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1. INTRODUCTION

LetVy be a m—dimensiona. Ziemannian space referred to a real
coordinate system x* and defined by a fundamental metric tensor
hi, , whose determinant

(1.1) h 8L Det (( ha ) # 0.

According to (1,1), there is a unique tensor #* = 4** defined by
(1.2) ha i S8L 5%,
Letf” (i =1,2,,n) be a set of »n linearly independent vec-
tors, Then there is a unique reciprocal set of » linearly inde—

;
pendent covariant vector e; ( = 1,2, -, n,, satisfying

(1.3) ?véj .y LK
With these vectors e and 2, 3 nonnoionomic frame of V, may
H
be constructed in the following way.
If AY%:: are holonomic components CI & tensdor, then its nonholo-—

nomic components are defined oy

(1.4) AL = AL ey, et

(1,5) Ajnn = ARIND e eg e

(%) Throughout the present paper, Jreek indices take the values
1,2, -+, n unless explicitly stated otnerwise and follow the sum-
mation convention, while Roman inaices are used for the nonho-
lenemic components of & tensor and run from 110 n, Roman indices
also follow the summation convention,
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With respect to a2rthogcnal nonholonomic frame of V, constructed

by an orthogonal ennuple e¢” (¢ = 1,2, »»»,» ) it was shown by Chung,
H
K.T,& Hyan,J, 0, 1976 that
(1.6) hij = az‘j ,hl.j= atl
; ;
Ll,?) 2” — ev e) —_

) = é€;
H 7

In this paper, studying the relationships between holonomic and
nonnolonomic components of the Christeffel symbols defined by a
general symmetric covariant tensor a,, we derive a useful repre—

sentation of the first and second nonholonomic Christoffel

symbols,



2. PRELIMINARY RESULTS

Consider a symmetric covariant tenscr g wnose ieterminant

a def Det (@;,) # 0. It is well xnown tnat the guantities ae*

defined by

o def  cofactor aOf @4 1N @ g5 gymmetric contravariant
tensor satisfying

(2.1) a a® = 4y,

Take a coordinate system y' for which we have at a point P of V,

a,\'i _ ! 0x’ = e"
i

If a;, and a;; are holonomic and nonholonomic components of the
tensor defined above, it follows that
(2.3) Bipg = Gau €' e*,
Jk H ey
In this section, for our further discussions, results obtained
in the previous paper will be introduced without precof,

THEOREM 2.1, The derivative of ¢? is a negative self—adjoint,

H
That 1s

F !
(2.4) dplea) ef = —d, e" ) e,,
J J
T'HEOREM 2.2, The derivative of tne tensor aj;, 1s a negative

self -adjoint,
(2.5) aip ak'\ aAy) = = Qay a}g\ ai,‘).
THECREM 2.3. The nolonocmic and nonnolonomic components of the

Christorfel symbols satisfy



(2.6) (my Gk g = @ Ap 3, ei et e
7 ko m
T @y, (8, ') e? o*,
J k. m
- 1: — b 3 A I ! ” ¥
(2-f> {Jk}a 1]/1[0 euj i +eui (a”)e ).

Here, [(m, jk] and {;k} are the first and second Chrisz: -792]
symbol of nonholonomic frame, respectively, defined by @iy

THEOREM 2.4 The nonhclonomic components of the Christoffel

symbols of the second kind may be expressed as

28 Uklem g G Ul g
i
= e, z.ﬂ(V" 5)
v u i
=-f i ( #eu)

Where V,, 18 the symbcl Oof the covariant derivative with
respect to | App Vo
THEOREM 2.5 The holonomic components of the Christoffel

symbols, as follows

‘ S . m 5k J k
\2.9,\" ‘Lwy)y dg = Em’ Tk ]a €y €1 €, + ajk(ap el) €.
: ' ]l K a
(2.10) t e = ks e e ey = (8, 6%) ¢
‘ i ;7 ok ' J .
= ke T es e + (8, ep) ¢
J



3. MAIN RESULTS.

THEOREM 3.1 Tne nonholonmic components of the Christof—

fel symbcls o the Tirst and second kKinds satisfy

(1 m

(3-1) l/‘k}a = a ‘:m)jk)a'

PROOF, From(2,7),(2.9)

PP - l'i 1 b4 4w ? w A
qu}a pwia f2e" e+ ey e (9. e )
p b4
=o'’ (o,pu] e, e" e + e;e% (Dqe )
9 7 r ¢
2 t Jj & k
=a""((¢,5k]) e,e,e, +a. (d.e,)es)

By means of the (1.3),(2.3),(2.4)
py, _ tr.o. Tk bk J o
{q,}a = a [z,}k]éqar + a a}.k(ame,)%.i

b4 ,
+ ajev (Bae?)
- q
th. ? )
= a (i,qr) + (dee€,)e” e®— (3, e;) e e
a qQ r q 7
tp.
=a {t,97]
a

By the theorem 3.1,

COROLLARY 3.2, We nave
a L) = 1,5k
il 'jkla ST g

PROOF, Multiplying both sides of (3.1) by ., using
H

(2.1) as required.



THEOREM 3.8 The nonholonomic components of the Chris-
toffel symbols of the second kind may be expressed as the

symbols of the covariant derivative with respect to the

second kind,

PROOF, Using(2.7),(2.10),

2 ] ]
{pwla erxe*e® + ere®(d,0%)
5k k i)
m , ! i { Y i
Cu€ (V eﬂ) €3 e“e°‘+e;e (aue )
/ m ik k 7

;
jk}a

! {
= " “(9,2")
(Vke.u)i. + e;i ( 5

where F7 is the symbol of the covariant derivative with

respect to {ji}a
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The purpose of the present paper is to study the rela-
tionships between holonomic and nonhclonom:ic components of
the Christcfel symbols defined by general symmetric cova-
riant tensor g3, and we derive a useful representation of

the first and second nonhclonomic Christoffel symbols,
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