Some of Riemannian Components on the Riemannian Manifold

이 論文을 敎育學 碩士學位 論文으로 提出함.

提出者 尹 良 燮

指導教授 玄 進 五

1988年 月 日

尹良燮의 碩士學位 論文을 認準함

濟州大學校 教育大學院

CONTENTS

Ι.	INTRODUCTION	 1

${\ensuremath{\mathbb I}}$. RIEMANNIAN COMPONENTS ON THE RIEMANNIAN

ABSTRACT (KOREAN) 12

I. INTRODUCTION

This paper aims at calculating the components g_{ij} of the Riemannian metrics on a Riemannian manifold, the Monge patch and the upper hemisphere using the coordinate frame and imbedding, respectively as a refined way(Theorem 3.4, Corollary 3.5)

Let V be a vector space over R(reals). A bilinear form

 $\phi: V \times V \longrightarrow R$

on V satisfies the conditions.

$$\boldsymbol{\phi} : (\alpha \mathbf{v}_1 + \beta \mathbf{v}_2, \mathbf{w}) = \alpha \boldsymbol{\phi} (\mathbf{v}_1, \mathbf{w}) + \beta \boldsymbol{\phi} (\mathbf{v}_2, \mathbf{w})$$
$$\boldsymbol{\phi} : (\mathbf{v}, \alpha \mathbf{w}_1 + \beta \mathbf{w}_2) = \alpha \boldsymbol{\phi} (\mathbf{v}, \mathbf{w}_1) + \beta \boldsymbol{\phi} (\mathbf{v}, \mathbf{w}_2)$$

where α , $\beta \in \mathbb{R}$ and \mathbf{v} , \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{w} , \mathbf{w}_1 , $\mathbf{w}_2 \in \mathbf{V}$, If $\dim_{\mathbb{R}}(\mathbf{V}) = n$, then a bilinear form $\boldsymbol{\sigma}$ is completely determined by the n^2 values on a basis $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$ of \mathbf{V} .

We put

$$\alpha_{ij} = \boldsymbol{\phi} (\mathbf{e}_i, \mathbf{e}_j), \ 1 \leq i, \ j \leq n$$

Then for $\mathbf{v} = \sum_{i=1}^{n} \lambda^i \, \mathbf{e}_i$ and $\mathbf{w} = \sum_{j=1}^{n} \mu^j \mathbf{e}_j$, We have

$$\Phi (\mathbf{V}, \mathbf{W}) = \Phi \left(\sum_{i=1}^{n} \lambda^{i} \mathbf{e}_{i}, \sum_{j=1}^{n} \mu^{j} \mathbf{e}_{j} \right)$$
$$= \sum_{i=1}^{n} \lambda^{i} \Phi \left(\mathbf{e}_{i}, \sum_{j=1}^{n} \mu^{j} \mathbf{e}_{j} \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda^{i} \mu^{j} \Phi \left(\mathbf{e}_{i}, \mathbf{e}_{j} \right)$$
$$= \sum_{i=1}^{n} \alpha_{ij} \lambda^{i} \mu^{i}$$

If for a bilinear form on V, $\Phi(\mathbf{v}, \mathbf{w}) = \Phi(\mathbf{w}, \mathbf{v})$, then Φ is said to be *symmetric*, and *skew-symmetric* if $\Phi(\mathbf{v}, \mathbf{w}) = -\Phi(\mathbf{w}, \mathbf{v})$.

A symmetric form ϕ is called a *positive definite* bilinear form if $\phi(\mathbf{v}, \mathbf{v}) \ge 0$ and $\phi(\mathbf{v}, \mathbf{v}) = 0 \implies \mathbf{v} = 0$

Throughout this paper, by a manifold we mean a differentiable C^{∞}-real manifold with finite dimension and U, V are open sets in \mathbf{R}_n

Let M be a manifold with $\dim_{\mathbf{R}}(\mathbf{M}) = n$, and $\operatorname{let}(\mathbf{U}, \varphi)$ be a coordinate neighborhood. Then for any $\mathbf{p} \in \mathbf{U}$

 φ : U \longrightarrow V

defined by $\varphi(\mathbf{p}) = (\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n)$ is a homeomorphism.

