A Thesis for the Degree of M.E.

On Ta-Continuous Function

Supervised By Assistant Prof. Hyun, Jinoh

Kang, Dae-Shick

Department of Mathematics Graduate School of Education Cheju National University

June, 1985

On Ta-Continuous Function

이를 教育學碩士學位 論文으로 提出함.

濟州大學校 教育大學院 數學教育專攻

- 提出者 姜 大 植
- 指導教授 玄 進 五

1985年6月 日

姜大植의 碩士學位 論文을 認准함.

主	審	Ø
	H	

- <u>副 審</u> @

ļ

1985年6月 日

감사의 글

이 논문이 완성되기 까지 연구에 바쁘신 가운데도 자상한 마음으로 친절하게 지도하여 주신 현진오교수 님께 감사드리며, 아울러 지도와 편달을 아끼지 않으 신 송석준교수님과 수학과 여러 교수님께 심심한 사 의를 표합니다.

그리고 그동안 저에게 사랑과 격려를 하여주신 주 위의 많은 분들께 또한 감사를 드립니다.

1985 년 6 월 일

강 대 식

Contents

1.	Introduction		1
2.	T <i>i</i> – Continuous	functions	2
3.	On T <i>i</i> - Continu	ous functions and separation axioms	3
4.	Some Topologica	al properties on T <i>i</i> - Continuous function	11
	References	제주대학교 중앙도서관 JEJU NATIONAL UNIVERSITY LIBRARY	15

Korean abstract

1. Introduction

Weaker than Continuous functions have been a subject of interest in general topology since 1959 when Stallings, in [7], introduced the concepts of connectivity maps and almost continuous functions. Recent investigations can be seen in [1], [2], [3], [4] [5]. In the paper [5], the authors introduced three new types of non - continuous functions which have a close relationship with the separation axioms and continuous functions.

In this paper, we have some properties of Ti - continuous fu-

nctions and some topological properties of them.

2. Ti-Continuous functions

Definition 2.1 ([5]) Let(Y, \mathcal{J}) be a topological space and let U be an open cover of (Y, \mathcal{J}). The cover U is said to be a T_2 - open cover of(Y, \mathcal{J}) provided if $u \in U$, then the interior of Y - u is not empty.

The cover U is said to be a T_3 - open cover of (Y,J) provided if $u \in U$, then there are open sets W_1 and W_2 such that $W_1 \subset \overline{W}_1 \subset W_2 \subset Y - u$.

Definition 2.2 ([5]) Let (X,\mathcal{J}_1) and (Y,\mathcal{J}_2) be topological spaces. A function f: $(X,\mathcal{J}_1) \rightarrow (Y,\mathcal{J}_2)$ is said to be T_1 - continuous $(T_2 - \text{continuous})$ (T_3 - continuous) provided if U is an open cover $(T_2 - \text{open cover})$ (T_3 - open cover) of (Y,\mathcal{J}_2) , then there exists an open cover V of (X,\mathcal{J}_1) such that if $v \in V$, then there is a $u \in$ U such that $f(v) \subset u$.

3. On T_i - Continuous functions and separation axioms

Theorem 3.1 If
$$f : (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$$
 and
 $g : (Y, \mathcal{J}_2) \rightarrow (Z, \mathcal{J}_3)$ are $T_1 - \text{continuous}$, then
 $\text{gof}:(X, \mathcal{J}_1) \rightarrow (Z, \mathcal{J}_3)$ is also $T_1 - \text{continuous}$.

Proof . Since g is $T_1 - \text{continuous}$, for any open cover W of (Z, \mathcal{J}_3) , there exists an open cover v of (Y,\mathcal{J}_2) such that if $v \in V$, then there is a $w \in W$ such that $g(v) \subset W$. (1) Also, f is $T_1 - \text{continuous}$, for the given open cover V of (Y,\mathcal{J}_2) , there exists an open cover U of (X,\mathcal{J}_1) such that if $u \in U$, then there is a $v' \in V$ such that $f(u) \subset v'$. (2) Hence, for any open cover W of (Z,\mathcal{J}_3) , there exists an open cover U of (X,\mathcal{J}_1) such that if $u \in U$, there is a $w' \in W$ such that $(\text{gof})(u) = g(f(u)) \subset g(v') \subset w'$ by (1) and (2). Therefore gof : $(X,\mathcal{J}_1) \rightarrow (Z,\mathcal{J}_3)$ is also T_1 - continuous.

