A NOTE ON THE SUBSPACE OF THE NONHOLONOMIC SPACE

이를 教育學 碩士學位 論文으로 提出함

提出者 髙 奉 晏

指導教授 玄 進 五

1987年 7月 日

高奉晏의 碩士學位 論文을 認准함

濟州大學校 教育大學院

1987年 7月 日

CONTENTS

I.	INTRODUCTION	1
п.	PRELIMINARY RESULTS	3
III.	SUBSPACE OF THE $*\nabla_n$	4
	LITERATURE CITED	8
	ABSTRACT (KOREAN) ····································	9

I. INTRODUCTION

In Euclidean space of three dimensions the distance ds between adjacent points whose rectangular Cartesian coordinates are (x, y, z) and (x+dx, y+dy, z+dz) is given by $ds^2 = dx^2 + dy^2 + dz^2$.

More generally, for any system of oblique curvilinear coordinates (u, v, w) we have

 $ds^2 = a du^2 + b dv^2 + c dw^2 + 2f dvdw + 2g dwdu + 2h dudv$,

where a,b,c,f,g,h are functions of the coordinates. Thus the square of the linear element ds is given by a quadratic form in the differentials of the coordinates.

This idea was generalized and extended to space of n dimensions by Riemann, who defined the infinitesimal distance ds between the adjacent points, whose coordinates in any system are x^i and $x^i + dx^i$, $(i = 1, 2, \dots, n)$ by the relation

$$ds^{2} = g_{ij} dx^{i} dx^{j}, (i, j = 1, 2, ..., n) (1)$$

where the coefficients g_{ij} are functions of the coordinates x^i .

The quadratic differential form in the second member of (1) is called a Remannian metric; and a space which is characterized by such a metric is a Riemannian space.

Throughout this paper, let ∇_n be a n-dimensional Riemannian space referred to a real coordinate system x^{λ} and defined by a fundamental metric tensor $h_{\lambda,\mu}$, whose determinant

-1-

 $(1,1) \quad h \stackrel{\text{def}}{=} \operatorname{Det} \left(\left(h_{\lambda \mu} \right) \right) \neq 0$

If $e_i^{\lambda}(i=1, 2, \dots, n)$ are a set of a n linearly independent unit vectors, then there is a unique reciprocal set of n linearly independent covariant vectors \dot{e}_{μ}^{i} , $(i=1, 2, \dots, n)$, satisfying

$$(1,2) \mathbf{e}^{\lambda} \mathbf{e}^{i}_{\mu} = \delta^{\lambda}_{\mu}, \mathbf{e}^{\lambda}_{j} \mathbf{e}^{i}_{\lambda} = \delta^{i}_{j}.$$

with the vectors e_i^{λ} and \dot{e}_{μ} a nonholonomic frame of ∇_n is defined in the following ways; if T^{λ}_{μ} are holonomic components of a tensor its nonholonomic components are defined by

(1,3)
$${}^{*}T_{j}^{i} \dots = T_{\mu}^{\lambda} \dots e_{i}^{\lambda} e_{\mu}^{j} \dots$$

An easy inspection (1, 2) and (1, 3) shows that

(1, 4)
$$T_{\mu}^{\lambda} = *T_{j}^{i} e_{\mu}^{\lambda} \cdots$$

In this paper, we will investigate properties of metric and lengths of the elements of arc connecting two points in subspace and nonholonomic subspace of an n -dimensional Riemannian space ∇_n .

In particular, we obtain that the metric for a subspace of ∇_n is equal to the metric for a nonholonomic subspace of $*\nabla_n$, and the length of elements of arc connecting the two points is the same, whether calculated with respect to nonholonomic subspace or nonholonomic space.

-2-

II. PRELIMINARY RESULTS

THEOREM. 2.1. We have

(2,1)
$$a \quad T^{\lambda} = {}^{*}T^{i} e^{\lambda}_{i}$$
.
(2,2) $b \quad T^{\lambda\mu} = {}^{*}T^{ij} e^{\lambda}_{i} e^{\mu}_{i}$.

Consider a symmetric covariant tensor a whose determinant $a \stackrel{\text{def}}{=} ((a_{\lambda \mu})) \neq 0$

It is well-known that the quantities defined by

$$a^{\lambda\nu} \stackrel{\text{def}}{=} \frac{\text{cofactor of } a_{\lambda\nu} \text{ in } a}{a}$$

is a symmetric contravariant tensor satisfying

 $(2,2) \qquad a_{\lambda\mu} a^{\lambda\nu} = \delta^{\nu}_{\mu} .$

Let $a_{\lambda\mu}$ and a_{ij} be holonomic and nonholonomic components of the covariant

tensor, and take a coordinate system y^i for which we have at a point p of ∇_n

(2,3)
$$\frac{\partial y^{i}}{\partial x^{\lambda}} = e_{\lambda}^{i}$$
, $\frac{\partial x^{\nu}}{\partial y^{i}} = e_{\nu}^{\nu}$.