- 2 -

II. THE TANGENT SPACE AND VECTOR FIELDS

Let M denote a C^{∞}-manifold of dimension n and let U be any open subset of M containing p, then we have defined for M the concepts of C^{∞}-function on U and C^{∞}-mapping to another manifold.

Definition 2.1 We define the tangent space $T_P(M)$ to M at p to be the set of all mappings $X_P : C^{\infty}(p) \to \mathbf{R}$ satisfying for all α , $\beta \in \mathbf{R}$ and $f, g \in C^{\infty}(p)$ the two conditions

- $(|) X_{P}(\alpha f + \beta g) = \alpha (X_{P}f) + \beta (X_{P}g)$
- $(\parallel) X_{P}(fg) = (X_{P}f) g(p) + f(p)(X_{P}g)$

with the vector space operations in $T_p(M)$ defined by

- (+) $(X_p+Y_p)f = X_pf + Y_pf$ INAL UNIVERSITY LIBRARY
- (||) $(\alpha X_p) f = \alpha (X_p f)$

A tangent vector to M at p is any $X_p \in T_p(M)$ $T(M) = \bigcup_{P \in M} T_p(M)$ is called the *tangent bundle of* M.

At each point $p \in U$, We see that if (U, φ) is a coordinate neighborhood on M, then the coordinate map φ induces an isomorphism

- 3 -

$$\begin{array}{ccc} \varphi^* : & C^{\infty}(\varphi_{(\mathsf{p})}) & \longrightarrow & C^{\infty}(\mathsf{p}) \\ & & & & \\ & & & & \\ & f & \longrightarrow & \varphi^*(f) = f_{\circ} \varphi \end{array}$$

and an isomorphism $\varphi_*: T_p(M) \longrightarrow T_{\varphi(p)}(\mathbf{R}_n)$ of the tangent space at each point $p \in U$ onto $T_{\varphi(p)}(\mathbf{R}_n)$. On the other hand, the map φ^{-1} induces an isomorphism $\varphi_*^{-1} : T_{\varphi(p)}(\mathbf{R}_n) \longrightarrow T_p(M)$

We put

$$E_{ip} = \varphi_{*}^{-1} (\frac{\partial}{\partial x_{i}})$$

then $\{E_{1P}, E_{2P}, \dots, E_{np}\}$ is a basis of $T_p(M)$, which is called the coordinate frames, where $p \in U \subset M$

Proof. Let X_p , $Y_p \in T_p(M)$ and f, $g \in C^{\infty}(p)$, Then for α , $\beta \in \mathbf{R}$ $\varphi_*(\alpha X_p + \beta Y_p) f = (\alpha X_p + \beta Y_p) (\varphi \circ f)$ $= \alpha X_p (\varphi \circ f) + \beta Y_p (\varphi \circ f)$ $= (\alpha \varphi_*(X_p) + \beta \varphi_*(Y_p)) f$

Definition 2.3 On a manifold M, a field ϕ of C^{\sim} -bilinear forms consists of a function assigning to each point $p \in M$ a bilinear form ϕ_{p} on $T_{p}(M)$.

- 4 -

that is, a bilinear mapping

$$\boldsymbol{\Phi}_{p}: T_{p}(M) \times T_{p}(M) \longrightarrow \mathbf{R}$$

such that for any coordinate neighborhood(U, φ), the function $\alpha_{ij} = \varphi(E_i, E_j)$ defined by φ and coordinate frames E_1, E_2, \dots, E_n (dim_R(M)=n) are Cr-class. The n² functions $\alpha_{ij} = \varphi(E_i, E_j)$ on U are called the *components of* φ in the coordinate neighborhood (U, φ).