Corollory 3.1 (1) If $f:(X,\mathcal{J}_1) \to (Y,\mathcal{J}_2)$ is $T_1 - \text{continuous}$ and $g:(Y,\mathcal{J}_2) \to (Z,\mathcal{J}_3)$ is $T_2 - \text{continuous}$, then **Bof**: $(X,\mathcal{J}_1) \to (Z,\mathcal{J}_3)$ is also $T_2 - \text{continuous}$.

Proof. Since g is T_2 - continuous, for any T_2 - open cover W of (Z, \mathcal{J}_3) , there exists an open cover V of (Y, \mathcal{J}_2) such that if $v \in V$, then there exists a $w \in W$ such that $g(v) \subset W$ -(1) Also, since f is T_1 - continuous, for the given open cover V of

 (Y,\mathcal{J}_2) , there exists an open cover U of (X,\mathcal{J}_1) such that if $u \in U$, then there is a $v' \in V$ such that $f(u) \subset v'$. (2) Hence, for any T_2 - open cover W of (Z,\mathcal{J}_3) , there exists an open cover U of (X,\mathcal{J}_1) such that if $u \in U$, there is a $w' \in W$ such that $(gof)(u) = g(f(u)) \subset g(v') \subset w'$ by (1) and (2), Therefore, gof : $(X,\mathcal{J}_1) \rightarrow (Z,\mathcal{J}_3)$ is also T_2 - continuous.

Corollary 3.1 (2) If $f : (X,\mathcal{J}_1) \to (Y,\mathcal{J}_2)$ is $T_1 - \text{continuous}$ and g: $(Y,\mathcal{J}_2) \to (Z,\mathcal{J}_3)$ is $T_3 - \text{continuous}$. then gof: $(X,\mathcal{J}_1) \to (Z,\mathcal{J}_3)$ is also $T_3 - \text{continuous}$.

Proof. Since g is T_3 - continuous, for any T_3 - open cover W of (Z,\mathcal{J}_3) , there exists an open cover V of (Y,\mathcal{J}_2) such that if $v \in V$, then there exists a $w \in W$ such that $g(v) \subset W$. (1) Also, since f is T_1 - continuous, for the given open cover V of (Y,\mathcal{J}_2) , there exists an open cover U of (X,\mathcal{J}_1) such that if $u \in U$, then there is a $v' \in V$ such that $f(u) \subset v'_{-}$ (2) Hence, for any T_3 - open cover W of (Z,\mathcal{J}_3) , there exists an open cover U of (X,\mathcal{J}_1) such that if $u \in U$, there is a $w' \in W$ such that $(gof)(u) = g(f(u)) \subset g(v') \subset w'$ by (1) and (2).

Therefore gof : $(X, \mathcal{J}_1) \rightarrow (Z, \mathcal{J}_3)$ is also $T_3 - \text{continuous}$.

Theorem 3.2 Let (Y, \mathcal{J}_2) be a T_1 - space, then f: $(X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is T_1 - continuous if and only if f is

-4-

continuous.

Proof (\Longrightarrow) It is proved in [5].

(\Leftarrow) Let U be an open cover of (Y, \mathcal{J}_2) ,

then $\bigcup_{\alpha \in \mathscr{A}} u_{\alpha} = Y$ for $u_{\alpha} \in U$ and $f^{-1}(u_{\alpha})$ is open in X since f is continuous.

Then $V = \{f^{-1}(u_{\alpha}) \mid \alpha \in \mathscr{A}\}$ is an open cover of (X, \mathcal{J}_{1}) since $\bigcup f^{-1}(u_{\alpha}) = f^{-1}(\bigcup u_{\alpha}) = f^{-1}(Y) = X.$ And if $v \in V$, then $v = f^{-1}(u_{\beta})$ for some β . Hence there exists $u_{\beta} \in U$ such that $f(v) = f(f^{-1}(u_{\beta})) \subset u_{\beta}$. Therefore f is T_{1} - continuous.