THEOREM. 2.2. We have

$$(2,4) \quad {}^{*}a_{ij} \quad {}^{*}a^{ik} = \delta_{i}^{k}$$

-3-

III. SUBSPACE OF THE $*\nabla_n$

Let ∇_n be a Riemannian space of n dimensions, referred to coordinates $x_{,i}^{\lambda}(\lambda = 1, 2, ..., n)$ and having the metric $a_{\lambda\mu} dx^{\lambda} dx^{\mu}$.

Then we have the followings

THEOREM. 3.1. The metric in the nonholonomic frame is represented by

 $(3,1) \quad {}^{*}a_{i_{j}} dy^{i} dy^{j} = a_{\lambda \mu} dx^{\lambda} dx^{\mu}.$

PROOF. From (1,4) and (2,3),

$$a_{\lambda\mu} dx^{\lambda} dx^{\mu} = *a_{ij} \overset{i}{e}_{\lambda} \overset{j}{e}_{\mu} dx^{\lambda} dx^{\mu}$$
$$= *a_{ij} dy^{i} dy^{j} .$$

DEFINITION 3.2. The space which is characterized by the nonholonomic frame is nonholonomic space ${}^*\nabla_n$ with n dimension.

DEFINITION 3.3. Points of ∇_n whose coordinates are expressible as functions of m idependent variables \bar{x}^{α} , $(\alpha = 1, 2, \dots, n)$, $(m \langle n \rangle$, are said to constitute a $\overline{\nabla}_m$ immersed in ∇_n , and $\overline{\nabla}_m$ is said to be a subspace of ∇_n .

DEFINITION 3.4. $^{*}\overline{\nabla}_{m}$ whose coordinate are expressible as functions of m independent variables \bar{x}^{p} , (p = 1, 2, ..., m), $(m \langle n \rangle$, are subspace of $^{*}\nabla_{n}$.

Let $\bar{a}_{\alpha\beta} d\bar{x}^{\alpha} d\bar{x}^{\beta}$ be the metric for subspace $\overline{\nabla}_{m}$ of ∇_{n} if \bar{x}^{α} and $\bar{x}^{\alpha} + d\bar{x}^{\alpha}$ are adjacent points of $\overline{\nabla}_{m}$, whose coordinate in the x's are $x^{\lambda} + dx^{\lambda}$ we must have $dx^{\lambda} = \frac{\partial x^{\lambda}}{\partial \bar{x}^{\alpha}} d\bar{x}^{\alpha}$ (α takes the values 1, 2,..., m

and λ takes the values 1, 2,...,n).

Let ${}^{*}\bar{a}_{pq} d\bar{y}^{p} d\bar{y}^{q}$ be the metric for nonholonomic subspace ${}^{*}\overline{\nabla}_{m}$ of ${}^{*}\nabla_{n}$, if \bar{y}^{p} and $\bar{y}^{p} + d\bar{y}^{p}$ are adjacent points of ${}^{*}\overline{\nabla}_{m}$, whose coordinates in the y-coordinate system are y^{i} and $y^{i} + dy^{i}$, we must have by the reciprocal relations,

$$(3,2)a dy^{i} = \frac{\partial y^{i}}{\partial \bar{y}^{p}} d\bar{y}^{p},$$

$$(3,2)b d\bar{y}^{p} = \frac{\partial \bar{y}^{p}}{\partial y^{i}} dy^{i}.$$

THEOREM 3.5. The metric for subspace $\overline{\nabla}_m$ of ∇_n is equal to the metric for nonholonomic subspace $*\overline{\nabla}_m$ of $*\nabla_n$.

PROOF. Using (2,1)b and (2,3), we have the results as in the following way ;

$$(3,3) \quad \bar{a}_{\alpha\beta} \, \mathrm{d}\bar{x}^{\alpha} \, \mathrm{d}\bar{x}^{\beta} = {}^{\ast}\bar{a}_{pq} \, \mathrm{e}^{\rho}_{\alpha} \, \mathrm{e}^{\rho}_{\beta} \, \mathrm{d}\bar{x}^{\alpha} \, \mathrm{d}\bar{x}^{\beta}$$

$$= {}^{\ast}\bar{a}_{pq} \, \mathrm{d}\bar{y}^{p} \, \mathrm{d}\bar{y}^{q}$$

COROLLARY. 3.6. The metric in the $\overline{\nabla}_m$ is represented by holonomic covariant tensor.