Definition 2.4 A vector field X of class C^r on M is a function assigning to each point p of M a vector $X_p \in T_p(M)$ whose components in the frames of any local coordinates (U, φ) are functions of class C^r on the domain U of the coordinates. Unless otherwise noted we will use vector field to mean C^∞ -vector field.

Put $C^{\infty}(U)$ = the set of all C^{\sim} -function on U. Let X and Y be vector fields on U. Then

() $\phi(X, Y)(\forall p \in U, \phi_p(X_p, Y_p))$ is of C^{oo}-function on U with respect to X and Y

$$(\parallel) \quad \forall f \in \mathbb{C}^{\infty}(\mathbb{U}), \quad \boldsymbol{\varphi}(f\mathbb{X}, \mathbb{Y}) = \boldsymbol{\varphi}(\mathbb{X}, f\mathbb{Y}) = f \boldsymbol{\varphi}(\mathbb{X}, \mathbb{Y})$$

- 5 -

III. RIEMANNIAN COMPONENTS ON THE RIEMANNIAN MANIFOLD

Suppose $F_* : W \to V$ is a linear map between vector spaces W and V, ϕ is a bilinear form on V. Then for v, $w \in W$, the formula

$$(\mathbf{F}^* \boldsymbol{\Phi})(\mathbf{v}, \mathbf{w}) = \boldsymbol{\Phi}(\mathbf{F}_* \mathbf{v}, \mathbf{F}_* \mathbf{w})$$

defines a bilinear form $F^* \phi$ on V.

Proposition 3.1 Under the above situation the following properties hold.

(|) If Φ is symmetric then $F^*\Phi$ is symmetric.

(||) If ϕ is symmetric, positive definite and F_* is injective then $F^*\phi$ is symmetric and positive definite.

Proof.

(|) From the above formula

$$(F^* \boldsymbol{\phi}) (\mathbf{v}, \mathbf{w}) = \boldsymbol{\phi} (F_* \mathbf{v}, F_* \mathbf{w})$$
$$= \boldsymbol{\phi} (F_* \mathbf{w}, F_* \mathbf{v})$$
$$= F^* \boldsymbol{\phi} (\mathbf{w}, \mathbf{v})$$

 (\parallel) $(F^*\phi)(\mathbf{v}, \mathbf{w}) = \phi(F_*\mathbf{v}, F_*\mathbf{w}) \ge 0$

- 6 -

since F* is injective

$$\mathbf{v} = \mathbf{w} \iff F_* \mathbf{v} = F_* \mathbf{w}$$

on the other hand

$$0 = (F^* \phi) (\mathbf{v}, \ \mathbf{w}) = \phi (F_* \mathbf{v}, \ F_* \mathbf{w})$$
$$\iff F_* \mathbf{v} = F_* \mathbf{w}$$
$$\iff \mathbf{v} = \mathbf{w}$$

Thus

 $(F^* \phi)(\mathbf{v}, \mathbf{w}) = 0 \iff \mathbf{v} = \mathbf{w}$

Definition 3.2 A manifold M on which there is defined a field of symmetric, positive definite, bilinear forms ϕ is called a *Riemannian* manifold and ϕ is called the *Riemannian metric of* M.

Let M be a Riemannian manifold with dimension n, and let φ be the Riemannian metric on M. For a coordinate neighborhood (U, φ) of M. We have the following definition.

Definition 3.3 We put $E_{ip} = \varphi_{\star^{-1}}(\frac{\partial}{\partial x_i})$ $(i = 1, 2, \dots, n)$ then the n^2 functions $g_{ij}(x) = \phi(E_{ip}, E_{jp})$ $(\varphi(p) = x \in \mathbf{R}_n)$ are called the *components* of the Rimannian metric ϕ .

