant is

def
(1.1) h Det(h ;,) # 0,

Then there is the unique tensor h*Y = h*2  defined by

' Av v
(1.2) hl# h def 6#
Consider a set of n linearly independent vectors q” (1 =1,2--

4

., n) _ There is the sunique reciprocal set of n linearly independent

. 4 . . .
covariant vectors e, (i =1,2, -+ ,n) satisfying



(1.3) e¥ &, = ¥ **

. 4 .
With these vectors q” and e, @ nonholonomic frame of V may
4

be constructed in the following way: If T

. v
holonomic tensor T

PR are defined by
(1.4)  TTYTTT et TV E A
] == A v 5
and
(1.5) Tp ...... def 'TJ ...... evl ......
PRI ==l joeeenns ;|

I. PRELIMINARY RESULTS

In this section, for our further discussion, results obtained in

our previous papers will be introduced without proof,

THEOREM 2.1,

The covariant derivative of the holonomic

covariant vector 1is given by

' * *_J k }
(2.1) V‘u(al)=[ak aj—.:j.rj ] epel
)]
_ *
= Vk aj eﬂ e]

where P, a = 9 a. — a [V
# =4 poa urzp.

. Throughout the present paper, Greek indices take values 1,2

, unless explicitly stated otherwise and follow the summation
convention,while Koman indices are used for the nonholonomic

components of a tensor and run from I to n, Roman indices also
follow the summation convention,
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THEOREM 2.2, The covariant derivative of the non—

holonomic covariant vector is equivalent to

il _ _ v A
(2.2) Fk aj = [4?3#21'z apﬂpj ?Eﬂ
— P
poAs gh.

COROLLARY 2.3, We have
(2.3) F a = 8 a,— a (p fJe-

THEOREM 2 .4, We have

(2.4) 4 3 jk+"(V j)
a = * a. e, e .
. g A k ] A H a] pei('

THEOREM 2.5, The covariant derivative of the holonomic

covariant tensor a , may be expressed in terms of the nonholo—

nomic components

*

_ * _* * e: L ijk
(2.5) V# a = [akal.j agj':'k ay rkj ]ei:e

vipg,

THEOREM 2.6, We have

* w @
(2.6) 7 a;; = [aﬂ a»rawxf—up‘ a )f;

B.THE CURL OF THE VECTOR

In this section, we shall reconstruct the curl of a vector and

obtain its special properties with holonomic and nonholonomic fr—

ames,
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THEOREM 3.1 . For the curl of the vector a, following four

expressions are equal to each other,
(3,1) (a) Fpag— FPray
. * ] k
() (0kaj— 0jak) €€,
* ]k
(d) (Fk aj—Fjak] e ey .

PROOF, The equality of (a) and (b) is given by the

result
1%

(3.2) Puap= dyaz—ay— a”l—lp-
The -equality of (b) and (c) is given by (2,1) ., By means
of (2,2),(c) is equal to (d),

COROLLARY 3.2, The curl of the nonholonomic vector aj

may be expressed in terms of the components holonomic curl,

PROOF , Using (2.2), we have

* * - -
(3.3) 7y 4 = 7oy = [V# a, V/Iap]

eH ed
k j°

THEOREM 3,3, If A is the curl of a covariant vector,we

have the following equations;
(3.4) (a) v, Axﬂ-i- 7, A#v+ ppAuf 0

(b) 3, Az# + 9, A,uv+ ap Ay2= 0.
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PROOF , By means of the curl,

(3.5) P, A=, Lrya;— ppa,)

Using the properties of the covariant derivative, the sum of the
left hand side of three equations 1s 1dentically zero,

The covariant derivative of holonomic tensor Ajpis given by

A |
il

J ag
yAZp Bv AR#-—AUF [fv — Aie I—v#

N
>
[

a
py al A,uu_ Aay I-ZA - Apo ﬁ”

=
>
]

a ag
[TV ap ApA_Adl rvp - Ay rﬂﬂ .

Since Avy is skew-symmetric, we have
VuAAp+ V}.Apu+ VpAv2= au A2p+ a/l Apv
+o0,A

THEOREM 3 .4, Let 'Al.j be a curl of the nonholonomic co—
variant vector a,. Then the covariant derivative of nonholono—

mic tensor "Ajj may be expressed as following relation;



*

(3.6) Frdgt FiA Y M A

L]
* L 3 *

PROOF ., Making use of (2.5), we obtain

p » L3 * g * * g

3 A= 3. A, A [-TA ¢

(3.7) Vz ik az ik ékl—u wﬂk-
By similar method

(3.8) ptA, . =3"A, -"A T?— A r?

T j k; j kj 24k;j el ji

* * LI ey ) ., ® £
P A= 0k A s — Aglik— Ag[kj -
Since 'f&jj is skew-symmetric,the sum of each side of (3,7)

and (3.8) s

(3.9) V; Ajk+ pj' At Vl: Ajj= a:. Ajk+ a; A
%A
On the other hand, from (2,62)
(3.10) P; A+ P AL+ PLA
= (P At PrA,+ FuA,) ev el e

But the first term of right side of (3,10), by means of (3,4),

18 zero,
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