Corollary 3.2 (1) Let
$$(Y, \mathcal{J}_2)$$
 be a T_2 - space. Then
f : $(X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is T_2 - continuous if and only if f is
continuous.

Proof. (
$$\Rightarrow$$
) It is proved in [5].

(\Leftarrow) Let U be a T₂ - open cover of (Y, \mathcal{J}_2),

then $\bigcup_{\alpha \in \mathscr{A}} u_{\alpha} = Y$ for $u_{\alpha} \in U$ and $f^{-1}(u_{\alpha})$ is open in X since f is continuous.

Then $V = \{f^{-1}(u_{\alpha}) \mid \alpha \in \mathscr{A}\}$ is an open cover of (X, \mathcal{J}_1) since

$$\cup$$
 f⁻¹(u _{α}) = f⁻¹(\cup u _{α}) = f⁻¹(Y) = X.

And if $v \in V$, then $v = f^{-1}(u\beta)$ for some β .

Hence there exist_s $u_{\beta} \in U$ such that $f(v) = f(f^{-1}(u_{\beta}))$ $\subset u_{\beta}$. Therefore f is T_2 - continuous. Corollary 3.2 (2) Let (Y, \mathcal{J}_2) be a T_3 - space. Then

 $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is T_3 - continuous if and only if f is continuous.

Proof. (\Rightarrow) It is proved in [5]

(\Leftarrow) Let U be a T₃ - open cover of (Y, \mathcal{J}_2),

then $\bigcup_{\alpha \in \mathscr{A}} u_{\alpha} = Y$ for $u_{\alpha} \in U$ and $f^{-1}(u_{\alpha})$ is open in X since f is continuous.

Then $V = \{f^{-1}(u_{\alpha}) \mid \alpha \in \mathscr{A}\}$ is an open cover of (X, \mathcal{J}_1) since $\bigcup f^{-1}(u_{\alpha}) = f^{-1} (\bigcup u_{\alpha}) = f^{-1}(Y) = X$. And if $v \in V$, then $v = f^{-1}(u_{\beta})$ for some β . Hence there exists $u_{\beta} \in U$ such that $f(v) = f(f^{-1}(u_{\beta})) \subset u_{\beta}$. Therefore f in T_3 - continuous.

Theorem 3.3 If $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is a T_1 - continuous and $A \subset X$, then the restriction. $f \swarrow A : (A, \mathcal{J}_1 \swarrow A) \rightarrow (Y, \mathcal{J}_2)$ is also T_1 - continuous.

Proof. Since f is T_1 - continuous, for any open cover V of (Y, \mathcal{J}_2) , there exists an open cover U of (X, \mathcal{J}_1) such that if $u \in U$, then there is a $v \in V$ such that $f(u) \subset v$.

since $A \subset X$, $U_A = \{ u_{\alpha} \cap A \mid u_{\alpha} \in U \}$ is an open cover of A with respect to U.

Hence for any $u_{\alpha} \cap A \in U_A$, $u_{\alpha} \cap A \subset u_{\alpha}$ and there exists $v_{\beta} \in V$ such that $f \nearrow A$ $(u_{\alpha} \cap A) \subset f(u_{\alpha}) \subset v_{\beta}$. Hence for any open cover V of (Y, \mathcal{J}_2)

there is an open cover U_A of $(A, \mathcal{J}_1 \nearrow A)$ such that if $u \cap A \in U_A$, then there is a $v \in V$ such that $f(u \cap A) \subset v$.

Therefore $f \nearrow A : (A, \mathcal{I}_1 \nearrow A) \rightarrow (Y, \mathcal{I}_2)$ is also $T_1 - \text{continuous}$.

- Lemma 3.4 Let (X, \mathcal{J}_1) be a topoloyical space and let U be an open cover of (X, \mathcal{J}_1) . If U is a T_3 - open cover of (X, \mathcal{J}_1) and $A \subset X$ then $U_A =$ $\{A \cap u | u \in U\}$ is also a T_3 - open cover of $(A, \mathcal{J}_1 / A)$.
- Proof . Since U is a T_3 open cover of (X, \mathcal{J}_1) for any $u \in U$, there exist open sets W_1 and W_2 in (X, \mathcal{J}_1) such that $W_1 \subset \overline{W}_1$ $\subset W_2 \subset Y - u$.