Let $t \longrightarrow p(t)$ $(a \le t \le b)$ be a curve of class C' on a Riemannian manifold M. Then the length of this curve from $\varphi(p(a)) = p$ to $\varphi(p(b)) = q$ is given by

-7-

$$S = L(t) = \int_{a}^{t} \left(\sum_{i,j=1}^{n} g_{ij}(x(t)) \frac{dx^{i}}{dt} \frac{dx^{j}}{dx} \right)^{\frac{1}{2}} dt$$

where $x(t) = \varphi(p(t))$. This leads to the frequently used abbreviation

$$ds^{2} = \sum_{i,j=1}^{n} g_{ij}(x) dx^{i} dx^{j}$$

for the Riemmanian metric ϕ in local coordinates.

Thus to calculate $g_{ij}(x)$ is very important in the theory of Riemannian Geometry.

A one to one regular mapping of open set U of \mathbb{R}^2 into \mathbb{R}^3 is called a coordinate patch and if Ψ^{-1} is continuous then Ψ is said to be proper patch

We see that if f is any differentiable real valued function on open set U in \mathbb{R}^2 the function $\Psi: U \longrightarrow \mathbb{R}^3$ such that $\Psi(x^1, x^2) = (x^1, x^2, f(x^1, x^2))$ is a proper patch, the patch of this type is called the *Monge patch*.

We shall calculate $g_{ij}(x)$ of the Monge patch.

Theorem 3.4 The components of the Riemannian metric on the Monge patch is given by

$$(g_{ij}) = \begin{pmatrix} 1 + f_1^2, & f_1 f_2 \\ & \\ f_1 f_2, & 1 + f_2^2 \end{pmatrix}$$

where $f_i = \frac{\partial f}{\partial x^i}$

Proof. Suppose the formula of the Monge patch

 $\varphi: U \longrightarrow \mathbf{R}^{3}(U: open in \mathbf{R}^{2})$

is defined by $(\mathbf{x}, \mathbf{x}^2) \longrightarrow (X, Y, Z) = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{f}(\mathbf{x}^1, \mathbf{x}^2))$

If $g_{ij} = (E_i, E_j)$ (*i*, j=1, 2), then

$$\mathbf{E}_{1} = \varphi_{*}^{-1} \left(\frac{\partial}{\partial x^{1}} \right) = \frac{\partial}{\partial \mathbf{X}} \cdot \mathbf{1} + \frac{\partial}{\partial \mathbf{Y}} \cdot \mathbf{0} + \frac{\partial}{\partial \mathbf{Z}} \cdot f_{1}$$
$$\mathbf{E}_{2} = \varphi_{*}^{-1} \left(\frac{\partial}{\partial x^{2}} \right) = \frac{\partial}{\partial \mathbf{X}} \cdot \mathbf{0} + \frac{\partial}{\partial \mathbf{X}} \cdot \mathbf{1} + \frac{\partial}{\partial \mathbf{Z}} \cdot f_{2}$$

Thus

$$g_{11} = (E_1, E_1) = 1 + f_{1}^{2}$$

$$g_{12} = (E_1, E_2) = f_1 f_2 = g_{21}$$

$$g_{22} = (E_2, E_2) = 1 + f_{1}^{2}$$

$$g_{22} = (E_2, E_2) = 1 + f_{1}^{2}$$

$$g_{22} = (E_2, E_2) = 1 + f_{2}^{2}$$

$$g_{22} = (E_2, E_2) = 1 + f_{2}^{2}$$

Note that

$$(|) (x, y) \neq 0$$

$$(\parallel) \quad \left(\frac{\partial}{\partial X}, \frac{\partial}{\partial X}\right) = \left(\frac{\partial}{\partial Y}, \frac{\partial}{\partial Y}\right) = \left(\frac{\partial}{\partial Z}, \frac{\partial}{\partial Z}\right) = 1 \left(\frac{\partial}{\partial X}, \frac{\partial}{\partial Y}\right) = \left(\frac{\partial}{\partial Y}, \frac{\partial}{\partial Z}\right) = \left(\frac{\partial}{\partial Z}, \frac{\partial}{\partial X}\right) = 0$$

Consider the upper hemisphere which is one of the Monge patch, then we have the followings.

