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1. INTRODUCTION.

The conocept of the nonholonomic frames -, trwoo ucel
Hlavaty 1957 with a set of 4 linearly independent basic
null veotors,

In our previous paper [1], (2 ) introduced the general
nonholonomic frames and orthogonal nonholonomic frames
to an n-dimensional Riemannlan space V, and constructed the

n

oharscteristic orthogonal nonholonomio frames of V dete-
n

rmined by a symmetric tensor 8 ppus
The purpose of the present paper, using the definition
and praopertles, prove some well-known results of Riemanni-

T

an geometry im . 1T L0TWnTl.



5. PRELIMINARY RESULTS

Let V be a n—-dimensional Riemannian space referred to

a real coordinate system x" and defined by a fundamental

metric tensor hhﬁ,whose desterminant

deft
(2.1) h == Det((hnp)) * 0.
According to(2.1) there is a unigue tensor v = n'”
defined by
- det (¥
(2.2) h"l“ ™Y === d pu.

The tensors hy, and W\ will serve for raising and lwing

jndices of tensor quantities in Vnin the usual manner,

1f %f,(i=l.2.,.,.n).are a set of n linearly independent
unit veetors,then there is a unique reciproocal get of n
linearly independent covariant vectors ék,(i=1.2.....nl
satistfying

(2.3) g"‘ %x = F; . ?)\ jéh = gi .

With the veotcrs i“ and éh a nonholonomic frame of Vnis

defined in the following way.,

1# T °** are holonomie comporents of a tensor, then its

K.'-
nonholonomioc components are defined by
* i def V"' i -
(2.4)a T "' =— T ey eM...
J.ni T\nc.
From (2.3) and(2,4)a, %
-9 i'.l Y . &8
(2.4)0b pV " — T ° A
7\". Jc-ni

(#) Throughout the present paper, Greek indioces are used
for the holonomic componenents of a tensor, while Reman
indices are used for the nonholonomic components of a
tensor. Both indices take the values 1,2,,,..n, and follw
the summation convention

-



The nonholonomic frame in vnconstruoted by the unit veo~
tors ?V,(1=1.2,,,,,n).tangent to the n congruences of an
orthogonalennuple,will be termed an orthogonal nonholono-
mic frame of Vﬁ

with respect to an orthogonal nonholonomic frame of Vn.wa ave

(2.5)

. i ij
n =5, . .n 364,
ij ij
r =;V g = =)
§ » ORT A

Ul

‘,
The tensor h,\}“h and (;.7\ may be expressed in terms of

?. ag follows,

(2.6)
Bap = Zi i~ 3+
70 R R
fx = Ly Al

3. SOME RESULTS.

In this seotion,we derive the results cnnoerning the n-
dimens ional Riemannian space Vnemploying the newly estab-
jshed nonholonomie frame in the preceeding seotion

Consider a symmetric covariant tensors, whose determinant

(3.1) a 9;__1'_ Det(( apd) 0 .

It is well-known that the quantity a defined by

(3.2) v def cofector of apy in a
° a

a
is a symmetric contravariant temsor patiafying

(3.3) a.,‘ra.“v =S);L.
—~3



THEOREM.(3.1). If the nonholonomjo covarijant tensor

ayy = 0 (i#j) then

(3.1)a a¥d =0 (4%j), and 2% = 3%;. (ay, ¥ 0)

PROOF, Siuce a,,= 0 then al"= o,

the first relation of(3.1)a follows from(2.4)a, and the

gsecond relation may be derived as

= TR
ayy @ =ay gt e

THEOREM,(3.2). If the tensors aﬁ#>and hh# are symmetrioc

37\ g\": &15: .

satisfying the equations

(3.2)a Camu =k bBpp) gt =0
-k N o=
(3.2)b ( B np k npp ) 3 0
then
(3.3)= hy; =0
(3.3)0 agy =0
(3.3)c . k= agy /’hjj, where & # k,

PROOF, MNultiplying both side of(3,2)a and (3.2)b by &*
J

and ?A, rospeotively, and subtracting the two results

(A
(3.4) h,, ? ? = 0,

From (3,2)a and (3.4), we have(3,3)b.

Using(2.,4)a and (3,2)a,

k = a e"e" h N oM =
N W § 8 a;; /' kb

J ij.
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ABSTRACT

On some Properties of the Nonholonemic Components in¥Vn

Koh,Aeja
Department of Mathematios
Graduate School of Education

Cheju ~_ti:s 0 Thfgn T
In our paper, we will introduoce the general nonholono-
mic and orthogonal nonholomomic frames to an n-dimensio-
nal Riemanniaen space ¥n, and also congtruct the charact-
eristic orthog-nal nonholonomic of Vn,
Finally, we will show some well-known results of Kiema-
nnian geometry in & new method using the definition and

properties given,
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