Then $W_1 \cap A$, $W_2 \cap A \in \mathcal{J}_1 \nearrow A$ and

 $W_1 \cap A \subset \overline{W}_1 \cap A \subset W_2 \cap A \subset (Y-u) \cap A$.

But $\overline{W}_1 \cap A$ equals to the closure of $W_1 \cap A$ in $\mathcal{I}_1 \nearrow A$ and (Y-u) $\cap A = A - (u \cap A)$.

Hence for any $u \cap A \in U_A$, there exist

 $W_1 \cap A$, $W_2 \cap A \in \mathcal{J}_1 \diagup A$ such that

 $W_1 \cap A \subset cl_A (W_1 \cap A) \subset W_2 \cap A \subset A - (u \cap A)$,

Therefore $U_A = \{A \cap u | u \in U\}$ is also a T_3 - open cover of $(A, \mathcal{J}_1 \nearrow A)$.

Theorem 3.5 If $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is a $T_3 - \text{continuous}$ and $A \subset X$, then the restriction $f \nearrow A : (A, \mathcal{J}_1 \nearrow A) \rightarrow (Y, \mathcal{J}_2)$ is also $T_3 - \text{continuous}$.

Proof. Since f is $T_3 - \text{continuous}$, for any $T_3 - \text{open cover } V$ of (Y,\mathcal{I}_2) , there exists a $T_3 - \text{open cover } U$ of (X,\mathcal{I}_1) such that if $u \in U$, then there is a $v \in V$ such that $f(u) \subset V$ since $A \subset X$, $U_A = \{ u_{\alpha} \cap A \mid u_{\alpha} \in U \}$ is a $T_3 - \text{open cover of}$ A with respect to U by alove Lemma. Hence for any $u_{\alpha} \cap A \in U_A$, $u_{\alpha} \cap A \subset u_{\alpha}$ and there exists $v_{\beta} \in$ V such that $f \neq A (u_{\alpha} \cap A) \subset f(u_{\alpha}) \subset v_{\beta}$.

Hence for any T_3 - open cover V of (Y, \mathcal{I}_2) there is a T_3 open cover U_A of $(A, \mathcal{I}_1 / A)$ such that if $u \cap A \in U_A$, then there is a $v \in V$ such that $f(u \cap A) \subset v$. Therefore $f/A : (A, \mathcal{I}_1 / A) \to (Y, \mathcal{I}_2)$ is also T_3 - continuous.

Therrem 3.6 Let $X = A \cup B$, where A and B are closed in (X, \mathcal{J}_1) . Let $f: (A, \mathcal{J}_1/A) \rightarrow (Y, \mathcal{J}_2)$ and $g: (B, \mathcal{J}_1/B) \rightarrow (Y, \mathcal{J}_2)$ be $T_1 - \text{continuous}$. If f(x) = g(x) for every $x \in A \cap B$, then f and g combine to give a T_1 - continuous function h: $(X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ defined by setting h(x) = f(x) if $x \in A$, and h(x) = g(x)if $x \in B$.

