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1. INTRODUCTION

Let azp be the symmetric covariant tensor whose determinant

(=9
L
—h

ll

(1.1) a det((az,u)) #= 0

and 1et{¢2|(j: 1,2,...,n)}be a set of n linearly independent vector

in n-dimensional Riemannian space V, refered to a real coordinate

system Xu |
Then there is a unique reciprocal set of n-linearly independent

covariant vector 12 (£=1,2,...,n) satisfying

v 4 v (*%)
(1.2)a 3: e, = 52’
(1.2)b R P
J J -

It is well-known that the quantities defined

A i e
(1.3)a a kv def cofector of a, ina satisfying
a
(1.3)b atr = 5"
: A2 =

DEFINITION 1.1, If T; are holonomic components of a tensor,

then its nonholonomic components are defined by

Veoo 4 i

oo def
(1.4) A SRR

s a .

€
v 7 -
In this paper, for our further discussion, previous results will be

introduced without proof,

(#* ) Throughout the present paper, Greek indices take the values
1,2,...,n unless explicity stated otherwise and follow the summat-
ion convention, while Roman indicec are used for the nonholonomic
components of a tensor and run from1l to n,

Roman indices also follow the summation convention,
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2. PRELIMINARY RESULTS

THEOREM 2.1, The holonomic christoffel symbols of the first

and second kinds are used to denote the function;

(2.1) (w2 =2, {1,

THEOREM 2.2, The covariant differentiation of holonomic

symmetric tensor with respect to x’.‘ that is,

(2.2) 2,2 = —a” 2" (0, o) + (0. 0n)).

THEOREM 2.3, The holonomic component of the christoffel

symbol of the second kind may be expressed as follows ;

v j & : v
(2.3) (2ud = —ee, (ree")
where ¢, is the symbol of the covariant derivative with respect to
i
{]'k }-

THEOREM 2,4, The holonomic components of the christoffel

symbols may be expressed as follows

. J £ m
(2.4) (w.oin) = (m, jx) b6, 8,

THEOREM 2.5, The derivative of Q,Z is a negative self-adjoint,
i
That is,

(2.5)



3. MAIN RESULTS

In this section, we will be reconstructed some well- known results

with refined way as applications of the nonholonomic frames.

THEOREM 3.1. We have

K

(3.1) (w,26)=a (748 ¢

PROOF. Using(1.2)b, (1.4),(2.1),(2,3),(2.5),

(o, ) = a, {2}

ve
m 4
.e e
mi Wy
my
mi @ p o j £ 2)

mji o p

mj xl)w/,t.



THEOREM 3.2,

The fovariant differentiation of

Ay .
contravariant tensor 3 may be expressed as follows ;

(3.2)

Ay
0
ula

v ) c
)= a" (s e+ (7,698 16,

PROOF. By means of (1.3)b,(2.2),(2.5),(3.1),
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THEOREM 3.3, The covariant differentiation of holonomic

covariant tensor aﬁw may be expressed in following manner;

. l g m @ _K
(3.,3) Dp(aew)—aﬁw[(l?xea) § +(Vxew)$n ]e#.
ROOF F vl__ vd
PROOF, From(2.5),(3.3)a aﬂ(azw)a = ay(a )alw,

Multiplying a,, to both sides of (3,3)a and by making use of

(1,3)b and (3.2), We obtain

vA pi

v
a‘u(am)a a,, = —9,(a )azwagy,
i vi
P = -
#(azw)ﬁo ap(a )azwaay,
_ v
ap(aﬂw) N aﬂ(a )alw g,

v ol W, m £
= —a [ Vx? )ea+ (Vlfyen ) ew:l epaiwauﬂ

i

_ g 1 w m
avﬁt(vx? )ea+(Vtren )ea)] u© alw

D=

v
= —a

w., m

c. | K
= -—aaw [(VE? )eo-i- (V‘;en )ew] ey

l o m w._ K
= 25, (T e)e + (e )e e,



COROLLARY 3.4, The covariant differentiating of the deter-

minant of holonomic covariant tensor a may be expressed as follows:

(3.4) apa:a[(V‘éa)?a+(vxg'm);e:’] gp.

PROOF . Making use of (1.1) and(3.3),

8w

d — aa a
aﬂ : a#( 0w)
_ o 1 o m ®_ K
=aa -'slf,w[(v',:ea)«;+(t7,:ew);;1 Je,
g @ K
=a((r e )?+(V‘ew)§1 e,
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