- 9 -

Corollary 3.5 The components of the Riemannian metric on the upper hemisphere is given by

$$(\mathcal{G}_{ij}) = \frac{1}{1 - (x^1)^2 - (x^2)^2} \left(\begin{array}{c} 1 - (x^2)^2, \ x^1 x^2 \\ x^1 x^2, \ 1 - (x^1)^2 \end{array} \right)$$

Proof. Since the formula of the upper hemisphere is given by $(x', x^2) \rightarrow (X, Y, Z) = (x', x^2 \sqrt{1 - (x')^2 - (x^2)^2})$ $E_1 = \varphi_{\star}^{-1}(\frac{\partial}{\partial x^1}) = \frac{\partial}{\partial X} \cdot 1 + \frac{\partial}{\partial Y} \cdot 0 + \frac{\partial}{\partial Z} \cdot \frac{-x^1}{\sqrt{1 - (x')^2 - (x^2)^2}}$ $E_2 = \varphi_{\star}^{-1}(\frac{\partial}{\partial x^2}) = \frac{\partial}{\partial X} \cdot 0 + \frac{\partial}{\partial Y} \cdot 1 + \frac{\partial}{\partial Z} \cdot \frac{-x^2}{\sqrt{1 - (x')^2 - (x^2)^2}}$

Hence

$$g_{11} = (\mathbf{E}_{1}, \mathbf{E}_{1}) = 1 + \frac{(x^{1})^{2}}{1 - (x^{1})^{2} - (x^{2})^{2}}$$

$$= \frac{1 - (x^{2})^{2}}{1 - (x^{2})^{2} - (x^{2})^{2}}$$

$$g_{12} = (\mathbf{E}_{1}, \mathbf{E}_{2}) = \frac{x^{1} x^{2}}{1 - (x^{1})^{2} - (x^{2})^{2}} = g_{21}$$

$$g_{22} = (\mathbf{E}_{2}, \mathbf{E}_{2}) = 1 + \frac{(x^{2})^{2}}{1 - (x^{1})^{2} - (x^{2})^{2}}$$

$$= \frac{1 - (x^{1})^{2}}{1 - (x^{1})^{2} - (x^{2})^{2}}$$

Thus

$$(g_{ij}) = \frac{1}{1 - (x^1)^2 - (x^2)^2} \left(\begin{array}{c} 1 - (x^2)^2, \ x^1 x^2 \\ x^1 x^2, \ 1 - (x^1)^2 \end{array} \right)$$

- 10 -

REFERENCES

- R. L. Bishop & R. J. Crittenden; Geometry of Manifolds, Academic Press, Inc. (1964).
- W. M. Boothby; An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York(1975).
- Hyun. J. O. ; Remarks on the Components of the Riemannian Metric, Bull. Honam Math. Soc. Vol. 2. (1985).
- R. D. Millman & G. D. Parker; Elements of Differentiable Geometry, Prentice-Hall. Inc. (1977).
- 5. W. Klingenberg; Riemannian Geometry, Walter de Gruyter (1982).
- 6. B. O'Neil;Elementary Differential Geometry, Academic Press, Inc. (1966). 제주대학교 중앙도서관

- 11 -

Riemann 多樣體上에서의 Riemann 計量의 成分에 關한 小考

尹 良 燮

濟州大學校 教育大學院 數學教育專攻

指導教授 玄 進 五

본 論文에서는 첫째로 C[∞]-多樣體(C[∞]-Manifold)의 接空間(Tangent space)과 Vector 場(Vector field)에 대한 몇가지 性質들을 조사한다.

둘째로 Coordinate frames 을 利用하여 Riemann 多樣體인 Monge patch 와 上半球(Upper hemisphere)에서 Riemann 計量(Riemannian Metric)의 成分(Components)을 구한다.

- 12 -