- Proof. Let V be an open cover of (Y, \mathcal{J}_2) . Then there exist open covers U_A of $(A, \mathcal{J}_1/A)$ and U_B of $(B, \mathcal{J}_1/B)$ such that if $u_A \in U_A$, then there is $v \in V$ such that $f(u_A) \subset V$ ang if $u_B \in U_B$, then there is $v' \in V$ such that $f(u_B) \subset v'$. If we put $U = \{ u \in \mathcal{I}_1 \mid u \cap A \in U_A \} \cup \{ u \in \mathcal{I}_1 \mid u \cap B \in U_B \}$, we have that U is an open cover of (X, \mathcal{J}_1) . Since $u_A = u \, \cap \, A$ for some $u \in \mathcal{I}_1$ and $u_B = u \, \cap B$ for some $u \in \mathcal{I}_1$, we have that if $u \in U$, $u = u \cap X = u \cap (A \cup B)$ $=(u \cap A) \cup (u \cap B) = u_A \cup u_B$, then there exists $v''(=v'\cup v)\in V$ such that $f(u)=f(u_A\cup v)$ u_B) = f (u_A) \cup f (u_B) \subset v \cup v' = v". Hence h: $(X,\mathcal{J}_1) \xrightarrow{\rightarrow} (Y,\mathcal{J}_2)$ is T_1 - continuous. Corollorg 3.6 (1) Let $X = A \cup B$, where A and B are closed in (X,\mathcal{J}_1) . Let $f:(A,\mathcal{J}_1/A) \rightarrow (Y,\mathcal{J}_2)$ and $g:(B,\mathcal{J}_1/B) \rightarrow (Y,\mathcal{J}_2)$ (Y, \mathcal{J}_2) be T_2 - continuous If f(x) = g(x) for every $x \in A \cap B$, then f and g combine to give
 - a T_z continuous function h: $(X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ defined ned by setting h (x) = g(x) if $x \in A$, and h (x) = g(x) if $x \in B$.

Proof. Let V be a T_2 - open cover of (Y, \mathcal{J}_2) . Then there exist open cover U_A of $(A, \mathcal{J}_1 \nearrow A)$ and U_B of $(B, \mathcal{J}_1 \nearrow B)$ such that if $u_A \in U_A$, then there is $v \in V$ such that

-9-

 $f(u_A) \subset v$ and if $u_B \in U_B$, then there is $v' \in V$ such that $f(u_B) \subset v'$. If we put $U = \{u \in \mathcal{I}_1 \mid u \cap A \in U_A\} \cup \{u \in \mathcal{I}_1 \mid u \cap B \in U_B\}$, we have that U is an open cover of (X, \mathcal{I}_1) . Since $u_A = u \cap A$ for some $u \in \mathcal{I}_1$ and $u_B = u \cap B$ for some $u \in \mathcal{I}_1$, we have that if $u \in U$, $u = u \cap X = u \cap (A \cup B) = (u \cap A)$ $\cup (u \cap B) = u_A \cup u_B$, then there exists $v''(=v' \cup v) \in V$ such that $f(u) = f(u_A \cup u_B)$ $= f(u_A) \cup f(u_B) \subset v \cup v' = v''$. Hence $h: (X, \mathcal{I}_1) \to (Y, \mathcal{I}_2)$ is T_2 - continuous.

Corollary 3.6 (2) Let $X = A \cup B$, where A and B are closed in (X, \mathcal{J}_1) , Let f: $(A, \mathcal{J}_1 / A) \rightarrow (Y, \mathcal{J}_2)$ and g: $(B, \mathcal{J}_1 / B) \rightarrow (Y, \mathcal{J}_2)$ be T_3 - continuous If f(x) = y(x) for every $x \in A \cap B$, then f and g combine to give a T_3 - continuous function h: $(X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ defined by setting h(x) = f(x) if $x \in A$, and h(x) = g(x) if $x \in B$.

Proof. Let V be a T_3 - open cover of (Y, \mathcal{J}_2) . Then there exist open cover U_A of $(A, \mathcal{J}_1 / A)$ and U_B of $(B, \mathcal{J}_1 / B)$ such that if $u_A \in U_A$, then there is $v \in V$ such that $f(U_A) \subset v$ and if $u_B \in U_B$, then there is $v' \in V$ such that $f(u_B) \subset v'$. If we put $U = \{u \in \mathcal{J}_1 \mid u \cap A \in U_A\} \cup \{u \in \mathcal{J}_1 \mid u \cap B \in U_B\}$ we have that U is an open cover of (X, \mathcal{J}_1) . Since $u_A = u \cap A$ for some $u \in \mathcal{J}_1$ and $u_B = u \cap B$ for some $u \in \mathcal{J}_1$, we have that if $u \in U$, $u = u \cap X = u \cap (A \cup B) = (u \cap A) \cup (u \cap B) = u_A \cup u_B$, then there exists $v''(=v' \cup v) \in V$ such that $f(u) = f(u_A \cup u_B)$ $u_B) = f(u_A) \cup f(u_B) \subset v \cup v' = v''$. Hence h: $(X, \mathcal{J}_1) \to (Y, \mathcal{J}_2)$ is T_3 - continuous.