PROOF. Multiply both side of (3,3) by $\frac{\partial \bar{x}^{\alpha}}{\partial \bar{y}^{p}} \cdot \frac{\partial \bar{x}^{\beta}}{\partial \bar{y}^{q}}$.

According to (2,3), we have the following results (3,4)

The length ds of the elements of arc connecting the two points is the same,

-5-

whether calculated with respect to ∇_n or $\overline{\nabla}_m$.

$$(3,5) \quad \mathrm{d}\,\mathrm{s}^2 = a_{\lambda\mu} \,\mathrm{d}\,x^{\lambda} \,\mathrm{d}\,x^{\mu}$$
$$= \bar{a}_{\alpha\beta} \,\mathrm{d}\,\bar{x}^{\alpha} \,\mathrm{d}\,\bar{x}^{\beta} = \mathrm{d}\,\bar{\mathrm{s}}^2.$$

THEOREM. 3.7. The length *ds of the elements of arc connecting the two points is the same, whether calculated with respect to $*\nabla_n$ or $*\overline{\nabla}_m$.

PROOF. By virture of (3,1),

$$(3,6) \quad {}^*\mathrm{d}\mathrm{s}^2 = {}^*a_{\,\mathrm{ij}}\,\mathrm{d}y^{\,\mathrm{i}}\,\mathrm{d}y^{\,\mathrm{j}} = a_{\,\lambda\mu}\,\mathrm{d}x^{\,\lambda}\,\mathrm{d}x^{\,\mu} = \,\mathrm{d}\mathrm{s}^2.$$

From (3,3),

$${}^{*}\mathrm{d}\bar{\mathrm{s}}^{\,2} = {}^{*}_{\bar{a}_{pq}}\mathrm{d}\bar{y}^{\,p}\mathrm{d}\bar{y}^{\,q} = \bar{a}_{\alpha\beta}\mathrm{d}\bar{x}^{\alpha}\mathrm{d}\bar{x}^{\beta} = \mathrm{d}\bar{\mathrm{s}}^{\,2}.$$

By means of (3,5),

COROLLARY. 3.8. The metric in the $*\overline{\nabla}_m$ is equal to the metric in the $*\nabla_n$.

PROOF. By means of (3,1) and (3,3), (3,5),

$$(3,8) \quad \stackrel{*}{a}_{ij} \mathrm{d} y^{i} \mathrm{d} y^{j} = \stackrel{*}{a}_{pq} \mathrm{d} \bar{y}^{p} \mathrm{d} \bar{y}^{q}.$$

THEOREM. 3.9. The nonholonomic tensor of the $*\overline{\nabla}_m$ is determined by the nonholonomic component of $*\nabla_n$.

PROOF. Using (3,2)a and (3,2)b, (3,8), we have

$$(3,9) \qquad \left[\bar{a}_{pq} = a_{ij} - \frac{\partial y^{i}}{\partial \bar{y}^{p}} \cdot - \frac{\partial y^{j}}{\partial \bar{y}^{q}} \right]$$

-7 -

1

LITERATURE CITED

- 1. W. M. Boothby, An introduction to differential manifolds and Riemannian geometry, Academic Press, 1975.
- Chung, K. T. and Hyun, J. O., On the nonholonomic Frams of V_n, Yonsei Nonchong, vol. 13, 1976.
- 3. Hyun, J. O., On the characteristic orthogonal Nonholonomic Frames, the Journal of Korean Society of Mathematical Education, vol, XV, No. 1, 1976.
- Hyun, J. O. and Bang, E. S., On the nonholonomic Components of the christ offel symbols in v_n(1). Cheju University Journal vol. 15, 1981.
- Hyun, J. O., On the Covariant Derivative of the Nonholonomic Vectors in V_n. Cheju University Journal vol, 19, 1984.

-8-

NONHOLONOMIC 空間의 部分空間에 관한 小考

高奉晏

濟州大學校 教育大學院 數學教育專攻

指導教授 玄 進 五

本 論文에서는 n 次元 Riemann 空間 ∇_n의 部分空間 ∇_m(但, m<n), Nonholonomic Frame 에 依해서 결정되는 Nonholonomic 空間 •∇_n와 이의 部分空間 •∇_m상 에서 距離와 길이의 여러가지 性質을 調査하였다. 特히, ∇_n의 部分空間 ⊽_m上의 距離는 Nonholonomic 部分空間上의 距離와 같고, 두 點을 잇는 弧의 길이는 Nonholonomic 空間 또는 Nonholonomic 部分空間에 關하여 計算하여도 같음을 밝 혔다.