-10-

Some Toplogical Properties on Ti - continuous function.

Theorem 4.1 If $f:(X,\mathcal{I}_1) \rightarrow (Y,\mathcal{I}_2)$ is $T_1 - \text{continuous}$ and onto and (X,\mathcal{I}_1) is Lindel6f, then (Y, \mathcal{I}_2) is Lindel6f.

Proof. Let U be an open cover of (Y,\mathcal{J}_2) . Since f is $T_1 - \text{continuous}$, there is an open cover V of (X,\mathcal{J}_1) such that if $v \in V$, then there is a $u \in U$ such that $f(v) \subset u$. Since (X,\mathcal{J}_1) is Lindelöf, there is a countable subcover $\{v_1,v_2,v_3, \dots, \cdots\}$ of V which covers (X,\mathcal{J}_1) . If *i* is a positive integer $(i = 1, 2, 3, \dots, \cdots)$, let u_i be an element of U such that $f(v_i) \subset u_i$. Since f is onto, $\{u_1, u_2, \dots, \}$ covers (Y,\mathcal{J}_2) and hence, (Y, \mathcal{J}_2) is Lindelöf.

Corollary 4.1 (1) If $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is $T_1 - \text{continu-}$ ous and onto and (X, \mathcal{J}_1) is compact, then (Y, \mathcal{J}_2) is compact.

Proof . It is proved in [5].

Lemma 4.2

- (1) The continuous image of a compact set is compact.
- (2) The Lindelbf property is invariant under continuous surj-

ections.

Proof. See ([6], P224 1.4 Theorem, P175 6.6 Theorem)

- Corollary 4.2 (1) Let (X, \mathcal{J}_1) be a compact and (Y, \mathcal{J}_2)
 - is T_2 space. If f: $(X,\mathcal{J}_1) \rightarrow (Y,\mathcal{J}_2)$ is
- T_2 continuous and onto, then (Y, \mathcal{J}_2) is compact.

Proof. Corollary 3.1 (1) shows that f is continuous.

And by Lemma 4.2(1), (Y, \mathcal{J}_2) is compact.

Corollary 4.2 (2) Let (X, \mathcal{J}_1) be a Lindelőf and (Y, \mathcal{J}_2) is $T_2 - \text{space}$ If $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is $T_2 - \text{continuous and onto}$, then (Y, \mathcal{J}_2) is Lindelőf.

Proof . Corollary 3.1 (1) shows that f is continuous. And by Lemma 4.2(2), $(Y_1, 7_2)$ is Lindel6f.

Corollary 4.2 (3) Let (X, \mathcal{J}_1) be a compact and (Y, \mathcal{J}_2) is T_3 - space

If $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is T_3 - continuous and onto,

then (Y, \mathcal{J}_2) is compact.

Proof . Corollary 3.1(2) shows that f is continuous and by Lemma 4.2(1), (Y, J_2) is compact.

Corollary 4.2 (4) Let (X,\mathcal{J}_1) be a Lindelöf and (Y,\mathcal{J}_2) is

 $T_3 - space$.

If $f: (X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is T_3 - continuous and onto, then (Y, \mathcal{J}_2) is Lindel6f.

Proof . Corollarg 3.1 (2) shows that f is continuous and by Lemma 4.2(2), (Y, \mathcal{J}_2) is Lindel6f.

Theorem 4.3 If $f:(X,\mathcal{J}_1) \rightarrow (Y,\mathcal{J}_2)$ is $T_1 - \text{continuous}$ and onto and (X,\mathcal{J}_1) is connected, then (Y,\mathcal{J}_2) is connected

Proof Suppose (Y, \mathcal{J}_2) is not connected. Then $Y = A \cup B$ where $A \neq \emptyset$, $B \neq \emptyset$, $A, B \in \mathcal{J}_2$, and $A \cap B = \emptyset$.

Then $U = \{A,B\}$ is an open cover of (Y,\mathcal{J}_2) and since f is T_1 continuous, there is an open cover V of (X,\mathcal{J}_1) such that if v $\in V$ then there is a $u \in U$ such that $f(v) \subset u$.

Let $M = \bigcup \{ v \in V \text{ and } f(v) \subset A \}$ and let

 $N = \bigcup \{v \in V \text{ and } f(v) \subset B\}$. Since f is onto, M and N are nonempty. Since $A \cap B = \emptyset$, it follows that $M \cap N = \emptyset$. Clearly M and N are in \mathcal{I}_1 and since V is an open cover of X, $X = M \cup N$. But this is impossible since (X, \mathcal{I}_1) is connected. Thus (Y, \mathcal{I}_2) is connected.

Corollory 4.3 (1) If $f:(X, \mathcal{J}_1) \rightarrow (Y, \mathcal{J}_2)$ is $T_2 - \text{continuous}$ and onto and (X, \mathcal{J}_1) is connected, then (Y, \mathcal{J}_2) is connected.

Proof . Suppose (Y, \mathcal{J}_2) is not connected. Then $Y = A \cup B$ where

 $A \neq \emptyset$, $B \neq \emptyset$, $A, B \in \mathcal{I}_2$, and $A \cap B = \emptyset$

Then $U = \{A, B\}$ is a T_2 - open cover of (Y, \mathcal{J}_2) and since f is T_2 - continuous, there is an open cover V of (X, \mathcal{J}_1) such that if $v \in V$ then there is a $u \in U$ such that $f(v) \subset u$

Let $M = \bigcup \{ v \in V \text{ and } f(v) \subset A \}$ and let

 $N = U \{ v \in V \text{ and } f(v) \subset B \}$. Since f is onto, M and N are non - empty. Since $A \cap B = \emptyset$, it follows that $M \cap N = \emptyset$. Clearly M and N are in \mathcal{I}_1 and since V is an open cover of X, $X = M \cup N$. But this is impossible since (X, \mathcal{I}_1) is connected.

Thus (Y, \mathcal{J}_2) is connected.

Corollary 4.3 (2) If $f:(X,\mathcal{J}_1) \rightarrow (Y,\mathcal{J}_2)$ is T_3 - continuous and onto and (X,\mathcal{J}_1) is connected, then (Y,\mathcal{J}_2) is connected.

Proof. It is similar to the proof of corollary 4.3(1).

References

- D.B.Gauld, C-Continuous functions and cocompact topologies, Kyungpook Math. J., Vol.18(1978), 151 - 157.
- H.B.Hoyle, II, connectivity maps and almost continuous functions, Duke Math. J. 37(1970), 671 - 680.
- S.G.Hwang, Almost C Continuous functions, J.Korean Math. Soc. 14(1978). Na 2. 229 - 234.
- 4. T. Noiri, on δ Continuous functions, J.Korea Math.Soc.,
 Vol. 16(1980). 161 166.
- 5. K.R.Gentry and H.B.Hoyle, Ti continuous functions and separation axioms, Glasnik Matematicki. Vol. 17(37) (1982), 139 - 145.
- 6. J. Dugundji, Topology. Allynand Bacon, 1970.
- 7. F. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249 - 263.

< 國 文 抄 錄 >

分離空間을 갖는 連續函數에 關하여

姜大植

済州大学校教育大学院 数学教育専攻 (指導教授 玄 進 五)

連續函數보다 弱한 條件을 갖는 函數들에 關한 硏究 는 1959年 Stallings이 發表한 類의 連續函數에 關한 論文 以後에 重要한 硏究 對象이 되어 왔다.([7])

최근에는 Gauld를 비롯한 여러 外國 位相數學 研究者 들과 황석근등의 國內 位相數學者들에 依해서도 研究되 고 있다.

本 論文은 이들의 硏究들을 參照하고 特히 Gentry와 Hoyle이 定義한 Ti-連續函數를 보다 깊이 硏究하여 몇 가지 位相的性質을 얻게 되었다.(3장)

또한 이 性質들을 Compact 및 Connected 와 結合하 여 Ti - 連續函數의 不變性을 研究하였다.(4장)